Skip to main content
Log in

Fourier transforms and bent functions on finite groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let G be a finite nonabelian group. Bent functions on G are defined by the Fourier transforms at irreducible representations of G. We introduce a dual basis \({\widehat{G}}\), consisting of functions on G determined by its unitary irreducible representations, that will play a role similar to the dual group of a finite abelian group. Then we define the Fourier transforms as functions on \({\widehat{G}}\), and obtain characterizations of a bent function by its Fourier transforms (as functions on \({\widehat{G}}\)). For a function f from G to another finite group, we define a dual function \({\widetilde{f}}\) on \({\widehat{G}}\), and characterize the nonlinearity of f by its dual function \({\widetilde{f}}\). Some known results are direct consequences. Constructions of bent functions and perfect nonlinear functions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alperin J.L., Bell R.B.: Groups and Representations, GTM 162. Springer, New York (1997).

    Google Scholar 

  2. Arasu K.T., Ding C., Helleseth T., Kumar P.V., Martinsen H.: Almost difference sets and their sequences with optimal autocorrelations. IEEE Trans. Inform. Theory 47(7), 2934–2943 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  4. Carlet C., Ding C.: Highly nonlinear mappings. J. Complex. 20, 205–244 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung H., Kumar P.V.: A new general construction of generalized bent functions. IEEE Trans. Inform. Theory 35, 206–209 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  6. Dillon J.F.: Elementary Hadamard Difference Sets. Ph.D. Thesis, University of Maryland (1974).

  7. Davis J.A., Poinsot L.: \(G\)-perfect nonlinear functions. Des. Codes Cryptogr. 46, 83–96 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan Y., Xu B.: Fourier transforms and bent functions on faithful actions of finite abelian groups. Des. Codes Cryptogr. 82, 543–558 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan Y., Xu B.: Nonlinear functions and difference sets on group actions. Des. Codes Cryptogr. 85, 319–341 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  10. Galati J.C., LeBel A.C.: Relative difference sets in semidirect products with an amalgamated subgroup. J. Comb. Des. 13, 211–221 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. Huppert B.: Character Theory of Finite Groups. Walter de Gruyter & Co., Berlin (1998).

    Book  MATH  Google Scholar 

  12. Isaacs M.: Character Theory of Finite Groups, vol. 69. Pure and Applied MathematicsAcademic Press Inc., New York (1976).

    MATH  Google Scholar 

  13. Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40, 90–107 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  14. Lai X., Massey J.L.: A proposal for a new block encryption standard. In: Advances in Cryptology-Eurocrypt’90. Lecture Notes in Computer Science, Vol. 473, pp. 389–404. Springer (1991).

  15. Logachev O.A., Salnikov A.A., Yashchenko V.V.: Bent functions over a finite abelian group. Discret. Math. Appl. 7, 547–564 (1997).

    Article  MATH  Google Scholar 

  16. Nagao H., Tsushima Y.: Representations of Finite Groups. Academic Press Inc., Boston (1989).

    MATH  Google Scholar 

  17. Poinsot L., Harari S.: Group actions based perfect nonlinearity. GESTS Int. Trans. Comput. Sci. Eng. 12, 1–14 (2005).

    Google Scholar 

  18. Poinsot L.: Bent functions on a finite nonabelian group. J. Discret. Math. Sci. Cryptogr. 9, 349–364 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. Poinsot L.: Non abelian bent functions. Cryptogr. Commun. 4, 1–23 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. Poinsot L., Pott A.: Non-Boolean almost perfect nonlinear functions on non-abelian groups. Int. J. Found. Comput. Sci. 22, 1351–1367 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. Pott A.: Nonlinear functions in abelian groups and relative difference sets, in: Optimal Discrete Structures and Algorithms, ODSA 2000. Discret. Appl. Math. 138, 177–193 (2004).

    Article  MATH  Google Scholar 

  22. Rothaus O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976).

    Article  MATH  Google Scholar 

  23. Shorin V.V., Jelezniakov V.V., Gabidulin E.M.: Linear and differential cryptanalysis of Russian GOST. In: Augot D., Carlet C. (eds.) Workshop on Coding and Cryptography, pp. 467–476 (2001).

  24. Solodovnikov V.I.: Bent functions from a finite abelian group to a finite abelian group. Diskret. Mat. 14, 99–113 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. Tokareva N.: Generalizations of bent functions: a survey of publications. J. Appl. Ind. Math. 5, 110–129 (2011).

    Article  MathSciNet  Google Scholar 

  26. Xu B.: Multidimensional Fourier transforms and nonlinear functions on finite groups. Linear Algebr. Appl. 452, 89–105 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu B.: Bentness and nonlinearity of functions on finite groups. Des. Codes Cryptogr. 76, 409–430 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu B.: Dual bent functions on finite groups and \(C\)-algebras. J. Pure Appl. Algebr. 220, 1055–1073 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees; their useful comments have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangteng Xu.

Additional information

Communicated by A. Pott.

The first author is supported by NSFC Grant 11271005.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Xu, B. Fourier transforms and bent functions on finite groups. Des. Codes Cryptogr. 86, 2091–2113 (2018). https://doi.org/10.1007/s10623-017-0439-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0439-0

Keywords

Mathematics Subject Classification

Navigation