Skip to main content
Log in

Cameron–Liebler sets in bilinear forms graphs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Cameron–Liebler sets of subspaces in projective spaces were studied recently by Blokhuis et al. (Des Codes Cryptogr 87:1839–1856, 2019). In this paper, we discuss Cameron–Liebler sets in bilinear forms graphs, obtain several equivalent definitions and present some classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For each \((x_1,\ldots ,x_{n})^t\in \mathbb {F}_q^{n}\), let \(V_{(x_1,\ldots ,x_{n})}=\langle e_1+x_1e_{n+1},\ldots ,e_n+x_ne_{n+1},e_{n+2},\ldots ,e_{n+\ell }\rangle .\) Then \(\{V_{(x_1,\ldots ,x_{n})}: (x_1,\ldots ,x_{n})^t\in \mathbb {F}_q^{n}\}\subseteq {\mathcal {M}}(n+\ell -1,\ell -1;n+\ell ,E)\) and \({\mathcal {M}}_n(V_{(x_1,\ldots ,x_{n})})\cap {\mathcal {M}}_n(V_{(y_1,\ldots ,y_{n})})=\emptyset \) for all \((x_1,\ldots ,x_{n})\not =(y_1,\ldots ,y_{n})\).

References

  1. Bailey R.A., Cameron P.J., Gavrilyuk A.L., Goryainov S.V.: Equitable partitions of Latin-square graphs. J. Combin. Des. (2018). https://doi.org/10.1002/jcd21634.

  2. Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Combin. Theory Ser. A 114, 1293–1314 (2007).

    Article  MathSciNet  Google Scholar 

  3. Beutelspacher, A.: Partitions of finite vector spaces: an application of the Frobenius number in geometry. Arch. Math. (Basel) 31, 202–208 (1978/1979)

  4. Blokhuis A., De Boeck M., D’haeseleer J.: Cameron–Liebler sets of \(k\)-spaces in PG\((n,q)\). Des. Codes Cryptogr. 87, 1839–1856 (2019).

    Article  MathSciNet  Google Scholar 

  5. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (2012).

    MATH  Google Scholar 

  6. Bruen A.A., Drudge K.: The construction of Cameron–Liebler line classes in PG\((3, q)\). Finite Fields Appl. 5, 35–45 (1999).

    Article  MathSciNet  Google Scholar 

  7. Cameron P.J., Liebler R.A.: Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102 (1982).

    Article  MathSciNet  Google Scholar 

  8. De Beule J., Demeyer J., Metsch K., Rodgers M.: A new family of tight sets in \(Q^+(5, q)\). Des. Codes Cryptogr. 78, 655–678 (2016).

    Article  MathSciNet  Google Scholar 

  9. De Boeck, M.: Intersection problems in finite geometries. PhD thesis, Ghent University (2014) http://cage.ugent.be/geometry/theses.php

  10. De Boeck M., Storme L., Švob A.: The Cameron–Liebler problem for sets. Discret. Math. 339, 470–474 (2016).

    Article  MathSciNet  Google Scholar 

  11. De Boeck M., Rodgers M., Storme L., Švob A.: Cameron–Liebler sets of generators in finite classical polar spaces. J. Combin. Theory Ser. A 167, 340–388 (2019).

    Article  MathSciNet  Google Scholar 

  12. De Bruyn B., Suzuki H.: Intriguing sets of vertices of regular graphs. Graphs Combin. 26, 629–646 (2010).

    Article  MathSciNet  Google Scholar 

  13. Delsarte P.: Properties and applications of the recurrence \(F(i+1, k+1, n+1)=q^{k+1}F(i, k+1, n)-q^kF(i, k, n)\). SIAM J. Appl. Math. 31, 262–270 (1976).

    Article  MathSciNet  Google Scholar 

  14. Dembowski P.: Finite Geometries. Springer, New York (1968).

    Book  Google Scholar 

  15. Deng S., Li Q.: On the affine geometry of algebraic homogeneous spaces. Acta Math. Sinica. 15, 651–663 (1965).

    MathSciNet  Google Scholar 

  16. Esser F., Harary F.: On the spectrum of a complete multipartite graph. Eur. J. Combin. 1, 211–218 (1980).

    Article  MathSciNet  Google Scholar 

  17. Feng T., Momihara K., Xiang Q.: Cameron–Liebler line classes with parameter \(x=\frac{q^2-1}{2}\). J. Combin. Theory Ser. A 133, 307–338 (2015).

    Article  MathSciNet  Google Scholar 

  18. Filmus Y., Ihringer F.: Boolean degree 1 functions on some classical association schemes. J. Combin. Theory Ser. A 162, 241–270 (2019).

    Article  MathSciNet  Google Scholar 

  19. Gavrilyuk A.L., Mogilnykh I.Y.: Cameron–Liebler line classes in PG\((n,4)\). Des. Codes Cryptogr. 73, 969–982 (2014).

    Article  MathSciNet  Google Scholar 

  20. Gavrilyuk A.L., Matkin I., Pentilla T.: Derivation of Cameron–Liebler line classes. Des. Codes Cryptogr. 86, 231–236 (2018).

    Article  MathSciNet  Google Scholar 

  21. Gong C., Lv B., Wang K.: The Hilton–Milner theorem for the distance-regular graphs of bilinear forms. Linear Algebra Appl. 515, 130–144 (2017).

    Article  MathSciNet  Google Scholar 

  22. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford Mathematical Monographs. Oxford University Press, Oxford (1991).

    Google Scholar 

  23. Ihringer, F.: Remarks on the Erdős matching conjecture for vector spaces. arXiv:2002.06601v3.

  24. Lv B., Wang K.: The energy of \(q\)-Kneser graphs and attenuated \(q\)-Kneser graphs. Discret. Appl. Math. 161, 2079–2083 (2013).

    Article  MathSciNet  Google Scholar 

  25. Martin W.J.: Completely regular designs of strength one. J. Algebr. Combin. 3, 177–185 (1994).

    Article  MathSciNet  Google Scholar 

  26. Metsch K.: The non-existence of Cameron–Liebler line classes with parameter \(2<x<q\). Bull. Lond. Math. Soc. 42, 991–996 (2010).

    Article  MathSciNet  Google Scholar 

  27. Metsch K.: An improved bound on the existende of Cameron–Liebler line classes. J. Combin. Theory Ser. A 121, 89–93 (2014).

    Article  MathSciNet  Google Scholar 

  28. Metsch K.: A gap result for Cameron–Liebler \(k\)-classes. Discret. Math. 340, 1311–1318 (2017).

    Article  MathSciNet  Google Scholar 

  29. Rodgers M.: Cameron–Liebler line classes. Des. Codes Cryptogr. 68, 33–37 (2013).

    Article  MathSciNet  Google Scholar 

  30. Rodgers M., Storme L., Vansweevelt A.: Cameron–Liebler \(k\)-classes in PG\((2k+1, q)\). Combinatorica 38, 739–757 (2018).

    Article  MathSciNet  Google Scholar 

  31. Tanaka H.: Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Combin. Theory Ser. A 113, 903–910 (2006).

    Article  MathSciNet  Google Scholar 

  32. Wan Z.: Geometry of Classical Groups over Finite Fields, 2nd edn. Science Press, Beijing (2002).

    Google Scholar 

  33. Wang K., Guo J., Li F.: Association schemes based on attenuated spaces. Eur. J. Combin. 31, 297–305 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is indebted to the anonymous reviewers for their detailed reports and constructive suggestions. The author thanks Professor Ferdinand Ihringer and Professor Alexander L. Gavrilyuk for their various remarks and suggestions while writing this article. This research is supported by National Natural Science Foundation of China (Grant No. 11971146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Guo.

Additional information

Communicated by J. D. Key.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J. Cameron–Liebler sets in bilinear forms graphs. Des. Codes Cryptogr. 89, 1159–1180 (2021). https://doi.org/10.1007/s10623-021-00864-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00864-w

Keywords

Mathematics Subject Classification

Navigation