Skip to main content
Log in

Reusable fuzzy extractor from the decisional Diffie–Hellman assumption

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Fuzzy extractors convert noisy non-uniform readings of secret sources into reliably reproducible, uniformly random strings, which in turn are used in cryptographic applications. Reusable fuzzy extractor allows multiple uses of the same secret source. In this paper, we construct the first strongly reusable fuzzy extractor which tolerates linear fraction of errors, with security tightly reduced to the decisional Diffie–Hellman (DDH) assumption in the standard model. Our construction is simple and efficient. Only two group operations and an evaluation of a hash function are added compared with the traditional construction of non-reusable fuzzy extractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The “strong” reusability in [2] is weaker than ours, since \(\varDelta w_{i,j}\) is designated by a PPT adversary.

  2. One can always translate a binary string to an element in \({\mathbb {Z}}_p^l\) for a proper l.

References

  1. Alamélou Q., Berthier P., Cauchie S., Gaborit P.: Practical reusable fuzzy extractors for the set difference metric and adaptive fuzzy extractors. IACR Cryptology ePrint Archive 2016, 1100 (2016). http://eprint.iacr.org/2016/1100.

  2. Apon D., Cho C., Eldefrawy K., Katz J.: Efficient, reusable fuzzy extractors from LWE. In: Proceedings of the Cyber Security Cryptography and Machine Learning—First International Conference, CSCML 2017, Beer-Sheva, Israel, 29–30 June 2017, pp. 1–18 (2017). https://doi.org/10.1007/978-3-319-60080-2_1.

    Google Scholar 

  3. Bennett C.H., DiVincenzo D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000).

    Article  Google Scholar 

  4. Bennett C.H., Brassard G., Robert J.M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988).

    Article  MathSciNet  Google Scholar 

  5. Bennett C.H., Brassard G., Crépeau C., Maurer U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).

    Article  MathSciNet  Google Scholar 

  6. Bitansky N., Canetti R.: On strong simulation and composable point obfuscation. In: Proceedings of the Annual Cryptology Conference, pp. 520–537 (2010).

    Chapter  Google Scholar 

  7. Boyen X., Dodis Y., Katz J., Ostrovsky R., Smith A.: Secure remote authentication using biometric data. In: EUROCRYPT 2005, pp. 147–163 (2005).

    Google Scholar 

  8. Boyen X.: Reusable cryptographic fuzzy extractors. In: CCS 2004, pp. 82–91 (2004).

  9. Cachin C., Maurer U.M.: Linking information reconciliation and privacy amplification. J. Cryptol. 10(2), 97–110 (1997).

    Article  Google Scholar 

  10. Campbell J.P.: Speaker recognition: a tutorial. Proc. IEEE 85(9), 1437–1462 (1997).

    Article  Google Scholar 

  11. Canetti R., Fuller B., Paneth O., Reyzin L., Smith A.: Reusable fuzzy extractors for low-entropy distributions. In: EUROCRYPT 2016, pp. 117–146 (2016).

    Chapter  Google Scholar 

  12. Cramer R., Dodis Y., Fehr S., Padró C., Wichs D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: EUROCRYPT 2008, pp. 471–488 (2008).

  13. Cramer R., Shoup V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: CRYPTO 1998, pp. 13–25 (1998).

    Chapter  Google Scholar 

  14. Cramer R., Shoup V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: EUROCRYPT 2002, pp. 45–64 (2002).

    Chapter  Google Scholar 

  15. Crépeau C.: Efficient cryptographic protocols based on noisy channels. In: Fumy W. (eds.) EUROCRYPT 1997, pp. 306–317 (1997).

    Chapter  Google Scholar 

  16. Diffie W., Hellman M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976).

    Article  MathSciNet  Google Scholar 

  17. Dodis Y., Katz J., Reyzin L., Smith A.: Robust fuzzy extractors and authenticated key agreement from close secrets. In: CRYPTO 2006, pp. 232–250 (2006).

    Google Scholar 

  18. Dodis Y., Reyzin L., Smith A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: EUROCRYPT 2004, pp. 523–540 (2004).

    Chapter  Google Scholar 

  19. Dodis Y., Ostrovsky R., Reyzin L., Smith A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008).

    Article  MathSciNet  Google Scholar 

  20. ElGamal T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. theory 31(4), 469–472 (1985).

    Article  MathSciNet  Google Scholar 

  21. Fuller B., Meng X., Reyzin L.: Computational fuzzy extractors. In: ASIACRYPT 2013, pp. 174–193 (2013).

    Chapter  Google Scholar 

  22. Guajardo J., Kumar S.S., Schrijen G.J., Tuyls P.: Physical unclonable functions and public-key crypto for FPGA IP protection. In: Proceedings of the International Conference on Field Programmable Logic and Applications, 2007. FPL 2007, pp. 189–195 (2007).

  23. Herder C., Fuller B., van Dijk M., Devadas S.: Public key cryptosystems with noisy secret keys. IACR Cryptology ePrint Archive 2017, 210 (2017). http://eprint.iacr.org/2017/210.

  24. Herder C., Ren L., van Dijk M., Yu M.M., Devadas S.: Trapdoor computational fuzzy extractors and stateless cryptographically-secure physical unclonable functions. IEEE Trans. Dependable Sec. Comput. 14(1), 65–82 (2017). https://doi.org/10.1109/TDSC.2016.2536609.

    Article  Google Scholar 

  25. Imamog A., Awschalom D.D., Burkard G., DiVincenzo D.P., Loss D., Sherwin M., Small A., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999).

    Article  Google Scholar 

  26. Jain A.K., Ross A., Prabhakar S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004).

    Article  Google Scholar 

  27. Juels A., Sudan M.: A fuzzy vault scheme. In: Proceedings of the IEEE International Symposium on Information Theory, 2002, p. 408 (2002).

  28. Juels A., Wattenberg M.: A fuzzy commitment scheme. In: CCS 1999, pp. 28–36 (1999).

  29. Li S.Z., Jain A.K. (eds.): Handbook of Face Recognition, 2nd edn. Springer (2011).

  30. Linnartz J.P., Tuyls P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Proceedings of the International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 393–402 (2003).

    Google Scholar 

  31. Ma L., Tan T., Wang Y., Zhang D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003).

    Article  Google Scholar 

  32. Maes R.: Physically Unclonable Functions. Springer (2013).

  33. Monrose F., Rubin A.D.: Keystroke dynamics as a biometric for authentication. Future Gener. Comput. Syst. 16(4), 351–359 (2000).

    Article  Google Scholar 

  34. Nalwa V.S.: Automatic on-line signature verification. Proc. IEEE 85(2), 215–239 (1997).

    Article  Google Scholar 

  35. Nisan N., Zuckerman D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996).

    Article  MathSciNet  Google Scholar 

  36. Rührmair U., Sehnke F., Sölter J., Dror G., Devadas S., Schmidhuber J.: Modeling attacks on physical unclonable functions. In: Proceedings of the 17th ACM conference on Computer and Communications Security, pp. 237–249 (2010).

  37. Sanchez-Reillo R., Sanchez-Avila C., Gonzalez-Marcos A.: Biometric identification through hand geometry measurements. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1168–1171 (2000).

    Article  Google Scholar 

  38. Shoup V.: A computational introduction to number theory and algebra. Cambridge University Press, Cambridge (2009).

    MATH  Google Scholar 

  39. Steiner M., Tsudik G., Waidner M.: Diffie–Hellman key distribution extended to group communication. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 31–37 (1996).

  40. Suh G.E., Devadas S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th Annual Design Automation Conference, pp. 9–14 (2007).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC No. 61672346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Liu.

Additional information

Communicated by J. H. Cheon.

Appendices

Syndrome based construction of secure sketch

An efficient \([n,k,2t+1]\)-linear error correcting code \(\mathcal {C}\) over \(\{0,1\}^n\) is a subspace of \(\{0,1\}^n\). Fix any \((n-k)\times n\) matrix H whose rows generate the orthogonal space \(\mathcal {C}^{\bot }\) as parity-check matirx of \(\mathcal {C}\). For any \(v\in \{0,1\}^n\), define syndrome \(\mathsf {syn}(v)=Hv\). Then \(v\in \mathcal {C}\Longleftrightarrow \mathsf {syn}(v)=0\). For any \(c\in \mathcal {C}\), \(\mathsf {syn}(c+e)=\mathsf {syn}(c)+\mathsf {syn}(e)=\mathsf {syn}(e)\). The syndrome captures all the information necessary for decoding.

The syndrome based construction of secure sketch [19] is given below:

  • \(\mathsf {SS}(w) = \mathsf {syn}(w)=s\).

  • \(\mathsf {Rec}(w',s)=w'-e\), where e is the unique vector of Hamming weight less than t such that \(\mathsf {syn}(e) = \mathsf {syn}(w')-s\).

Clearly, this secure sketch is deterministic with linear property.

Toeplitz matrix

In linear algebra, a Toeplitz matrix or diagonal-constant matrix is a matrix in which each descending diagonal from left to right is constant. Any matrix of the form is a Toeplitz matrix:

$$\begin{aligned} \begin{pmatrix} a_0&{}\quad a_{-1}&{}\quad a_{-2}&{}\quad \cdots &{}\quad \cdots &{}\quad a_{-n+1}\\ a_1&{}\quad a_0&{}\quad a_{-1}&{}\quad \ddots &{}&{}\quad \vdots \\ a_2&{}\quad a_1&{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad a_{-1}&{}a_{-2}\\ \vdots &{}&{}\quad \ddots &{}\quad a_1&{}\quad a_0&{}\quad a_{-1}\\ a_{n-1}&{}\quad \cdots &{}\quad \cdots &{}\quad a_2&{}\quad a_1&{}\quad a_0 \end{pmatrix} \end{aligned}$$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Liu, S. & Han, S. Reusable fuzzy extractor from the decisional Diffie–Hellman assumption. Des. Codes Cryptogr. 86, 2495–2512 (2018). https://doi.org/10.1007/s10623-018-0459-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0459-4

Keywords

Mathematics Subject Classification

Navigation