Skip to main content
Log in

A new construction of linear codes with one-dimensional hull

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The hull of a linear code C is the intersection of C with its dual \(C^\perp \). The hull with low dimensions gets much interest due to its crucial role in determining the complexity of algorithms for computing the automorphism group of a linear code and for checking permutation equivalence of two linear codes. The hull of linear codes has recently found its application to the so-called entanglement-assisted quantum error-correcting codes (EAQECCs). In this paper, we provide a new method to construct linear codes with one-dimensional hull. This construction method improves the code lengths and dimensions of the recent results given by the author. As a consequence, we derive several new classes of optimal linear codes with one-dimensional hull. Some new EAQECCs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin A., Knill E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory. 47(7), 3065–3072 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bannai E., Dougherty S.T., Harada M., Oura M.: Type II codes, even unimodular lattices, and invariant rings. IEEE Trans. Inf. Theory. 45(4), 1194–1205 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernhard R.: Codes and Siegel modular forms. Discret. Math. 148(1–3), 175–204 (1996).

    MathSciNet  MATH  Google Scholar 

  4. Bowen G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313-1–052313-8 (2002).

  5. Brun T., Devetak I., Hsieh M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory. 44(4), 1369–1387 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over $_q$ are equivalent to LCD codes for $q>3.$. IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018).

    Article  MATH  Google Scholar 

  8. Carlet C., Li C., Mesnager S.: Linear codes with small hulls in semi-primitive case. Des. Codes Cryptogr. 87, 3063–3075 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  9. Dodunekov S.M., Landjev I.N.: Near-MDS codes over some small fields. Discret. Math. 213, 55–65 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang W., Fu F.: New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes. IEEE Trans. Inf. Theory. 65(9), 5574–5579 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. Galindo C., Hernando F., Matsumoto R., Ruano D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quant. Inf. Process. 18(4), 116 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  12. Grassl M., Gulliver T.A.: On self-dual MDS codes. In: ISIT 2008, Toronto, Canada, pp. 6 –11 (2008).

  13. Guenda K.: New MDS self-dual codes over finite fields. Des. Codes Cryptogr. 62, 31–42 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. Guenda K., Gulliver T.A., Jitman S., Thipworawimon S.: Linear $\ell $-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88, 133–152 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  16. Harada M., Munemasa A., Tonchev V.D.: Self-dual codes and the nonexistence of a quasi-symmetric 2-(37, 9, 8) design with intersection numbers 1 and 3. J. Combin. Des. 25(10), 469–476 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. Huffman W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11, 451–490 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin L., Beelen P.: Explicit MDS codes with complementary duals. IEEE Trans. Inf. Theory. 64(11), 7188–7193 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin L., Xing C.: New MDS self-dual codes from generalized Reed–Solomon codes. IEEE Trans. Inf. Theory. 63(3), 1434–1438 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.: Nonbinary stabilizer codes over finite fields. IEEE. Trans. Inf. Theory. 52(11), 4892–4914 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. Lai C.Y., Ashikhmin A.: Linear programming bounds for entanglement-assisted quantum error correcting codes by split weight enumerators. IEEE Trans. Inf. Theory. 64(1), 622–639 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. Leon J.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory. 28(3), 496–511 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  23. Leon J.: Permutation group algorithms based on partition, I: theory and algorithms. J. Symb. Comput. 12, 533–583 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. Li C., Zeng P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory. 65(3), 1668–1676 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. MacWilliams F.J., Sloane N.J.A., Thompson J.G.: Good self-dual codes exist. Discret. Math. 3, 153–162 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  26. Mesnager S., Tang C., Qi Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory. 64(4), 2390–2397 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  27. Nebe G., Rains E., Sloane N.J.A.: Self-Dual Codes and Invariant Theory. Springer, Berlin (2006).

    MATH  Google Scholar 

  28. Qian L., Cao X., Mesnager S.: Linear codes with one-dimensional hull associated with Gaussian sums. Cryptogr. Commun. 13, 225–243 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  29. Pless V.: A classification of self-orthogonal codes over $GF(2)$. Discret. Math. 3, 209–246 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  30. Rains E.M., Sloane N.J.A.: Self-dual codes. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998).

    Google Scholar 

  31. Sendrier N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory. 46(4), 1193–1203 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi M., Huang D., Sok L., Solé P.: Double circulant self-dual and LCD codes over Galois rings. Adv. Math. Commun. 13(1), 171–183 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi M., Zhu H., Qian L., Sok L., Solé P.: On self-dual and LCD double circulant and double negacirculant codes over $_q+u_q$. Cryptogr. Commun. 12, 53–70 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  34. Sok L.: Explicit constructions of MDS self-dual codes. IEEE Trans. Inf. Theory. 66(6), 3603–3615 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  35. Sok L.: New families of self-dual codes. Des. Codes Cryptogr. 89(5), 823–841 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  36. Sok L.: MDS linear codes with one dimensional hull. arXiv:2012.11247.

  37. Sok L.: On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs. arXiv:2101.06461

  38. Stichtenoth H.: Algebraic Function Fields and Codes. Springer, Berlin (2008).

    MATH  Google Scholar 

  39. Tong H., Wang X.: New MDS Euclidean and Hermitian self-dual codes over finite fields. Adv. Pure Math. 7, 325–333 (2017).

    Article  Google Scholar 

  40. Wilde M.M., Brun T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302–1–064302–4 (2008).

  41. Yan H.: A note on the constructions of MDS self-dual codes. Cryptogr. Commun. 11, 259–268 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their constructive comments which have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research work is supported by Anhui Provincial Natural Science Foundation with Grant Number 1908085MA04.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sok, L. A new construction of linear codes with one-dimensional hull. Des. Codes Cryptogr. 90, 2823–2839 (2022). https://doi.org/10.1007/s10623-021-00991-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00991-4

Keywords

Mathematics Subject Classification

Navigation