Skip to main content
Log in

Construction of girth-8 (3,L)-QC-LDPC codes of smallest CPM size using column multipliers

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, a new method for the construction of the exponent matrix of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. The entries of the exponent matrix are based on the column multipliers. To find the column multipliers, a parameter \( {\varvec{S}_{\varvec{\alpha}}} \) is defined which gives the value of column multiplier of the \( {\varvec{\alpha}} \)th column. The proposed method reduced the complexity related to the formation of the exponent matrix and results in (3,L)-QC-LDPC codes with girth at least eight, for \( {\varvec{L} > 3} \). Also, a lower bound on the size of the circulant permutation matrix (CPM) for a QC-LDPC code is derived, and the codes constructed by this method are optimal to the given bound. Further, most of the codes constructed using this method are of smaller CPM size. Specifically, for \( {\varvec{L} > 25} \), our constructed QC-LDPC codes have the shortest CPM size compared to the existing ones in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amirzade F., Sadeghi M.R.: Lower bounds on the lifting degree of QC-LDPC codes by difference matrices. IEEE Access. 6, 23688–23700 (2018).

    Article  Google Scholar 

  2. Draft DVB-S2 Standard: ETSI EN 302 307-1 V1.4.1. https://www.dvb.org/standards/dvb-s2 (2014). Accessed 23 January 2018.

  3. Fossorier M.P.C.: Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50(8), 1788–1793 (2004).

    Article  MathSciNet  Google Scholar 

  4. Gholami M., Gholami Z.: An explicit method to generate some QC-LDPC codes with girth 8. Iran. J. Sci. Technol. Trans. A Sci. 40(2), 145–149 (2016).

    Article  MathSciNet  Google Scholar 

  5. Karimi M., Banihashemi A.H.: On the girth of quasi-cyclic protograph LDPC codes. IEEE Trans. Inf. Theory 59(7), 4542–4552 (2013).

    Article  MathSciNet  Google Scholar 

  6. Khodaiemehr H., Sadeghi M.R., Sakzad A.: Practical encoder and decoder for power constrained QC LDPC-lattice codes. IEEE Trans. Commun. 65(2), 486–500 (2017).

    Article  Google Scholar 

  7. Kim K.J., Chung J.H., Yang K.: Bounds on the size of parity-check matrices for quasi-cyclic low-density parity-check codes. IEEE Trans. Inf. Theory 59(11), 7288–7298 (2013).

    Article  MathSciNet  Google Scholar 

  8. Li L., Li H., Li J., Jiang H.: Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets. Optoelectron. Lett. 13(5), 358–362 (2017).

    Article  Google Scholar 

  9. Mao Y., Banihashemi A.H.: A heuristic search for good low-density parity-check codes at short block lengths. Proc. IEEE ICC. 1, 41–44 (2001).

    Google Scholar 

  10. Mellinger K.E.: LDPC codes from triangle-free line sets. Des. Codes Cryptogr. 32(1–3), 341–350 (2004).

    Article  MathSciNet  Google Scholar 

  11. Sadeghi M., Amirzade F.: Analytical lower bound on the lifting degree of multiple-edge QC-LDPC codes with girth 6. IEEE Commun. Lett. 22(8), 1528–1531 (2018).

    Article  Google Scholar 

  12. Sakzad A., Sadeghi M., Panario D.: Codes with girth 8 tanner graph representation. Des. Codes Cryptogr. 57(1), 71–81 (2010).

    Article  MathSciNet  Google Scholar 

  13. Tasdighi A., Banihashemi A.H., Sadeghi M.R.: Efficient search of girth-optimal QC-LDPC codes. IEEE Trans. Inf. Theory 62(4), 1552–1564 (2016).

    Article  MathSciNet  Google Scholar 

  14. Tasdighi A., Banihashemi A.H., Sadeghi M.R.: Symmetrical constructions for regular girth-8 QC-LDPC codes. IEEE Trans. Commun. 65(1), 14–22 (2017).

    Google Scholar 

  15. Vandendriessche P.: Some low-density parity-check codes derived from finite geometries. Des. Codes Cryptogr. 54(3), 287–297 (2010).

    Article  MathSciNet  Google Scholar 

  16. Yuan J., Liang M., Wang Y., Lin J., Pang Y.: A novel construction method of QC-LDPC codes based on CRT for optical communications. Optoelectron. Lett. 12(3), 208–211 (2016).

    Article  Google Scholar 

  17. Zhang G., Sun R., Wang X.: Construction of girth-eight QC-LDPC codes from greatest common divisor. IEEE Commun. Lett. 17(2), 369–372 (2013).

    Article  Google Scholar 

  18. Zhang G., Sun R., Wang X.: Several explicit constructions for (3, L)-QC-LDPC codes with girth at least eight. IEEE Commun. Lett. 17(9), 1822–1825 (2013).

    Article  Google Scholar 

  19. Zhang J., Zhang G.: Deterministic girth-eight QC-LDPC codes with large column weight. IEEE Commun. Lett. 18(4), 656–659 (2014).

    Article  Google Scholar 

  20. Zhang L., Li B., Cheng L.: Constructions of QC-LDPC codes based on integer sequences. Sci. China Inf. Sci. 57(6), 1–14 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Gupta.

Additional information

Communicated by D. Panario.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Gupta, M. & Bhullar, J.S. Construction of girth-8 (3,L)-QC-LDPC codes of smallest CPM size using column multipliers. Des. Codes Cryptogr. 88, 41–49 (2020). https://doi.org/10.1007/s10623-019-00667-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00667-0

Keywords

Mathematics Subject Classification