Skip to main content
Log in

Efficient explicit constructions of compartmented secret sharing schemes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Multipartite secret sharing schemes have been an important object of study in the area of secret sharing schemes. Two interesting families of multipartite access structures are hierarchical access structures and compartmented access structures. This work deals with efficient and explicit constructions of ideal compartmented secret sharing schemes, while most of the known constructions are either inefficient or randomized. We construct ideal linear secret sharing schemes for three types of compartmented access structures, such as compartmented access structures with upper bounds, compartmented access structures with lower bounds, and compartmented access structures with upper and lower bounds. There exist some methods to construct ideal linear schemes realizing these compartmented access structures in the literature, but those methods are inefficient in general because non-singularity of many matrices has to be determined to check the correctness of the scheme. Our constructions do not need to do these computations. Our methods to construct ideal linear schemes realizing these access structures combine polymatroid-based techniques with Gabidulin codes. Gabidulin codes play a fundamental role in the constructions, and their properties imply that our methods are efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball S., Padró C., Weiner Z., Xing C.: On the representability of the biuniform matroid. SIAM J. Discret. Math. 27(3), 1482–1491 (2013).

    Article  MathSciNet  Google Scholar 

  2. Beimel A.: Secret-sharing schemes: a survey. In: Chee Y.M., Guo Z., Ling S., Shao F., Tang Y., Wang H., Xing C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011).

    Google Scholar 

  3. Beimel A., Chor B.: Universally ideal secret sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994).

    Article  MathSciNet  Google Scholar 

  4. Beimel A., Tassa T., Weinreb E.: Characterizing ideal weighted threshold secret sharing. SIAM J. Discret. Math. 22(1), 360–397 (2008).

    Article  MathSciNet  Google Scholar 

  5. Ben-Or M., Goldwasser S., Wigderson A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 1–10 (1988).

  6. Beutelspacher A., Wettl F.: On 2-level secret sharing. Des. Codes Cryptogr. 3(2), 127–134 (1993).

    Article  MathSciNet  Google Scholar 

  7. Blakley G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference’79, AFIPS Proceedings, vol. 48, pp. 313–317 (1979).

  8. Brickell E.F.: Some ideal secret sharing schemes. J. Comb. Math. Comb. Comp. 9, 105–113 (1989).

    MathSciNet  MATH  Google Scholar 

  9. Brickell E.F., Davenport D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991).

    MATH  Google Scholar 

  10. Chaum D., Crépeau C., Damgård I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 11–19 (1988).

  11. Chor B., Kushilevitz E.: Secret sharing over infinite domains. J. Cryptol. 6(2), 87–96 (1993).

    Article  MathSciNet  Google Scholar 

  12. Cramer R., Damgård I., Maurer U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000).

    Chapter  Google Scholar 

  13. Cramer R., Daza V., Gracia I., Urroz J., Leander G., Martí-Farré J., Padró C.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 327–343. Springer, Heidelberg (2005).

    Chapter  Google Scholar 

  14. Desmedt Y., Frankel Y.: Threshold cryptosystems. In: Brassard G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990).

  15. Farràs O., Padró C.: Ideal hierarchical secret sharing schemes. IEEE Trans. Inf. Theory 58(5), 3273–3286 (2012).

    Article  MathSciNet  Google Scholar 

  16. Farràs O., Martí-Farré J., Padró C.: Ideal multipartite secret sharing schemes. J. Cryptol. 25(3), 434–463 (2012).

    Article  MathSciNet  Google Scholar 

  17. Farràs O., Padró C., Xing C., Yang A.: Natural generalizations of threshold secret sharing. IEEE Trans. Inf. Theory 60(3), 1652–1664 (2014).

    Article  MathSciNet  Google Scholar 

  18. Fehr S.: Efficient construction of the dual span program. Manuscript, May (1999).

  19. Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21, 1–12 (1985).

    MathSciNet  MATH  Google Scholar 

  20. Giulietti M., Vincenti R.: Three-level secret sharing schemes from the twisted cubic. Discret. Math. 310(22), 3236–3240 (2010).

    Article  MathSciNet  Google Scholar 

  21. Goyal V., Pandey O., Sahai A., Waters B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006).

  22. Herranz J., Sáez G.: New results on multipartite access structures. IEE Proc. Inf. Secur. 153(4), 153–162 (2006).

    Article  Google Scholar 

  23. Herzog J., Hibi T.: Discrete polymatroids. J. Algebr. Comb. 16(3), 239–268 (2002).

    Article  MathSciNet  Google Scholar 

  24. Ito M., Saito A., Nishizeki T.: Secret sharing schemes realizing general access structure. In: Proceedings of the IEEE Global Telecommunication Conference, Globecom 1987, pp. 99–102 (1987).

  25. Kothari S.C.: Generalized linear threshold scheme. In: Blakley G.R., Chaum D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 231–241. Springer, Heidelberg (1985).

  26. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  27. Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian Workshop on Information Theory, pp. 276–279 (1993).

  28. Massey J.L.: Some applications of coding theory in cryptography. Codes Ciphers Cryptogr Coding 4, 33–47 (1995).

    Google Scholar 

  29. Naor M., Wool A.: Access control and signatures via quorum secret sharing. In: 3rd ACM Conference on Computer and Communications Security, pp. 157–167 (1996).

  30. Oxley J.G.: Matroid Theory. Oxford University Press, New York (1992).

    MATH  Google Scholar 

  31. Padró C., Sáez G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inf. Theory 46(7), 2596–2604 (2000).

    Article  MathSciNet  Google Scholar 

  32. Schrijver A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003).

    MATH  Google Scholar 

  33. Shamir A.: How to share a secret. Commun. ACM 22, 612–613 (1979).

    Article  MathSciNet  Google Scholar 

  34. Simmons G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990).

  35. Tassa T.: Hierarchical threshold secret sharing. J. Cryptol. 20, 237–264 (2007).

    Article  MathSciNet  Google Scholar 

  36. Tassa T., Dyn N.: Multipartite secret sharing by bivariate interpolation. J. Cryptol. 22, 227–258 (2009).

    Article  MathSciNet  Google Scholar 

  37. Welsh D.J.A.: Matroid Theory. Academic Press, London (1976).

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers and Dr. Yue Zhou for their detailed comments and suggestions that much improved the presentation and quality of this paper. Special thanks to the reviewer who suggests to use polymatroid–based techniques and gives many guidance to improve the presentation of our main result by using polymatroid-based techniques.

Funding

This research was supported in part by the Foundation of National Natural Science of China (Nos. 61772147, 61702124), Guangdong Province Natural Science Foundation of major basic research and Cultivation project (No. 2015A030308016) and Project of Ordinary University Innovation Team Construction of Guangdong Province (No. 2015KCXTD014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chen.

Additional information

Communicated by C. Padro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Tang, C. & Lin, Z. Efficient explicit constructions of compartmented secret sharing schemes. Des. Codes Cryptogr. 87, 2913–2940 (2019). https://doi.org/10.1007/s10623-019-00657-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00657-2

Keywords

Mathematics Subject Classification