Skip to main content

A new family of partial difference sets in 3-groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we construct several infinite families of partial difference sets of both the Latin and negative Latin square type. Among these constructions is a new family having parameters \((3^{2t},r(3^t+1),-n+r^2+3r,r^2+r)\), where \(r=3^{t-1}+1\) (new for \(t \ge 4\)). For the cases where \(r = 3^{t-1}-1\) and \(3^{t-1}\), the constructions generalize previous results to a larger collection of abelian groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brouwer A.E., Hobart S.A.: Parameters of directed strongly regular graphs. http://homepages.cwi.nl/?aeb/math/dsrg/dsrg.html.

  2. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (1989).

    Book  MATH  Google Scholar 

  3. Chen Y., Polhill J.: Partial difference sets and amorphic group schemes from pseudo-quadratic bent functions. J. Algebr. Comb. 37(1), 299–309 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen N., Pasechnik D.: Implementing Brouwer’s database of strongly regular graphs. Des. Codes Cryptogr. 84(1–2), 223–235 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis J.A.: Partial difference sets in \(p\)-groups. Arch. Math. 63, 103–110 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  6. de Resmini M.J.: A 35-set of type (2,5) in PG(2,9). J. Comb. Theory Ser. A 45, 303–305 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  7. De Winter S., Wang Z.: Classification of partial difference sets in Abelian groups of order \(4p^2\). Des. Codes Cryptogr. 84(3), 451–461 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. De Winter S., Kamischke E., Wang Z.: Automorphisms of strongly regular graphs with applications to partial difference sets. Des. Codes Cryptogr. 79(3), 471–485 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. De Winter S., Neubert E., Wang Z.: Non-existence of two types of partial difference sets. Discret. Math. 340(9), 2130–2133 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  10. Godsil C., Royle G.: Algebraic Graph Theory. Graduate Texts in Mathematics, 207. Springer, New York (2001).

    MATH  Google Scholar 

  11. Gulliver T.A.: Two new optimal ternary two-weight codes and strongly regular graphs. Discret. Math. 149, 83–92 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. Leung K.H., Ma S.L.: Constructions of partial difference sets and relative difference sets on \(p\)-groups. Bull. Lond. Math. Soc. 22, 533–539 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma S.L.: A survey of partial difference sets. Des. Codes Cryptogr. 4(3), 221–261 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  14. Polhill J.: New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups. Des. Codes Cryptogr. 46(3), 365–377 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. Polhill J.: Paley type partial difference sets in non p-groups. Des. Codes Cryptogr. 52(2), 163–169 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. Polhill J.: Paley partial difference sets in groups of order \(n^4\) and \(9n^4\) for any odd \(n>1\). J. Comb. Theory Ser. A 117(8), 1027–1036 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Polhill J., Davis J., Smith K.: A new product construction for partial difference sets. Des. Codes Cryptogr. 68(1–3), 155–161 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. Turyn R.J.: Character sums and difference sets. Pac. J. Math. 15, 319–346 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  19. van Dam E.R.: Strongly regular decompositions of the complete graph. J. Algebr. Comb. 17, 181–201 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. Van Lint J.H., Wilson R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Polhill.

Additional information

Communicated by D. Jungnickel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polhill, J. A new family of partial difference sets in 3-groups. Des. Codes Cryptogr. 87, 1639–1646 (2019). https://doi.org/10.1007/s10623-018-0562-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0562-6

Keywords

Mathematics Subject Classification