
Designs, Codes and Cryptography (2022) 90:1797–1855
https://doi.org/10.1007/s10623-022-01074-8

A bit-vector differential model for the modular addition
by a constant and its applications to differential and
impossible-differential cryptanalysis

Seyyed Arash Azimi1 · Adrián Ranea2 ·Mahmoud Salmasizadeh3 ·
Javad Mohajeri3 ·Mohammad Reza Aref1 · Vincent Rijmen2,4

Received: 4 January 2022 / Revised: 3 June 2022 / Accepted: 4 June 2022 /
Published online: 5 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
ARX algorithms are a class of symmetric-key algorithms constructed by Addition, Rotation,
and XOR. To evaluate the resistance of an ARX cipher against differential and impossible-
differential cryptanalysis, the recent automated methods employ constraint satisfaction
solvers to search for optimal characteristics or impossible differentials. The main difficulty
in formulating this search is finding the differential models of the non-linear operations.
While an efficient bit-vector differential model was obtained for the modular addition with
two variable inputs, no differential model for the modular addition by a constant has been
proposed so far, preventing ARX ciphers including this operation from being evaluated with
automated methods. In this paper, we present the first bit-vector differential model for the
n-bit modular addition by a constant input. Our model contains O(log2(n)) basic bit-vector
constraints and describes the binary logarithm of the differential probability. We describe an
SMT-based automated method that includes our model to search for differential characteris-
tics of ARX ciphers including constant additions.We also introduce a new automatedmethod
for obtaining impossible differentials where we do not search over a small pre-defined set of
differences, such as low-weight differences, but let the SMT solver search through the space
of differences. Moreover, we implement both methods in our open-source tool ArxPy to
find characteristics and impossible differentials of ARX ciphers with constant additions in
a fully automated way. As some examples, we provide related-key impossible differentials
and differential characteristics of TEA, XTEA, HIGHT, LEA, SHACAL-1, and SHACAL-2,
which achieve better results compared to previous works.

Keywords Modular addition · ARX · SMT · Automated tool · Differential cryptanalysis ·
Impossible differential

Communicated by J. D. Key.

Parts of this paper were presented at the Asiacrypt 2020 conference [3].

B Seyyed Arash Azimi
arash_azimi@ee.sharif.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-022-01074-8&domain=pdf
http://orcid.org/0000-0001-6614-9738

1798 S. A. Azimi et al.

Mathematics Subject Classification 94A60

1 Introduction

Low-end devices such as RFID tags, sensor networks, and the Internet of Things (IoT)
are becoming ubiquitous. In 2018, Gartner, Inc. forecasted that there would be more than
25 billion connected devices forming the IoT by 2021 [24], and following the COVID-
19 lockdowns Gartner also revealed that the unprecedented event led IoT implementers
to increase IoT investments to reduce costs [25]. Traditional cryptographic algorithms are
not suitable for these resource-constrained devices, and several lightweight cryptographic
algorithms have been recently proposed to meet this growing demand. In this regard, the
National Institute of Standards and Technology (NIST) has started a process to evaluate and
standardize lightweight cryptographic algorithms [59].

ARX primitives, composed exclusively of modular Additions, cyclic Rotations, and
XORs, are a promising class of lightweight cryptographic algorithms with the most efficient
software implementations on low-end microcontrollers [17]. There are many noteworthy
ARX algorithms, such as the hash function BLAKE [1], the stream cipher Salsa20 [7], the
MAC algorithmChaskey [58] and notable block ciphers like HIGHT [31], LEA [32], SPECK
[6], SPARX [16] or CHAM [41]. Usually, ciphers that are exclusively composed of ARX
operations and other common bit-vector operations (e.g., modular multiplication or logical
shifts) are also considered in the class of ARX ciphers, such as IDEA [43], TEA [73], or
XTEA [60].

The security of ARX ciphers is evaluated by analysing their robustness against various
attacks. Some of the most successful attacks applied to ARX algorithms are differential
cryptanalysis and their variants, such as boomerang or related-key differential attacks [32,
41]. These attacks exploit differences in the inputs that propagate through the cipher with
high probability. Another powerful attack based on non-random propagation of differences
is impossible-differential cryptanalysis [8, 37], which exploits input differences propagating
to differences in the outputs with zero probability.

The standard approach to show an ARX cipher is secure against differential and
impossible-differential attacks is by finding the optimal characteristics (i.e., trails of dif-
ferences with the highest probabilities) and the longest impossible differentials and checking
that no high-probability characteristic and no impossible differential cover most rounds of
the cipher [31, 32]. When the best attack in the design stage is a differential or an impossible-
differential attack, the number of rounds of the cipher is determined by the longest observed
high-probability characteristic or impossible differential. Thus, searching for optimal char-
acteristics and impossible differentials is a crucial step in the design and security analysis of
a cipher.

Two main techniques have been applied to search for optimal characteristics of ARX
algorithms: branch-and-bound algorithms [11, 13] based onMatsui’s algorithm [54], and the
recent automated methods based on Constraint Satisfaction Problems (CSP), such as SMT
(Satisfiability Modulo Theories) or MILP (Mixed Integer Linear Programming) problems
[21, 57]. CSP-based methods have also been recently applied to find impossible differentials
[14, 65, 66]. These automatedmethods formulate the characteristic or impossible-differential
search problem as a CSP and delegate the solving task to one of the powerful off-the-shelf
CSP solvers available nowadays [5, 49]. While some CSP-based open-source tools automate
the search of ARX characteristics (e.g., CryptoSMT [38]), no CSP-based open-source tool
has been published to search for impossible differentials of ARX ciphers.

123

A bit-vector differential model for the modular addition by a constant 1799

The main difficulty in formulating a CSP-based search problem lies in the differential
models of the non-linear operations, that is, the constraints describing the differential prob-
ability of the non-linear operations of the cipher. ARX ciphers can be efficiently described
using the bit-vector theory of SMT, and several bit-vector differential models have been pro-
posed so far [39, 47, 48]. For the modular addition with two n-bit operands, the foremost
non-linear operation in ARX primitives, Lipmaa and Moriai found a bit-vector algorithm for
computing the differential probability with complexity O(log2 n) [47]. This algorithm can be
straightforwardly translated to a bit-vector differential model, and it has been used in several
SMT-based methods to search for characteristics [48, 57, 68] and impossible differentials
[65] of ARX ciphers.

However, no CSP-based differential model has been proposed for the modular addition
with a constant input, preventing from searching for characteristics or impossible differentials
of ARX ciphers that contain constant additions. Lipmaa’s algorithm is restricted to the mod-
ular addition with two operands, and it cannot be applied when one of the inputs is fixed to a
constant, as we will discuss later. Machado proposed an algorithm to compute the differential
probability of the constant addition [53], but it cannot be translated to an efficient bit-vector
differential model due to its recursive nature and the use of floating-point arithmetic.

1.1 Contributions

We propose an efficient bit-vector differential model for the modular addition by an n-bit
constant. Our model contains O(log2 n) basic bit-vector constraints and it is composed of
a bit-vector formula that determines whether a differential over the constant addition has
non-zero probability, and a bit-vector function that computes the binary logarithm of the
differential probability. Our bit-vector model exploits the properties of the carry chain of
the modular addition and relies on efficient well-known bit-vector functions, such as the
Hamming weight or the bit-reversal, and new bit-vector functions that we have developed
for the binary logarithm.

Furthermore, we describe an SMT-based automated method to search for characteristics
of ARX ciphers, including constant additions. Our method is composed of an iterated search
of optimal characteristics of round-reduced versions of the cipher and an automated encod-
ing technique that formulates the SMT problems from the cipher’s Single Static Assignment
(SSA) form. Moreover, we describe a new automated method to search for impossible dif-
ferentials of ARX ciphers which does not depend on any pre-defined sets of input and output
differences.

We have implemented our methods in an SMT-based open-source tool ArxPy,1 which
fully automated the search of ARX characteristics and impossible differentials. ArxPy is
the first open-source tool that can search for the characteristics of ARX ciphers with constant
additions, and it is also the first CSP-based open-source tool that automates the search of
ARX impossible differentials. ArxPy offers a simple interface to represent any ARX cipher,
different types of characteristics and impossible differentials to search, and a complete doc-
umentation.

We have applied our characteristic and impossible-differential search methods to sev-
eral ARX ciphers containing constant additions to provide some examples. In particular, we
have searched for different types of related-key characteristics alongside related-key impos-
sible differentials of TEA, XTEA, HIGHT, LEA, SHACAL-1, and SHACAL-2. With our
automated approach, we have revisited results previously found with manual and ad-hoc

1 https://github.com/ranea/ArxPy.

123

https://github.com/ranea/ArxPy

1800 S. A. Azimi et al.

techniques. We have obtained better characteristics in terms of probability and number of
rounds, and longer impossible differentials.

With our bit-vector model for the constant addition, the SMT-based automated methods,
and our open-source tool ArxPy, we provide cipher designers with the resources to design
ARX ciphers, including constant additions that are secure against differential and impossible-
differential attacks. Thus, cipher designers can choose the best constants for the modular
additions and optimize the number of rounds to balance security and efficiency.

1.2 Differences to the conference version

This paper is an extended full version of the conference paper [3]. Thus, the content of the
conference paper is included in this paper, namely the bit-vector differential model for the
constant addition, the SMT-basedmethod and tool to search for ARX differential characteris-
tics and the related-key differential characteristics found for TEA, XTEA, HIGHT, and LEA.
Apart from this content, the rest of this paper is new material. This new content includes
the SMT-based method to search for impossible differentials of ARX ciphers, the tool to
search for ARX impossible differentials, the related-key differential characteristics found
for SHACAL-1 and SHACAL-2 and the related-key impossible differentials found for TEA,
XTEA, HIGHT, LEA, SHACAL-1 and SHACAL-2. Furthermore, this paper enhances the
description of the bit-vector differential model of the constant addition with improved proofs
and new examples.

1.3 Outline

The notations and preliminaries are introduced in Sect. 2, and the bit-vector model for the
modular addition by a constant is described in Sect. 3. Section 4 illustrates the formulation
of the search of characteristics and impossible differentials as sequences of SMT problems.
Section 5 presents the characteristics and impossible differentials found for TEA, XTEA,
HIGHT, LEA, SHACAL-1, and SHACAL-2 using our automated approaches. Finally, Sect. 6
concludes the paper and addresses future works.

2 Preliminaries

2.1 Notations

Let x be an integer such that its n-bit vector representation when 0 ≤ x < 2n is x =
(x[n − 1], . . . , x[0]), where x[0] and x[n − 1] denote respectively the least and the most
significant bit. For ease of notation, we define x[i] = 0 when i < 0 and the symbol ∗ stands
for an undetermined bit. The usual integer operations are denoted by (+,−,×, /) and the
basic bit-vector operations are gathered in Table 1.

A mathematical expression only involving bit-vector variables and basic bit-vector opera-
tions is called a bit-vector expression.A bit-vector formula is a bit-vector expression returning
True or False, such as Equals, whereas an n-bit vector function is a bit-vector expression
returning an n-bit vector. In order to measure the complexity of the bit-vector differential
model that we propose in this paper, we define the bit-vector complexity of a bit-vector
expression as the number of basic bit-vector operations that the expression is composed of.

123

A bit-vector differential model for the modular addition by a constant 1801

In the literature of the bit-vector theory, the set of basic bit-vector operations usually
includes the operations gathered in Table 1 and few additional operations, such as modular
multiplication or modular division [42]. However, modular multiplication and modular divi-
sion are much more costly than the other operations in practice, and we have excluded them
from our set of basic bit-vector operations, which resembles the unit-cost RAM model used
in [47].

Apart from the basic bit-vector operations listed in Table 1, wewill also employ the follow-
ing well-known bit-vector functions: Carry, Rev, RevCarry,HW and LZ. The carry function
c = Carry(x, y) returns the n-bit carry chain of the n-bit modular addition x � y. It is defined
iteratively as c[0] = 0 and c[i +1] = (x[i]∧ y[i])⊕ (x[i]∧ c[i])⊕ (y[i]∧ c[i]) for 0 < i <

n−1. Note that the carry has bit-vector complexity O(1), sinceCarry(x, y) = x⊕y⊕(x�y).
The carry function is an efficient function that allows propagating information from the least
significant bits to the most significant bits, a property that we will exploit for our bit-vector
differential model.

The bit-reversal function Rev(x) reverses the order of bits of x , i.e., Rev(x) =
(x[0], x[1], . . . , x[n−1]). This function can be computed using a divide and conquermethod
with bit-vector complexity O(log2 n) [29, Fig. 7-1]. We will use this function to define the
reverse carry, RevCarry(x, y) = Rev(Carry(Rev(x), Rev(y))), which allows to propagate
information from right to left and also has bit-vector complexity O(log2 n).

The Hamming weight HW(x) returns an n-bit vector denoting the number of non-zero
bits of the n-bit input x . Similar to the bit-reversal, the Hamming weight can be computed
using a divide and conquer approach with bit-vector complexity O(log2 n) [29, Fig. 5-2].
The Hamming weight will be one of the main building blocks to obtain an efficient bit-vector
representation of the binary logarithm.

The last bit-vector function we will consider is the leading zeros function LZ(x). This
function marks the leading zeros of an n-bit input x , that is, for 0 ≤ i < n, LZ(x)[i] =
1 ⇐⇒ x[n − 1, i] = 0. This function is used as a subroutine for the well-known function
to compute the number of leading zeros. Similar to the previous bit-vector functions, LZ can
be computed with bit-vector complexity O(log2 n) [29, Fig. 5-16].

Table 1 Basic bit-vector
operations for n-bit vectors x[i, j] The bit-vector (x[i], . . . , x[j]), n > i ≥ j ≥ 0

¬x Bit-wise NOT of x

x ‖ y Concatenation of x and y

x ∧ y Bit-wise AND of x and y

x ∨ y Bit-wise OR of x and y

x ⊕ y Bit-wise XOR of x and y

x � i (Logical) left shift of x by i bits

x � i Right shift of x by i bits

x ≪ i Left cyclic rotation of x by i bits

x ≫ i Right cyclic rotation of x by i bits

x � y Modular addition of x and y

x � y Modular subtraction of x and y

Equals(x, y) Bit-vector equality of x and y, returning True

If x and y are the same, otherwise False

123

1802 S. A. Azimi et al.

2.2 Differential and impossible-differential cryptanalysis

A block cipher is a family of permutations parametrized by a κ-bit key k, mapping n-bit
plaintexts p to n-bit ciphertexts c. Most block ciphers consist of a key scheduling algorithm
KS, which derives round keys k1, . . . , kr from the master key k, and an encryption algorithm
Ek , which processes the plaintext by iterating a round function f and injecting a round key
at each round, i.e., Ek = fkr ◦ · · · ◦ fk1 .

Block ciphers are shown to be secure by analysing their resistance against all known
attacks. One of the most potent attacks, especially to ARX primitives, is differential crypt-
analysis [10]. It exploits the non-random propagation of differences in the input to recover
the secret key.

Let F be an n-bit to n-bit function and (�p,�c) be the XOR of a pair of inputs (p, p′) and
their corresponding outputs (c, c′), i.e., �p = p ⊕ p′ and �c = c ⊕ c′. The pair (�p,�c)

is called a differential and its probability is defined as

Pr
[
�p

F−→ �c

]
= #{p : F(p) ⊕ F(p ⊕ �p) = �c}

2n
.

A differential is valid if it has non-zero probability. In this case, its weight is defined as

weightF (�p,�c) = − log2
(
Pr
[
�p

F−→ �c

])
.

The differential 0
F−→ 0 has probability 1 for any function F , and a differential with

non-zero input difference over a random n-bit permutation has probability 2−n . Differential
cryptanalysis [10] exploits a differential over the n-bit block cipher with probability p > 2−n

to recover the secret key with roughly O(p−1) encryption calls.
Related-key differential cryptanalysis [34] extends differential cryptanalysis by consider-

ing key differences. A related-key differential is given by a pair of differentials over the key
schedule and the encryption function respectively,

(
�k

KS−→ (
�k1 , . . . , �kr

))
,
(
�p

E−→ �c

)
,

where the ciphertext difference is computed using the related round-key pairs,

�c = (fkr ◦ · · · ◦ fk1
)
(p) ⊕

(
fkr⊕�kr

◦ · · · ◦ fk1⊕�k1

) (
p ⊕ �p

)
.

The probability of a related-key differential is the product of the probability of key schedule
differential pKS and the probability of encryption differential pE .

A related-key attack exploits a related-key differential with pKS > 2−κ and pE > 2−n

to recover the secret key with complexity O((pKS × pE)−1). The attacker takes about p−1
KS

key pairs to find one key, on average, that satisfies the key schedule differential. Next and
for each key pair, the attacker runs a differential attack over the encryption using O(p−1

E)

encryption calls.
Related-key differential cryptanalysis requires a very powerful attacker that can query

the encryption function Ek⊕�k for many keys k ⊕ �k . In fact, if an adversary can query
Ek⊕�k for 2

m key differences �k , any block cipher is vulnerable to a related-key attack with
complexity O(2m +2n−m) [74]. Thus, we distinguish between weak related-key differentials
(i.e., pKS < 1) and strong related-key differentials (i.e., pKS = 1), which can be exploited
in practice with a single related-key pair. Furthermore, we define equivalent keys as pairs of
related keys (k, k ⊕�k) such that ∀p, Ek(p) = Ek⊕�k (p⊕�p)⊕�c, for some (�p,�c).
Note that a related-key differential with pE = 1 leads to 2κ pKS pairs of equivalent keys.

123

A bit-vector differential model for the modular addition by a constant 1803

Lastly, we consider (related-key) impossible differentials. A differential (�p,�c) over
a function F is called impossible if its probability is zero, and a related-key differen-
tial (�k,�p → �c) over a block cipher is called impossible if its probability is zero
for all keys. Impossible-differential cryptanalysis [8] is an attack on block ciphers that
exploits an impossible differential over the block cipher holding for every key. Related-key
impossible-differential cryptanalysis is a combination of impossible-differential cryptanaly-
sis and related-key cryptanalysis. Using the known difference of the key pairs and the input
and the output of the impossible differential, the attacker discards the wrong keys to obtain
the correct key.

Searching for characteristics and impossible differentials.

The most challenging step to launch a differential attack is finding a differential with high
probability. The main approach is to analyse how differences traverse through the round
function and search for a characteristic, that is, a trail of differences

� =
(

�p = �x0

fk1−−→ �x1 → · · · → �xr−1

fkr−−→ �xr = �c

)
.

Similar to differentials, a characteristic� is valid if it has non-zero probability and its weight
is defined as − log2(Pr[�]). Furthermore, we denote a related-key characteristic by a pair of
characteristics (�KS,�E), where �K S is the key schedule characteristic containing the trail
of differences from the master key to the round keys and �E is the encryption characteristic
containing the trail of differences through the encryption.

Obtaining the exact probability of a characteristic is computationally infeasible. Thus,
two assumptions are commonly made. First, it is assumed that the differential probabilities
over each round are independent, which allows computing the weight of a characteristic by
summing the round weights, i.e.,

weight(�) =
r∑

i=0

weight(�xi → �xi+1) .

Second, it is assumed that the probability of a characteristic does not strongly depend on the
choice of the secret key, also known as the hypothesis of stochastic equivalence [44], which
allows computing the weight of a characteristic by averaging over all keys.

On top of that, designers also assume that the probability of a differential (�p,�c) is close
to the probability of the best characteristic (�p → · · · → �c), and they prove a cipher is
secure against differential cryptanalysis by showing that characteristics with high probability
cannot covermost rounds of the cipher.While these assumptions do not always hold, currently
this is the best systematic approach to argue security against differential cryptanalysis, and
this heuristic approach is widely used for ARX ciphers in practice [21, 39, 57, 68–70].

Searching for characteristics is usually dependent on some assumptions, as mentioned
earlier. In contrast, the process of obtaining an impossible differential typically results in a
sound proof, guaranteeing that the probability of the achieved differential is equal to zero.
Therefore, most of the impossible-differential search methods are sound but not complete. In
other words, any differential found by these methods is assuredly impossible, yet there may
be many impossible differentials that the search methods cannot detect.

123

1804 S. A. Azimi et al.

SMT solvers

A recent approach to search for characteristics and impossible differentials of ARX ciphers is
by formulating the search problem as an SMT problem in the bit-vector theory [2, 39, 48, 57,
65, 68]. Satisfiability Modulo Theories (SMT) refers to the problem of determining whether
a first order formula is satisfiable with respect to some logical theory. SMT problems are
a generalization of SAT problems; while the latter problems are expressed in propositional
logic, SMT formulas can be expressed in richer logics, such as the theory of bit-vectors or
the theory of integers.

SMT has grown in recent years into a very active research field, and several off-the-shelf
SMT solvers are available nowadays [5]. Most SMT solvers can determine the satisfiability
of a problem and obtain an assignment of the variables that satisfies the problem. This feature
allows SMT solvers to be applied in search problems.

An SMT problem in the bit-vector theory is given by a set of bit-vector variables and a set
of bit-vector formulas or constraints. The constraints can be defined with the usual logical
operations (e.g., Equals,NotEquals, Implies, etc.) and the usual bit-vector operations (e.g.,
⊕,�,≪, etc.).

For example, a bit-vector SMT problem to find an 8-bit preimage of y = f (x) = x ⊕
((x � x) ∨ 1), given the 8-bit image y = 3 = 00000011, is the following:

∃x ∈ {0, 1}8 : Equals(00000011, x ⊕ ((x � x) ∨ 1) .

This problem is satisfiable and the only assignment that satisfies the problem is x =
11111110.

2.3 Differential models

To represent a characteristic in a constraint satisfaction problem, it is necessary to find a
differential model of the round function f . For an SMT problem in the bit-vector theory, a
differential model of a function y = f (x) is given by a bit-vector formula valid f (�x ,�y)

and a bit-vector function weight f (�x ,�y). The formula valid f (�x ,�y) is True if and
only if the differential (�x → �y) over f is valid, and the function weight f (�x ,�y)

returns the weight of a valid differential (�x → �y).
Characteristics over ARX ciphers are usually defined by considering the difference after

each ARX operation. The differential models of the XOR and the cyclic rotations are very
simple since these operations propagate differences deterministically, that is,

�x1 ,�x2
f (x1,x2)=x1⊕x2−−−−−−−−−→ �x1 ⊕ �x2 ,

�x
fa(x)=x≪a−−−−−−−−−→ �x ≪ a,

�x
fa(x)=x⊕a−−−−−−−→ �x ,

�x
fa(x)=x≫a−−−−−−−→ �x ≫ a.

For the modular addition with two n-bit inputs, y = f (x1, x2) = x1 � x2, the algorithm by
Lipmaa andMoriai [47] can be translated into the following differential model with bit-vector
complexity O(log2 n).

Theorem 1 Let ((�x1 ,�x2),�y) be a differential over the modular addition y = x1 � x2
and denote ←−x = x � 1 and eq(a, b, c) = (¬a ⊕ b) ∧ (¬a ⊕ c). Then, the differential is
valid if and only if the bit-vector formula

valid�((�x1 ,�x2),�y) = Equals(0, eq(
←−
�x1 ,

←−
�x2 ,

←−
�y) ∧ (�x1 ⊕ �x2 ⊕ �y ⊕ ←−

�x2))

123

A bit-vector differential model for the modular addition by a constant 1805

is True. In this case, the differential weight is given by the bit-vector function

weight�((�x1 ,�x2),�y) = HW(¬eq(�x1 ,�x2 ,�y) � 1) .

For the modular addition with a constant input �a(x) = x � a, Machado [53] obtained
the following algorithm to compute the differential probability [53].

Theorem 2 Let (u, v) be a differential over the n-bit constant addition �a. Then, the differ-
ential probability is given by

Pr[u �a−→ v] = ϕ0 × · · · × ϕn−1 ,

where ϕi depends on the δi−1 and Si , each one defined for 0 ≤ i < n by

Si = (u[i − 1], v[i − 1], u[i] ⊕ v[i]) ,

δi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a[i − 1] + δi−1)/2, Si = 000

0, Si = 001

a[i − 1], Si ∈ {010,100,110}
δi−1, Si ∈ {011,101}
1/2, Si = 111

ϕi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, Si = 000

0, Si = 001

1/2, Si ∈ {010,011,100,101}
1 − (a[i − 1] + δi−1 − 2a[i − 1]δi−1), Si = 110

(a[i − 1] + δi−1 − 2a[i − 1]δi−1), Si = 111,

For i = −1, Si and δi are defined by S−1 = ⊥ and δ−1 = 0.

Unfortunately, the algorithm illustrated in Theorem 2 is not suitable for constraint satisfaction
problems due to its recursive nature and the use of floating-point arithmetic.

Some authors [46, Corollary 2] [4] have adapted the differential model of the 2-input
addition (i.e., the modular addition with two independent inputs) for the constant addition
by setting the difference of the second operand to zero, that is,

valid�a (�x ,�y) ← valid�((�x , 0),�y) ,

weight�a
(�x ,�y) ← weight�((�x , 0),�y) .

(1)

The approximation given by Eq. (1) models the differential (�x
�a−→ �y) by averaging over

all a. While this approach can be used to model the constant addition by a round key, since
the characteristic probability is also computed by averaging over all keys, for a fixed constant
this approach is rather inaccurate.

Surprisingly, the differential properties of the 2-input addition and the constant addition are
very different. The 2-input addition was shown to be CCZ-equivalent to a quadratic function
[67], that is, the differential properties of the 2-input addition are the same as some quadratic
functions. In particular, the set of inputs (x1, x2) satisfying a differential ((�x1 ,�x2) → �y)

over the 2-input addition forms a subspace of F
n
2, which allows to describe its differential

model using few basic operations.
On the other hand, the constant addition is not CCZ-equivalent to a quadratic function,

since the set of inputs (x1, x2) satisfying a differential (�x ,�y) over �a does not form

123

1806 S. A. Azimi et al.

a subspace for many a. In other words, the probability of a differential over the constant
addition is not necessarily of the form 2−α for a positive integer α, and finding a differential
model for the constant input addition is a much harder problem.

We experimentally checked the accuracy of the approximation given by Eq. (1) for 8-
bit constants a. For most values of a, validity formulas differ roughly in 213 out of all 216

differentials. For those differentials where they did not differ, the difference between their
weights was significantly high on average.

Consequently, no differential model of the constant addition suitable for constraint satis-
faction problems has been proposed so far. In the next section, we present the first differential
model of the constant addition for SMT problems in the bit-vector theory.

3 Bit-vector differential model of the constant addition

We present a bit-vector differential model of the constant addition, composed of a bit-vector
formula to determine whether a given differential is valid and a bit-vector function that
computes the weight of the valid differential. Our model takes benefit from Theorem 2 [53];
however, we avoid bit iterations, floating-point arithmetic, multiplications and look-up tables,
in order to obtain efficient bit-vector constraints to be used in bit-vector SMT problems.

Before we illustrate our model, we remark an essential property of Theorem 2. When
the state Si is not 110 or 111, the probability of the step i , ϕi , depends exclusively on Si ;
otherwise, ϕi depends on Si and δi−1. When Si = 11*, Si−1 ∈ {010,100,110,000} and
for the first three cases, δi−1 is equal to a[i − 2]. However, considering the forth case, i.e.,
Si−1 = 000, δi−1 depends on δi−2 and this dependency will proceed until we obtain a state
Si−�i �= 000 for some positive integer �i . Thus, δi−1 has the following expression when
Si = 11*,

δi−1 = a[i − �i − 1]
2�i−1 +

�i∑
j=2

a[i − j]
2 j−1 . (2)

Therefore, when Si = 11*, ϕi also depends on the previous states Si−1, . . . , Si−�i , which
motivates the following definition.

Definition 1 Let Si = 11*. The chain 	i is defined as the smallest set of previous states
{Si−1, Si−2, . . . , Si−�i } that completely determine ϕi , and the positive integer �i is called the
length of 	i .

Given a chain 	i = {Si−1, Si−2, . . . , Si−�i }, note that Si−�i �= 000 and the remaining
states in the chain (if any) are all equal to 000.

In the next example, we illustrate how to calculate the differential probability using the
iterative method of Theorem 2 and we learn more about the intermediate variables used for
obtaining the probability.

Example 1 Consider the differential (u, v) = (1010001110,1010001010) over the
modular addition by the 10-bit constant a = 1000101110. According to Theorem 2,
the differential probability of (u, v) is given by

Pr[u �a−→ v] = #{x : (x�a) ⊕ ((x ⊕ u)�a) = v}
210

=
9∏

i=0

ϕi .

123

A bit-vector differential model for the modular addition by a constant 1807

Table 2 The intermediate variables for finding the differential probability of Example 1

i 9 8 7 6 5 4 3 2 1 0 −1

a[i] 1 0 0 0 1 0 1 1 1 0 0

u[i] 1 0 1 0 0 0 1 1 1 0 0

v[i] 1 0 1 0 0 0 1 0 1 0 0

Si 000 110 000 000 000 110 100 111 000 000 ⊥
δi 0 0 3

8
3
4

1
2 1 1 1

2 0 0 0

ϕi 1 5
8 1 1 1 1 1

2 1 1 1

Table 2 displays the variables we need to compute to obtain the differential probability. As
we mentioned earlier, if Si = (ui−1, vi−1, ui ⊕ vi) �= 11*, each ϕi can be computed in a
straightforward way without any further dependencies of previous states.

For the remaining states equal to 110 or 111, we first obtain their associated chains as

S2 = 111, 	2 = {S1 = 000, S0 = 000, S−1 = ⊥}, �2 = 3 ,

S4 = 110, 	4 = {S3 = 100}, �4 = 1 ,

S8 = 110, 	8 = {S7 = 000, S6 = 000, S5 = 000, S4 = 110}, �8 = 4 .

Then, we compute the associated δi−1 using Eq. (2), and finally we obtain ϕi from the values
of a[i − 1] and the computed δi−1.

Multiplying each ϕi listed in Table 2 leads to the differential probability,

Pr

[
u

�a−→ v

]
=

9∏
i=0

ϕi = 5

16
.

3.1 Validity

Let (u, v) be a differential over �a , the modular addition by n-bit constant a. According to
Theorem 2, the differential probability of (u, v) can be expressed as ϕ0 × · · · × ϕn−1. Thus,
(u, v) is a valid differential, i.e., with non-zero probability, if and only if all ϕi are non-zero.
If ϕi = 0, note that Si must be 001,110 or 111. While Si = 001 always implies ϕi = 0,
the other two cases require an extra condition to result in ϕi = 0, as shown in the next lemma.

Lemma 1 Let the state Si be 11b, for b ∈ {0,1}. Then, ϕi is equal to 0 if and only if
¬b ⊕ a[i − 1] = a[i − 2] = · · · = a[i − �i − 1].
Proof Having Si = 11b,ϕi = 0 if and only if¬b = δi−1⊕a[i−1]. Let �i be the chain length
of Si . The case for �i = 1 is trivial, since δi−1 = a[i − 2]. To achieve δi−1 = a[i − 1] ⊕ ¬b
when �i > 1, the non-negative rational number δi−1 must be equal to 0 or 1. Since δi−1 is a
monotonically increasing function of (a[i − 2], . . . , a[i − �i − 1]) regarding Eq. (2), δi−1

reaches its extrema in (0, . . . , 0) and (1, . . . , 1), that is,

δi−1 = c ⇐⇒ a[i − 2] = a[i − 3] = · · · = a[i − �i − 1] = c, ∀c ∈ {0,1},
Thus, δi−1 = a[i − 1] ⊕ ¬b ⇐⇒ δi−1 = a[i − 2] = · · · = a[i − �i]. ��

123

1808 S. A. Azimi et al.

The next lemma provides a bit-vector expression to check Lemma 1 by exploiting the fact
that the carry chain allows a bit to affect the bits to its left.

Lemma 2 Consider the following n-bit values,

s00* = ¬(u � 1) ∧ ¬(v � 1), s**1 = u ⊕ v, a′ = (a ⊕ (a � 1)) � 1,

c = Carry
(
s00* ∧ ¬a′,¬(s00* � 1)

)
, g = (s**1 ⊕ a′) ∧ (c ∨ ¬(s00* � 1)) .

Then, for all states Si = 11*, we have ϕi = 0 if and only if g[i] = 1.

Proof Let Si = 11b with chain length �i . Note that a′[i] = a[i − 1] ⊕ a[i − 2] and that
s00*[i] = 1 (resp. s**1[i] = 1) if and only if Si = 00* (resp. Si = **1).

The first operand of g[i], i.e., (s**1 ⊕ a′)[i], is equal to one if and only if b = ¬(a[i −
1] ⊕ a[i − 2]). For �i = 1 it is easy to see that Si−1 �= 00*; therefore, the second operand
of g[i] is 1, and by Lemma 1 g[i] = 1 if and only if ϕi = 0.

When �i > 1, Si−1 = 000 and the secondmajor operand of g[i] reduces to c. In particular,
the two major operands of the Carry function of c are given by

(s00* ∧ ¬a′)[i, i − �i] = (¬(a[i − 1] ⊕ a[i − 2]), . . . ,¬(a[i − �i] ⊕ a[i − �i − 1]), 0) ,

¬(s00* � 1)[i, i − �i] = (0, . . . , 0, 1, ∗) .

Thus, c[i] = c[i − 1] ∧ ¬a′[i − 1] and c[i − �i + 1] = c[i − �i] ∧ ¬s00*[i − �i − 1] = 0;
otherwise, for 0 ≤ j ≤ i − �i − 1 we will obtain s00*[j] = 0 which does not conform to
S0 = 00*. By unrolling the recursive definition of c[i], we see that c[i] = ¬a′[i − 1] ∧
· · · ∧ ¬a′[i − �i + 1]. In other words, c[i] = 1 if and only if a[i − 2] = · · · = a[i − �i − 1].
Together with the condition for (s**1 ⊕ a′)[i] = 1, we have that g[i] = 1 exactly when
ϕi = 0, regarding Lemma 1. ��

Lemma 2 provides a bit-vector variable g that detects the states Si = 11* leading to
invalidity. The next theorem presents the final bit-vector formula for the validity by taking
into account the states Si = 001 as well.

Theorem 3 Let (u, v) be a differential over the n-bit constant addition�a. Consider the n-bit
value g defined in Lemma 2 and the following n-bit values

s001 = ¬(u � 1) ∧ ¬(v � 1) ∧ (u ⊕ v), s11* = (u � 1) ∧ (v � 1) .

Then, the bit-vector formula valid�a (u, v) = Equals(s001 ∨ (s11* ∧ g), 0) is True if and
only if the differential (u, v) is valid.

Proof By the definition of s001 and s11*, s001[i] = 1 (respectively s11*[i] = 1) if and only
if Si = 001 (respectively Si = 11*). Moreover, ϕi = 0 exactly when Si = 001, or when
Si = 11∗ and g[i] = 1 (Lemma 2). Thus, ϕi = 0 if and only if s001 ∨ (s11* ∧ g)[i] = 1. ��

Since the number of basic bit-vector operations of our bit-vector validity formula is inde-
pendent of the bit-size of the inputs, the bit-vector complexity of valid�a is O(1).

Example 2 Consider the valid differential of Example 1, i.e. a = 1000101110, u =
1010001110, and v = 1010001010. Previously, we showed that its differential proba-
bility is non-zero and equal to 5/16. In this example, we will illustrate our bit-vector validity
formula step by step.

123

A bit-vector differential model for the modular addition by a constant 1809

Table 3 The intermediate
variables for evaluating the
bit-vector validity formula of
Example 2

i 9 8 7 6 5 4 3 2 1 0

a[i] 1 0 0 0 1 0 1 1 1 0

u[i] 1 0 1 0 0 0 1 1 1 0

v[i] 1 0 1 0 0 0 1 0 1 0

g[i] 0 0 0 0 0 0 0 0 0 0

s11*[i] 0 1 0 0 0 1 0 1 0 0

s001[i] 0 0 0 0 0 0 0 0 0 0

Table 3 provides some of the essential bit-vector values used in Theorem 3. Since there
is no state equal to 001, s001 is the all-zero bit-vector. As we have shown in Example 1,
there are three states equal to 11*, and the associated bit of s11* is equal to one in the
corresponding bits. In this example, no state 11* leads to invalidity, and g is equal to the
all-zero bit-vector. Thus, s001[i] ∨ (s11∗[i] ∧ g[i]) = 0 for all i , and our validity formula

valid�a (u, v) = Equals(s001 ∨ (s11∗ ∧ g), 0)

evaluates to True.

3.2 Weight of a valid differential

In this section,we propose a bit-vector function that computes theweight of a valid differential
over the constant addition. Working with differential weights has the advantage that multiple
differential weights can be combined by adding them up, while probabilities need to be
multiplied, a very costly operation in a bit-vector SMT problem.

The weight of a valid differential over the constant addition is an irrational value in
general, and it cannot be represented as a fixed-sized bit-vector. Thus, our bit-vector function
computes a close approximation of the weight, and we provide almost tight bounds for the
approximation error.

Through the rest of the section, let (u, v) be a valid differential over the n-bit constant
addition �a . According to Theorem 2, the weight can be obtained by

weight�a
(u, v) = − log2

(
n−1∏
i=0

ϕi

)
= −

n−1∑
i=0

log2(ϕi) . (3)

Let I denote the set of indices corresponding to the states 11* with chain length bigger
than one, i.e., I = {1 ≤ i ≤ n − 1 | Si = 11*, �i > 1}. For i /∈ I, the probability ϕi only
depends on the current state Si and ϕi is either 1 or 1/2. Based on the aforementioned fact, we
show how to acquire the summation of all log2(ϕi) when i /∈ I using bit-vector expressions.

Lemma 3 Let I = {1 ≤ i ≤ n − 1 | Si = 11*, �i > 1}. Then,
−
∑
i /∈I

log2(ϕi) = HW((u ⊕ v) � 1) .

Proof To prove the lemma, we divide the set {i | i /∈ I} into two parts as {i | Si �= 11*} and
{i | Si = 11*, �i = 1}. For each state Si �= 11∗, there are two possible cases. If Si is equal

123

1810 S. A. Azimi et al.

to 000, the corresponding step probability is ϕi = 1. Otherwise, Si ∈ {010, 011, 100, 101}
and we obtain ϕi = 1/2. Considering these two cases leads to

∑
i

Si �=11∗

log2(ϕi) =
∑
i

Si=000

log2(1) +
∑
i

Si∈{010,011,100,101}

log2(1/2) ,

= − #{Si ∈ {010, 011, 100, 101} : 0 ≤ i < n} .

Since the second case Si ∈ {010, 011, 100, 101} occurs when u[i − 1] ⊕ v[i − 1] = 1, we
can use HW((u ⊕ v) � 1) to compute the number of times this case happens.

Now for Si = 11* when �i = 1, we know that δi−1 = a[i − 2] ∈ {0, 1}. Since the
probability is not equal to zero, we obtain ϕi = 1. Thus we get

∑
i

Si=11∗
�i=1

log2(ϕi) = 0.

By and large, the sum of log2(ϕi) when i /∈ I is
∑
i /∈I

log2(ϕi) =
∑
i

Si �=11∗

log2(ϕi) +
∑
i

Si=11∗
�i=1

log2(ϕi) = −HW((u ⊕ v) � 1). ��

Lemma 3 describes the sum of log2(ϕi) when i /∈ I as a bit-vector expression with
complexity O(log2 n). To describe the logarithmic summation when i ∈ I as a bit-vector,
we will first show how to split ϕi as the quotient of two integers.

Lemma 4 Let i ∈ I and let pi be the positive integer defined by

pi =
{
a[i − 2, i − �i] + a[i − �i − 1], u[i] ⊕ v[i] ⊕ a[i − 1] = 1

2�i−1 − (a[i − 2, i − �i] + a[i − �i − 1]), u[i] ⊕ v[i] ⊕ a[i − 1] = 0

where �i > 1 is the chain length of the state Si = 11*. Then, ϕi = pi
2�i−1 .

Proof Considering the definition of ϕi when Si = 11*,

ϕi =
{

δi−1, u[i] ⊕ v[i] ⊕ a[i − 1] = 1

1 − δi−1, u[i] ⊕ v[i] ⊕ a[i − 1] = 0

and following the definition of δi−1 given by Eq. (2),

2�i−1δi =
�i−2∑
j=0

2 j a[i − �i + j] + a[i − �i − 1] = a[i − 2, i − �i] + a[i − �i − 1] ,

we obtain that ϕi = pi/2�i−1. Moreover, having 0 < ϕi ≤ 1 and �i > 1 results in 0 < pi ≤
2�i−1. Thus, pi is always a positive integer. ��

Due to Lemma 4, we can decompose the logarithmic summation over I as
∑
i∈I

log2(ϕi) =
∑
i∈I

log2(pi) −
∑
i∈I

(�i − 1) .

The next lemma shows how to describe the summation involving the chain lengths with basic
bit-vector operations.

123

A bit-vector differential model for the modular addition by a constant 1811

Lemma 5 Consider the n-bit vector s000 = ¬(u � 1) ∧ ¬(v � 1). Then,
∑
i∈I

(�i − 1) = HW
(
s000 ∧ ¬LZ(¬s000)

)
.

Proof Recall that there are exactly (�i − 1) states in each chain 	i such that

Si−1 = Si−2 = · · · = Si−(�i−1) = 000.

Therefore, we have
∑

i∈I(�i − 1) = #{S j |S j = 000 and ∃i ∈ I s.t . S j ∈ 	i } . When
S j = 000, the next state S j+1 will be a member of the set {000,11*}. As a result, it is easy
to see that for an arbitrary j , if S j is equal to 000, then either S j is included in some chain
	i , i ∈ I, or S j belongs to the set 	′ defined by

	′ = {Sn−1 = 000, . . . , Sn−k = 000} ,

for some k > 0, where Sn−k−1 �= 000. Concerning Definition 1, one can observe that 	′ is
not a chain. Therefore,

∑
i∈I(�i − 1) = #{S j |S j = 000 and S j /∈ 	′}.

Since we are assuming that the differential is valid, there are no states S j = 001, and
s000[j] = 1 if and only if S j = 000. On the other hand, the function LZ can be used to detect
the states from the set 	′. In particular, LZ(¬s000)[i] is equal to 1 if and only if Si ∈ 	′.
Therefore, we obtain ∑

i∈I
(�i − 1) = HW

(
s000 ∧ (¬LZ(¬s000))

)
. ��

Representing the sum of log2(pi) by a bit-vector expression is the most complex and
challenging part of our differential model. Thus, we will proceed in several steps. First, we
will show how to obtain a bit-vector w that contains all the pi as some sub-vectors.

Lemma 6 Consider the following n-bit values,

s000 = ¬(u � 1) ∧ ¬(v � 1), s′
000 = s000 ∧ ¬LZ(¬s000),

t = ¬s′
000 ∧ (s′

000 � 1), t ′ = s′
000 ∧ (¬(s′

000 � 1)),

s = ((a � 1) ∧ t) � (a ∧ (s′
000 � 1)), q = ((¬((a � 1) ⊕ u ⊕ v)) � 1

) ∧ t ′,
d = RevCarry(s′

000, q) ∨ q, w = (q � (s ∧ d)) ∨ (s ∧ ¬d).

Then, for all states Si = 11* with i ∈ I, w[i − 1, i − �i] = pi .

Proof For each i ∈ I and 0 ≤ j < n, note that s′
000[j] = 1 exactly when S j = 000 and

S j ∈ 	i , and t[j] = 1 (resp. t ′[j] = 1) if and only if S j = Si−�i (resp. S j = Si−1). Denoting
s = s1 � s2, where s1 = (a � 1) ∧ t and s2 = a ∧ (s′

000 � 1), when i ∈ I the sub-vectors

s1[i − 1, i − �i − 1] = (0, 0, . . . , 0, a[i − �i − 1], 0) ,

s2[i − 1, i − �i − 1] = (0, a[i − 2], . . . , a[i − �i + 1], a[i − �i], 0) ,

result in s[i−1, i−�i] = a[i−2, i−�i]+a[i−�i −1]. In particular, s[i−1, i−�i] ≤ 2�i−1

and the equality holds when s[i − 1, i − �i] = 10…0.
It is easy to see that q[i − 1] = ¬(a[i − 2] ⊕ u[i − 1] ⊕ v[i − 1]) when i ∈ I and q is

zero elsewhere. Then, the sub-vectors d[i − 1, i − �i] are composed of repeated copies of
q[i − 1] when i ∈ I, as shown by the following sub-vectors

s′
000[i, i − �i − 1] = (0, 1, 1, . . . , 1, 0, ∗) ,

q[i, i − �i − 1] = (0, q[i − 1], 0, . . . , 0, 0, ∗) ,

RevCarry(s′
000, q)[i, i − �i − 1] = (∗, 0, q[i − 1], . . . , q[i − 1], q[i − 1], 0) ,

d[i, i − �i − 1] = (∗, q[i − 1], q[i − 1], . . . , q[i − 1], q[i − 1], ∗) .

123

1812 S. A. Azimi et al.

The only exception for the above equations is when i − �i = −1, where the two least
significant bits of the above sub-vectors will be equal to zero.

Let w = w1 ∧ w2, where w1 = q � (s ∧ d) and w2 = s ∧ ¬d . Regarding the acquired
patterns for q and d , we prove the following inequalities for i ∈ I

(s ∧ d)[i − 1, i − �i] ≤ q[i − 1, i − �i] ,
(s ∧ d)[i − �i − 1, 0] ≤ q[i − �i − 1, 0] ,

which imply the identity w1[i − 1, i − �i] = q[i − 1, i − �i] � (s ∧ d)[i − 1, i − �i].
The first inequality can be derived from the fact that s[i−1, i−�i] ≤ 10…0. For the second

inequality, consider the index setJ = { j |∀i ∈ I , S j /∈ 	i }. Then, the second inequality holds
since for j ∈ J and c ∈ {0, 1} we can see that

s′
000[j + 1 − c] = 0 �⇒ s1[j − c] = s2[j − c] = 0 .

Weare now ready to evaluatew[i−1, i−�i]when i ∈ I. If q[i−1] = 0, then d[i−1, i−�i] =
(0, . . . , 0), w1[i − 1, i − �i] reduces to 0, and

w[i − 1, i − �i] = w2[i − 1, i − �i] = a[i − 2, i − �i] + a[i − �i − 1] .
If q[i − 1] = 1, then d[i − 1, i − �i] = (1, . . . , 1), w2[i − 1, i − �i] reduces to 0, and

w[i − 1, i − �i] = w1[i − 1, i − �i] = (1, 0, . . . , 0) � s[i − 1, i − �i]
= 2�i−1 − (a[i − 2, i − �i] + a[i − �i − 1]) .

Hence, for q[i − 1] = ¬(a[i − 1] ⊕ u[i] ⊕ v[i]) and regarding Lemma 4, we obtain that
w[i − 1, i − �i] = pi . ��

Recall that both LZ and RevCarry have bit-vector complexity O(log2 n). Therefore,w can
be described with O(log2 n) basic bit-vector operations.

Since pi is not always a power of two, log2(pi) cannot be represented by a fixed-sized bit-
vector. Thus, we will use the following approximation for the binary logarithm of a positive
integer x ,

apxlog2(x) � m + Truncate(x[m − 1, 0])
24

, (4)

where m = �log2(x)� and Truncate(z) for an m-bit vector z is defined by

Truncate(z) =

⎧
⎪⎨
⎪⎩
z[m − 1,m − 4], m ≥ 4

z[m − 1, 0] ‖ (

4−m︷ ︸︸ ︷
0, . . . , 0), m < 4

In other words, apxlog2 includes the integer part of the logarithm and takes the four bits right
after the most significant one as the “fraction” bits. While Truncate can be generalized to
consider more fraction bits, we will show later that four fraction bits are enough to minimize
the bounds of our approximation error.

To describe
∑

i∈I apxlog2(pi) with basic bit-vector operations, we will introduce in the
next proposition two new bit-vector functions ParallelLog and ParallelTrunc. Given a bit-
vector x with sub-vectors delimited by a bit-vector y, ParallelLog(x, y) computes the sum
of the integer part of the logarithm of the delimited sub-vectors, whereas ParallelTrunc(x, y)
calculates the sum of the four most significant bits of the delimited sub-vectors.

123

A bit-vector differential model for the modular addition by a constant 1813

Proposition 1 Let x and y be n-bit vectors such that y has r sub-vectors

y[it , jt] = (1, 1, . . . , 1, 0), t = 1, . . . , r

where i1 > j1 > i2 > j2 > · · · > ir > jr ≥ 0, and y is equal to zero elsewhere.
We define the bit-vector functions ParallelLog and ParallelTrunc by

ParallelLog(x, y) = HW(RevCarry(x ∧ y, y))

ParallelTrunc(x, y) = (HW(z0) � 3) � (HW(z1) � 2) � (HW(z2) � 1) � HW(z3)

where zλ = x ∧ (y � 0) ∧ · · · ∧ (y � λ) ∧ ¬(y � (λ + 1)).

(a) If x[it , jt] > 0 for t = 1, . . . , r , then

r∑
t=1

�log2(x[it , jt])� = ParallelLog(x, y) .

(b) If at least �log2(n)� + 4 bits are dedicated to ParallelTrunc(x, y), then

r∑
t=1

Truncate(x[it , jt + 1]) = ParallelTrunc(x, y) .

Proof Case (a) Let m = �log2(x[i1, j1])� and c = RevCarry(x ∧ y, y). Note that c[n −
1, i1] = 0, since y[n − 1, i1 + 1] = 0. For m ≥ 1, we obtain the sub-vectors

i1, . . . , j1+ m + 1, j1+ m, j1+ m − 1, . . . , j1+ 1, j1, j1− 1
y[i1, j1− 1] = (1, . . . , 1, 1, 1, . . . , 1, 0, ∗) ,

(x ∧ y)[i1, j1− 1] = (0, . . . , 0, 1, ∗, . . . , ∗, 0, ∗) ,

c[i1, j1− 1] = (0, . . . , 0, 0, 1, . . . , 1, 1, 0) .

In particular, c[i1, j1] has m bits set to one. If m = 0, x[i1, j1 + 1] = 0 and y[j1] = 0,
which implies that there is no carry chain, i.e., c[i1, j1] = 0. Therefore, in both cases
HW(c)[i1, j1]) = m = �log2(x[i1, j1])�.

Note that the reversed carry chain stops at j1, and c[j1 − 1, i2] = 0 · · ·0. Therefore, the
same argument can be applied for t = 2, . . . , r , obtaining

HW(c[it , jt]) = �log2(x[it , jt])� , c[jt − 1, it+1] = 0 .

Finally, it is easy to see that c[jr − 1, 0] = 0, concluding the proof for this case.

Case (b) First note that for λ = 0, . . . , 3 and t = 1, . . . , r , the variable zλ is

zλ[i] =
{
x[i], if i = it − λ > jt
0, otherwise

Therefore, the Hamming weight of zλ computes the following summation:

HW(zλ) =
∑
t

it−λ> jt

x[it − λ] .

While we define HW as a bit-vector function returning an n-bit output given an n-bit input,
�log2(n)� + 1 bits are sufficient to represent the output of HW. Therefore, by representing

123

1814 S. A. Azimi et al.

each HW(zλ) � (3 − λ) in a (�log2(n)� + 4)-bit variable hλ, the bit-vector expression
h0 � h1 � h2 � h3 does not overflow, and we obtain

r∑
t=1

Truncate(x[it , jt + 1]) =
r∑

t=1

3∑
λ=0

it−λ> jt

x[it − λ] × 23−λ = h0 � h1 � h2 � h3,

which concludes the proof. ��
Since both HW and Rev have O(log2 n) bit-vector complexities, so do the functions

ParallelLog and ParallelTrunc. The next lemma applies ParallelLog and ParallelTrunc to
provide a bit-vector expression of the sum of apxlog2(pi).

Lemma 7 Let r and f be the bit-vectors given by

r = ParallelLog((w ∧ s′
000) � 1, s′

000 � 1) ,

f = ParallelTrunc(w � 1, RevCarry((w ∧ s′
000) � 1, s′

000 � 1)) .

If at least �log2(n)� + 5 bits are dedicated to r and f , then

24
∑
i∈I

apxlog2(pi) = (r � 4) � f .

Proof Regarding Lemma 6, w[i − 1, i − �i] represents the �i -bit vector of pi and s′
000[i −

1, i − �i] conforms to the pattern (1, . . . , 1, 0) for any i ∈ I. Therefore,
∑
i∈I

�log2(pi)� = HW
(
RevCarry((w ∧ s′

000) � 1, s′
000 � 1)

)
,

following Proposition 1. For the second case, let c be the n-bit vector given by c =
RevCarry((w ∧ s′

000) � 1, s′
000 � 1). Denoting by j = i − li and m = �log2(pi)�

for a given i ∈ I, note that pi [m] is the most significant active bit of pi and

i+1, . . . , j+m+2, j+m+1, j+m, . . . , j+2, j+1, j
(w � 1)[i+1, j] = (0, . . . , 0 pi [m], pi [m−1], . . . , pi [1], pi [0] 0) ,

c[i+1, j] = (0, . . . , 0 0, 1, . . . , 1, 1 0) .

Thus c[j + m, j] conforms to the pattern (1, . . . , 1, 0) and Proposition 1 leads to
∑
i∈I

m=�log2(pi)�

Truncate(pi [m − 1, 0]) = ParallelTrunc(w � 1, c) .

For any n-bit variables x and y, it is easy to see that ParallelLog(x, y) < n. Thus,
�log2(n)�+ 4 bits are sufficient to represent (r � 4), and f can also be represented with the
same number of bits following Proposition 1. Therefore, by representing (r � 4) and f in
(�log2(n)� + 5)-bit variables, the bit-vector expression (r � 4) � f does not overflow. ��

Recall that the differential weight of constant addition can be decomposed as

weight�a
(u, v) = −

∑
i /∈I

log2(ϕi) −
∑
i∈I

log2

(
1

2�i−1

)
−
∑
i∈I

log2(pi) .

If the binary logarithm of pi is replaced by our approximation of the binary logarithm
apxlog2(pi), we obtain the following approximation of the weight,

apxweight�a
(u, v) � −

∑
i /∈I

log2(ϕi) −
∑
i∈I

log2

(
1

2�i−1

)
−
∑
i∈I

apxlog2(pi) . (5)

123

A bit-vector differential model for the modular addition by a constant 1815

Our weight approximation can be computed with the bit-vector function BvWeight described
in Algorithm 1, as shown in the lemma.

Algorithm 1 Bit-vector function BvWeight(u, v, a).
Input: (u, v, a)

Output: BvWeight(u, v, a)

s000 ← ¬(u � 1) ∧ ¬(v � 1)
s′000 ← s000 ∧ ¬LZ(¬s000)
t ← ¬s′000 ∧ (s′000 � 1)
t ′ ← s′000 ∧ (¬(s′000 � 1))
s ← ((a � 1) ∧ t) � (a ∧ (s′000 � 1))
q ← (

(¬((a � 1) ⊕ u ⊕ v)) � 1
) ∧ t ′

d ← RevCarry(s′000, q) ∨ q
w ← (q � (s ∧ d)) ∨ (s ∧ ¬d)

int ← HW((u ⊕ v) � 1) � HW(s′000) � ParallelLog((w ∧ s′000) � 1, s′000 � 1)
f rac ← ParallelTrunc(w � 1, RevCarry((w ∧ s′000) � 1, s′000 � 1))
return (int � 4) � f rac

Lemma 8 If at least �log2(n)� + 5 bits are dedicated to BvWeight(u, v, a), then

24apxweight�a
(u, v) = BvWeight(u, v, a).

Proof Regarding Lemmas 3 and 5 and 7 we respectively obtain

−
∑
i /∈I

log2(ϕi) = HW((u ⊕ v) � 1) , −
∑
i∈I

log2

(
1

2�i−1

)
= HW(s′

000) ,

24
∑
i∈I

apxlog2(pi) = (ParallelLog((w ∧ s′
000) � 1, s′

000 � 1) � 4) � f rac .

All in all, we get the following identities,

24apxweight�a
(u, v) = 24((int � 4) � f rac) = BvWeight(u, v, a) . ��

Note that the four least significant bits of BvWeight(u, v, a) correspond to the fraction
bits of the approximate weight. In other words, the output of BvWeight(u, v, a) represents
the rational value

�log2(n)�+4∑
i=0

2i−4BvWeight(u, v, a)[i] .

The bit-vector complexity of BvWeight is dominated by the complexity of LZ, Rev, HW,
ParallelLog, and ParallelTrunc. Since these operations can be computed with O(log2 n)

basic bit-vector operations, so does BvWeight.
Theorem 4 shows that BvWeight leads to a close approximation of the differential weight

and provides explicit bounds for the approximation error.

Theorem 4 Let (u, v) be a valid differential over the n-bit constant addition �a, let
weight�a

(u, v) be the differential weight of (u, v), and let BvWeight be the bit-vector function
defined by Algorithm 1. Then, the approximation error,

E = weight�a
(u, v) − apxweight�a

(u, v) = weight�a
(u, v) − 2−4BvWeight(u, v, a)

is bounded by −0.029(n − 1) ≤ E ≤ 0 .

123

1816 S. A. Azimi et al.

Section 3.3 is devoted to the proof of Theorem 4, where we will also analyse the error
caused by our approximated binary logarithm. Before proving Theorem 4, we will describe
an example to understand this theorem and Algorithm 1.

Example 3 Consider the same conditions as defined in Example 1, i.e., (u, v) =
(1010001110,1010001010) and the constant input a = 1000101110. The weight
for our differential is

weight�a
(u, v) = − log2(Pr[u �a−→ v]) = − log2

(
5

16

)
≈ 1.678.

Let’s find the approximate weight apxweight�a
based on Algorithm 1. Table 4 presents

some of the variables we obtain to compute the aforementioned approximate weight.
The set I = {1 ≤ i ≤ n − 1 | Si = 11*, �i > 1} in this example is equal to I = {2, 8}.

The variable int in Algorithm 1 consists of three parts. The first part of the variable int
calculated in Algorithm 1 is

HW((u ⊕ v) � 1) = 0000000001 = 1 ,

which is equal to −∑i /∈I log2(ϕi) = −∑i∈{0,1,3,4,5,6,7,9} log2(ϕi) = − log2(ϕ3).
The second part uses the variable s′

000 which is the same as s000 except that the leading
one bits of s000 are replaced in s′

000 by zeros. In other words, s′
000[9] = 0 but the remaining

bits of these two bit-vectors are exactly equal. Computing the second part results in

HW(s′
000) = 0000000101 = 5 ,

and it is equal to
∑

i∈I(�i − 1) = (�2 − 1) + (�8 − 1).
For the third and last part of int , we compute w, obtaining w = 0001010010. We

remark that the bit-vector w for i ∈ I in fact includes pi as some subvectors, i.e.

i = 2 : w[2 − 1, 2 − �2] = w[1,−1] = 100 = 4 = p2 ,

i = 8 : w[8 − 1, 8 − �8] = w[7, 4] = 0101 = 5 = p8 .

Hence, the third part of int is computed as

ParallelLog((w ∧ s′
000) � 1, s′

000 � 1) = 0000000100 = 4 ,

which is equal to
∑

i∈I �log2(pi)� = �log2(p2)� + �log2(p8)�. Considering all three parts,
the bit-vector int is obtained by

int = 0000000001 � 0000000101 � 0000000100 = 0000000010 = 2 .

Table 4 Intermediate variables
for computing
apxweight�a (u, v) of
Example 3

i 9 8 7 6 5 4 3 2 1 0

a[i] 1 0 0 0 1 0 1 1 1 0

u[i] 1 0 1 0 0 0 1 1 1 0

v[i] 1 0 1 0 0 0 1 0 1 0

s000[i] 1 0 1 1 1 0 0 0 1 1

s′000[i] 0 0 1 1 1 0 0 0 1 1

w[i] 0 0 0 1 0 1 0 0 1 0

BvWeight(u, v, a)[i] 0 0 0 0 0 1 1 1 0 0

123

A bit-vector differential model for the modular addition by a constant 1817

Moreover, the f rac bit-vector in Algorithm 1 is calculated by

f rac = ParallelTrunc(w � 1, RevCarry((w ∧ s′
000) � 1, s′

000 � 1)) ,

= HW(0000100000) � 2 = 4 .

Considering the third major operand of int and the bit-vector f rac, we can obtain the
summation of all approximate logarithms

∑
i∈I

apxlog2(pi) = apxlog2(p2) + apxlog2(p8) = 4 + 4

24
= 4.25 .

To summarize, the output of Algorithm 1 is

BvWeight(u, v, a) = (int � 4) � f rac ,

= 0000100000 � 0000000100 = 0000011100 = 28 .

Therefore, the approximate weight will be equal to

apxweight�a
(u, v) = 2−4BvWeight(u, v, a) = 28

24
= 1.75 .

The total error of our approximation is

E = weight�a
(u, v) − apxweight�a

(u, v) ≈ 1.678 − 1.75 = −0.072 ,

which is a negative value and lower bounded by −0.029(n − 1) = −0.261 as suggested by
Theorem 4.

3.3 Error analysis: proof of Theorem 4

In this subsection, we will prove Theorem 4 by gradually analysing the error produced by
our approximation of the binary logarithm. As we can see from Eqs. (3) and (5), the gap
between weight�a

(u, v) and apxweight�a
(u, v) is

weight�a (u, v) − apxweight�a
(u, v) = −

∑
i∈I

(
log2(pi) − apxlog2(pi)

)
.

Note that the integer part of apxlog2 is equal to the integer part of log2 and the error is caused
by the fraction part of the logarithm.

Given a positive integer x and the corresponding m = �log2(x)�, we define apxlogκ
2 as

apxlogκ
2(x) =

{
m + x[m − 1, 0]/2m, m ≤ κ

m + x[m − 1, x − κ]/2κ , m > κ

The non-negative integer κ is called the precision of the fraction part. Note that apxlogκ
2

is the generalization of apxlog2, which considers κ = 4 bits for the fraction part. While
Theorem 4 only focuses on κ = 4, we will use apxlogκ

2 in this section to additionally prove
that our error bound also applies to κ ≥ 4.

The following lemma bounds the approximation error of apxlog2 when κ ≥ �log2(x)�,
with a similar proof as [56] for the sake of completeness. Themain idea is that after extracting
integer part of the logarithm in base 2, one can estimate log2(1+ γ) by γ when 0 ≤ γ < 1.

123

1818 S. A. Azimi et al.

Lemma 9 Consider a positive integer x and the binary logarithm approximation log2(x) ≈
m + x[m − 1, 0]/2m , where m = �log2(x)�. Then, the approximation error e = log2(x) −
(m + x[m − 1, 0]/2m) is bounded by 0 ≤ e ≤ B, where B is given by

B = 1 − (1 + ln(ln(2))
)
/ ln(2) ≈ 0.086 .

Proof Let x = 2m + b, where b is a non-negative integer such that 0 ≤ b < 2m . Therefore,
x[m − 1, 0] = x − 2m = b and the error is given by

e = log2(x) −
(
m + x[m − 1, 0]

2m

)
= log2(2

m + b) −
(
m + b

2m

)

= log2

(
1 + b

2m

)
− b

2m
.

For γ = b/2m , we obtain 0 ≤ γ < 1 and e = log2(1 + γ) − γ . Note that e is a concave
function of γ where e ≥ 0 if and only if 0 ≤ γ ≤ 1. By deriving e = e(γ), one can see that
max(e) = B = 1 − (1 + ln(ln(2))

)
/ ln(2) ≈ 0.086 is reached when γ = 1/ ln(2) − 1 ≈

0.44. ��
The bound B is an almost tight bound, e.g., when x = 3, the obtained error is log2(3)−(1+

1
2) � 0.085. The following example shedsmore light on our binary logarithm approximation.

Example 4 Consider the positive integer x = 11101. Note that log2(x) � 4.85798 and
m = �(log2(x))� = 4. In order to obtain the approximation defined in Proposition 9, we first
find and omit the greatest "one" in binary representation of x , andwe get x[m−1, 0] = 1101.
By interpreting the remaining bits as a binary fraction, we have x[m−1, 0]/2m = 0.1101.
Therefore, the approximated binary logarithm of x = 11101 in binary representation is

m + x[m − 1, 0]
2m

= 100.1101 ,

which is equal to 4.8125. In addition, the corresponding error of such approximation is
e ≈ 0.04548, which is a positive value and upper bounded by B ≈ 0.086.

Finally, we can now prove Theorem 4, which basically states that if we dedicate 4 bits to
the fraction precision κ , the approximation error E is bounded by−0.029 · (n−1) ≤ E ≤ 0.
While Theorem 4 focuses on κ = 4, we will show in the proof that we can also bound the
error for κ ≥ 4. To this end, we generalize the approximated weight apxweight�a

and the
approximated weight error Eκ as follows

apxweightκ�a
(u, v) = −

(∑
i∈I

apxlogκ
2(pi) +

∑
i∈I

log2

(
1

2�i−1

)
+
∑
i /∈I

log2(ϕi)

)

Eκ = weight�a
(u, v) − apxweightκ�a

(u, v) ,

where apxweight4�a
(u, v) = apxweight�a

(u, v) is defined byEq. (5) and E4 = E is defined
in Theorem 4.

Proof (Theorem 4) First, we mention that log2(ϕi) is an integer number when Si �= 11* or
for Si = 11* we see �i < 3. For these cases, log2(ϕi) = �log2(ϕi)� and the approximation
error is equal to zero.

123

A bit-vector differential model for the modular addition by a constant 1819

Fig. 1 The error
e = log2(1 + γ) − γ , over
0 ≤ γ < 1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

·10−2 (0.44, 0.086)

γ

e

Next, for each i ∈ I when �i ≥ 3, let pi = 2mi + bi such that mi and bi are two non-
negative integers, mi ≤ �i − 2 and 0 ≤ bi < 2mi . If �i ≤ κ + 2, we obtain mi ≤ κ and
apxlogκ

2(pi) = mi + bi · 2−mi . Thus, the resulting error

ei = log2(pi) − apxlogκ
2(pi) = log2(pi) − (mi + bi · 2−mi)

is exactly the same as the error defined in Proposition 9, and 0 ≤ ei ≤ B ≈ 0.086.
On the other hand, for mi > κ , i.e., �i ≥ κ + 3, let pi = 2mi + ti · 2mi−κ + ζi , where ti

and ζi are two non-negative integers such that 0 ≤ ti < 2κ as well as 0 ≤ ζi < 2mi−κ . In
this case, the approximated binary logarithm is apxlogκ

2(pi) = mi + ti · 2−κ . We now define
a new error e′

i as

e′
i = log2(pi) − apxlogκ

2(pi) = log2(1 + ti · 2−κ + ζi · 2−mi) − ti · 2−κ .

Due to the fact that ζi ≥ 0, we can see that

e′
i = log2(pi) − (mi + ti · 2−κ) ≥ log2(pi) − (mi + ti · 2−κ + ζi · 2−mi) = ei ≥ 0 .

Since ζi < 2mi−κ and by reforming the error, we obtain the upper bound of e′
i

e′
i ≤ log2(1 + ti · 2−κ + 2−κ) − ti · 2−κ = (log2(1 + γ ′

i) − γ ′
i) + 2−κ ,

where γ ′
i = (ti + 1) · 2−κ and 2−κ ≤ γ ′

i < 1. Regarding Proposition 9, the new error e′
i is

bounded by 0 ≤ e′
i ≤ B + 2−κ .

Note that for a valid differential (u, v) over the constant addition �a we can see that
S0 = 000 which for some i∗ belongs to the chain

	i∗ = {Si∗−1, . . . , S0, S−1 = ⊥}, �i∗ = i∗ + 1.

Hence, we obtain

δi∗−1 = a[i∗ − �i∗ − 1]
2�i∗−1 +

�i∗∑
j=2

a[i∗ − j]
2 j−1 =

�i∗−1∑
j=2

a[i∗ − j]
2 j−1 .

Similar to the proof of Lemma 4 we have

ϕi∗ = pi∗

2�i∗−1 = p∗
i∗

2�i∗−2 ,

123

1820 S. A. Azimi et al.

where p∗
i∗ = pi∗/2 is an integer. Therefore, by replacing �i∗ with �∗

i∗ = �i∗ − 1, the previous
statements considering the error bounds of our approximation for the state Si∗ = 11* and
its new �∗

i∗ are still correct. We now define two bits b and b′ as

b =
{
1, 3 ≤ �∗

i∗ ≤ κ + 2

0, o.w.
, b′ =

{
1, �∗

i∗ > κ + 2

0, o.w.

Finally, by defining the conditional index set Iβ
α = {i ∈ I − {i∗} | α ≤ �i ≤ β} we obtain

Eκ = weight�a
(u, v) − apxweightκ�a

(u, v)

= −
∑
i∈I

(log2(pi) − apxlogκ
2(pi))

= −
⎛
⎜⎝
∑

i∈Iκ+2
3

ei +
∑

i∈In
κ+3

e′
i + bei∗ + b′e′

i∗

⎞
⎟⎠

≥ −
⎛
⎜⎝B

∑

i∈Iκ+2
3

1 + (B + 2−κ)
∑

i∈In
κ+3

1 + bB + b′(B + 2−κ)

⎞
⎟⎠

≥ −
⎛
⎜⎝ B

3

∑

i∈Iκ+2
3

�i +
(
B + 2−κ

κ + 3

)∑
i∈In

κ+3

�i + b
B

3
�∗
i∗ + b′

(
B + 2−κ

κ + 3

)
�∗
i∗

⎞
⎟⎠ .

For κ ≥ 4, we can see that
B + 2−κ

κ + 3
≤ B

3
, resulting in

0 ≥ Eκ ≥ −
⎛
⎝ B

3

∑
i∈In

3

�i + B

3
�∗
i∗

⎞
⎠ = −

⎛
⎝ B

3

∑
i∈In

3

�i + B

3
(�i∗ − 1)

⎞
⎠

≥ − B

3
(n − 1) ≈ −0.029(n − 1).

Since for κ = 4, we have E4 = E = weight�a
(u, v) − apxweight�a

(u, v), the above
inequalities hold for the approximation error E as well. ��

While dedicating κ = 4 bits as the fraction precision is enough to obtain the same error
bounds as κ > 4, considering κ < 4 creates a trade-off between the lower bound of the error
and the complexity of Algorithm 1. As an example, choosing κ = 3 removes one HW call
in Algorithm 1. However, by following the proof of Theorem 4 for κ = 3, the error will be
lower bounded by −0.035(n − 1), which potentially is an acceptable trade-off.

The differential model of the constant addition as well as the approximation error will
be used in the automated method that we will present in the next section to search for
characteristics and impossible differentials of ARX ciphers.

4 SMT-based search of characteristics and impossible differentials

In this section, we describe how to formulate the search of optimal characteristics and impos-
sible differentials as a sequence of SMT problems, which can be solved by an off-the-shelf

123

A bit-vector differential model for the modular addition by a constant 1821

SMT solver such as Boolector [62] or STP [22]. Our methods are inspired by the approach
of Mouha and Preneel [57] to search for single-key characteristics of Salsa20 [57] and the
approach by Sasaki and Todo to search for impossible differentials using Mixed Integer
Linear Programming (MILP) [66].

4.1 Searching for characteristics

To search for characteristics up to probability 2−n , the probability space is decomposed into n
intervals Iw = (2−w−1, 2−w

]
, wherew = 0, 1, . . . , n−1, and for each interval, the decision

problem of whether there exists a characteristic with probability p ∈ Iw is encoded as an
SMT problem. Note that a characteristic � has probability p ∈ Iw if and only if its integer
weight �weight(�)� is equal to w. Section 4.2 describes the encoding process for an ARX
cipher.

The SMT problems are provided to the SMT solver, which checks their satisfiability
in increasing weight order. When the SMT solver finds the first satisfiable problem, an
assignment of the variables that makes the problem satisfiable is obtained, and the search
finishes. The assignment contains a characteristic with integer weight ŵ, and it is optimal in
the sense that there are no characteristics with integer weight strictly smaller than ŵ. If the
n SMT problems are found to be unsatisfiable, then it is proved there are no characteristics
with probability higher than 2−n .

To speed up the search, we perform the search iteratively on round-reduced versions of
the cipher. First, we search for an optimal characteristic for a small number of rounds r ; let
ŵ denote its integer weight. Then, we search for an optimal (r + 1)-round characteristic,
but skipping the SMT problems with weight strictly less than ŵ. Since these SMT problems
were found to be unsatisfiable for r rounds, they will also be unsatisfiable for r + 1 rounds.
This procedure is repeated until the total number of rounds is reached. Algorithm 2 describes
in pseudo-code this search strategy. Our strategy prioritises SMT problems with low weight
and small number of rounds, which are faster to solve. In addition, our search also finds
optimal characteristics of round-reduced versions, which can be used in other differential-
based attacks, such as rectangle or boomerang attacks [9, 71].

Algorithm 2 SMT-based optimal characteristic search
� ← ∅
ŵ ← 0
for r = 1, . . . ,max_rounds do

for w = ŵ, ŵ + 1, . . . , n − 1 do
P ← CreateSMTProblem(rounds = r ,target_weight = w)

if SMTSolver.IsSatisfiable(SMT_problem = P) then
ŵ ← w

� ← SMTSolver.GetAssignment(SMT_problem = P)

Print(�) � optimal r -round characteristic
break

return �, ŵ

This automated method can be used to search for either single-key or related-key char-
acteristics. Furthermore, additional SMT constraints can be added to the SMT problems
in order to search for different types of characteristics. For related-key characteristics and
by default, this method searches characteristics minimizing the total weight weight(�) =
weight(�K S) + weight(�E). Strong related-key characteristics can be searched by adding

123

1822 S. A. Azimi et al.

the constraint weight(�K S) = 0 in the SMT problems. Similarly, equivalent keys can be
found by adding the constraint weight(�E) = 0.

Algorithm 2 returns the characteristic with the minimum SMT integer weight, obtained
from the bit-vector differential models used within the SMT problems. When some of these
models compute approximations of the intermediate weights, the SMT integer weight and the
actual integer weight of the characteristic might differ, and the returned characteristic might
not be optimal. However, if we have alternative models that compute the exact intermediate
weights (that cannot be represented in theSMTproblems) and abound for the error of theSMT
integer weight, Algorithm 2 can be adapted to obtain the optimal characteristic as follows.
First,Algorithm2 is used to obtain the characteristic�with theminimumSMT integerweight
ŵ. Then, one finds all2 characteristics with SMT integer weights {ŵ, ŵ + 1, . . . , ŵ + �ε�},
where ε is the absolute bound for the error of the SMT integer weight. Finally, the weights of
the found characteristics are recomputed with the alternative models, and the characteristic
with the minimum integer weight is returned. This adaptation can be used for ARX ciphers
with constant additions, as the error bound can be computed from Theorem 4 andMachado’s
algorithm [53] can be used to compute the exact weights of the constant additions.

This method only ensures optimality if the differential probabilities over each round are
independent and the characteristic probability does not strongly depend on the choice of
the secret key. When these assumptions do not hold for a cipher, we empirically compute
the weight of each characteristic found by sampling many input pairs satisfying the input
difference and counting those satisfying the difference trail. In this case, this method provides
a practical heuristic to find characteristics with high probability, and it is one of the best
systematic approaches for some families of ciphers, such as ARX.

4.2 Encoding the SMT problems

In this section, we explain how to formulate the decision problem of determining whether a
characteristic � exists with integer weight W of an ARX cipher as an SMT problem in the
bit-vector theory.

First, the ARX cipher is represented in Static Single Assignment (SSA) form, that is, as
an ordered list of instructions y ← f (x) such that each variable is assigned exactly once and
each instruction is a modular addition, a rotation, or an XOR.

For each variable x in the SSA representation, a bit-vector variable �x denoting the
difference of x is defined in the SMT problem. Then, for every instruction y ← f (x), the
weight and the differential model of f are added to the SMT problem as a bit-vector variable
w and bit-vector constraints valid fi (�x ,�y) and Equals(w,weight fi (�x ,�y)), following
Table 5.

Finally, the following bit-vector constraints are added to the SMT problem,

NotEquals(�p, 0) , Equals(W , w1 � · · · � wr) ,

where�p denotes the input difference and (w1, . . . , wr) denote the weight of each operation.
The first constraint excludes the trivial characteristic with zero input difference, while the
second constraint fixes the weight of the characteristic to the target weight. Note that the
bit-size of the weights might need to be increased to prevent an overflow in the modular
addition of the last constraint.

2 It is possible to get another solution of an SMT problem by solving it again with an additional constraint
that excludes the first solution. By repeating this process, one can find all the solutions.

123

A bit-vector differential model for the modular addition by a constant 1823

Table 5 Bit-vector differential
models of ARX operations

y = fa(x) Validity Weight

y = x1 ⊕ x2 Equals(�y ,�x1 ⊕ �x2) 0

y = x ⊕ a Equals(�y ,�x) 0

y = x ≪ a Equals(�y ,�x ≪ a) 0

y = x ≫ a Equals(�y ,�x ≫ a) 0

y = x1 � x2 Theorem 1 Theorem 1

y = x � a Theorem 3 Theorem 4

Fig. 2 The function fk

Example 5 Consider the keyed function fk with key k and input p = (p1, p2),

fk(p1, p2) = (((p2 � 1) ⊕ k) � p1, p1 ≪ 1) .

This function can be written as a list of simple instructions (SSA form) as

x1 ← p2 � 1 ,

x2 ← x1 ⊕ k ,

x3 ← x2 � p1 ,

x4 ← p1 ≪ 1 ,

where the output is the pair (x3, x4). Figure 2 depicts the function fk together with its
intermediate variables.

An SMT problem in the bit-vector theory denoting whether fk has a characteristic with
integer weight W is as follows:

∃�p1 ,�p2 ,�x1 ,�x2 ,�x3 ,�x4 , w1, w2, w3, w4 :
valid�1(�p2 ,�x1) ,

123

1824 S. A. Azimi et al.

Equals(w1, BvWeight(�p2 ,�x1 , 1)) ,

Equals(�x2 ,�x1) ,

Equals(w2, 0) ,

valid�((�x2 ,�p1),�x3) ,

Equals(w3,weight�((�x2 ,�p1),�x3)) ,

Equals(�x4 ,�dp1
≪ 1) ,

Equals(w4, 0) ,

NotEquals((�p1 ,�p2), 0) ,

Equals(W , (w1 � ((w2 � w3 � w4) � 4) � 4)) .

The shifts in the last constraint are due to the fact that the last four bits of w1 denote fraction
bits. Furthermore, depending on the bit-size of fk , it might be necessary to extend the bit-size
of the weights in order to prevent an overflow in the last modular additions.

4.3 Searching of impossible differentials

In [66], Sasaki and Todo [66] propose a MILP-based method to search for impossible differ-
entials that employs the MILP problems used to search for characteristics. Since this method
can also be adapted to SMT problems, we will explain the method within the SMT context.

The method’s main idea is that one can check whether a particular differential (�p,�c) is
impossible by querying a simple SMTproblem.While it is infeasible to check all differentials,
one can check those with a low number of active bits since most of the known impossible
differentials have this property.

The subroutine to check whether a particular differential (�p0 ,�c0) is impossible can
be done as follows. First, the SMT problem of whether there exists a characteristic over the
cipher is encoded as in Sect. 4.2. However, only the validity constraints are added; the weight
constraints and the target weight W are ignored. Second, the constraints that fix the input
and output differences (�p,�c) to (�p0 ,�c0) are added to the SMT problem, that is,

Equals(�p,�p0), Equals(�c,�c0) .

Then, the SMT solver checks the satisfiability of the SMT problem. If the problem is found
to be unsatisfiable, the differential is impossible.

This method can be used to search for single-key and related-key impossible differentials.
For the former case, the validity constraints of the key schedule are ignored, while for the
latter case they are included in the SMT problems.

As opposed to the previous SMT-based characteristic searchmethod, the impossible check
subroutine is a sound method. In other words, a characteristic found by Algorithm 2 could
be invalid due to the independence assumptions, but a differential found impossible by the
check subroutine is always impossible. While the check subroutine is a sound method, it is
not complete; there are some impossible differentials that cannot be detected by the check
subroutine.

While the check subroutine is fast, checking all differentials is infeasible and only a small
subset can be checked with the method by [66]. Thus, we propose a new automated method
to search for impossible differentials that does not restrict the search over any pre-defined
small subset and let the SMT solver efficiently search through the space of differentials. Our
automated method proceeds as follows.

123

A bit-vector differential model for the modular addition by a constant 1825

Fig. 3 The partial characteristic � = (�x0 , �x1 , �x2 , �x3) over E = E2 ◦ E1 ◦ E0, alongside the condition
that the inner part (�x1 ,�x2) over E1 is an impossible differential

First, we split the cipher E = E2 ◦ E1 ◦ E0 into three parts E2, E1 and E0. Let
� = (�x0 ,�x1 ,�x2 ,�x3) denote a partial characteristic over E , that is, any character-
istic verifying

Pr(�x0
E0−→ �x1) = 1, Pr(�x2

E2−→ �x3) = 1 .

Note that no relation is imposed between �x1 and �x2 .
Then, we search for all partial characteristics using our SMT-basedmethod from Sect. 4.1.

For each partial characteristic � = (�x0 ,�x1 ,�x2 ,�x3), we apply the check subroutine
to the differential (�x1 ,�x2) over E1. If (�x1 ,�x2) is found to be impossible over E1,
then (�x0 ,�x3) is an impossible differential over E , since (�x0 ,�x1) and (�x2 ,�x3) are
differentials with probability one (see Fig. 3).

Like the characteristic search method, we start searching for impossible differentials over
a round-reduced version of the cipher and keep increasing the number of rounds iteratively.
This procedure is described in Algorithm 3. While FindPartialCh in Algorithm 3 is
responsible for finding partial characteristics, IsImpossible subroutine checks the cor-
responding inner differential to be impossible. Impossible differentials starting after a few
rounds are useful in practice, and our method can easily be adapted by splitting the cipher
into four parts, E = E2 ◦ E1 ◦ E0 ◦ E−1, where E−1 denotes the skipped rounds.

Algorithm 3 SMT-based impossible-differential search
for r = 1, . . . ,max_rounds do

for r1 = 1, . . . , r − 2 do
for r0 = 1, . . . , r − r1 − 1 do

r2 = r − r0 − r1
for � ∈ FindPartialCh(roundsE0 =r0,roundsE1 =r1,roundsE2 =r2)
do

(�x0 , �x1 , �x2 , �x3) ← �

if IsImpossible(input� = �x1 ,output� = �x2 ,roundsE1 = r1)
then

Print(�x0 , �x3) � impossible differential over r rounds
break � break three inner loops and increase r

return (�x0 , �x3)

Themain advantage of our method is that the subset of differentials to check does not need
to be specified. Thus, it can find impossible differentials that othermethods cannot.Moreover,
the search of partial characteristics is quite fast, as for many operations f (including the

123

1826 S. A. Azimi et al.

modular addition and the constant addition) the constraint Equals(0,weight f (�x ,�y)) is
much simpler than the constraint for the general case Equals(w,weight f (�x ,�y)).

As opposed to the search of characteristics, the search of r +1-round impossible differen-
tials cannot reuse information obtained from the search of r -round impossible differentials. In
other words, Algorithm 2 exploits the fact that if no r -round characteristics were found with
weight w, then no r + 1-round characteristics can be found with the same weight. However,
for some key schedules, Algorithm 2 might find r + 1-round impossible differentials even if
no r -round impossible differentials were found.

4.4 Implementation

We have developed an open-source tool ArxPy3 to find characteristics and impossible dif-
ferentials of ARX ciphers implementing the methods described earlier. Originally, ArxPy
was a tool to search for rotational-XOR characteristics using SMT solvers [64]. However, we
have extended it to support (related-key) differential characteristics and impossible differen-
tials containing the constant addition. ArxPy provides high-level functions that automate the
search, a simple interface to represent ARX ciphers, and complete documentation in HTML
format, among other features.

ArxPy workflow is represented in Fig. 4. The user first defines the ARX cipher using
the interface provided by ArxPy and chooses the parameters of the search (e.g., the type
of the characteristic to search, the SMT solver to use, etc.). Then, ArxPy automatically
translates the python implementation of the ARX cipher into SSA form, encodes the SMT
problems associated to the type of search selected by the user, and solves the SMT problems
by querying the SMT solver. When searching for characteristics, for each satisfiable SMT
problem found, ArxPy reconstructs the characteristic from the assignment of the variables
that satisfies the problem and empirically verifies the weight of the characteristic. Finally,
ArxPy returns the results of the search to the user.

Internally, ArxPy is implemented in Python 3 and uses the libraries SymPy [55] to obtain
the SSA representation through symbolic execution and PySMT [23] for the communication
with the SMT solvers. Thus, all the SMT solvers supported by PySMT can be directly used
for ArxPy.

5 Experiments

We have applied our methods for finding characteristics and impossible differentials to some
ARX ciphers that include constant additions. In particular, we have searched for related-
key characteristics and related-key impossible differentials of TEA, XTEA, HIGHT, LEA,
SHACAL-1, and SHACAL-2.

Due to the difficulty of searching for characteristics of ciphers with constant additions this
far, cipher designers have avoided constant additions in the encryption functions so that they
could search for single-key characteristics, the most threatening ones. Only a few ciphers
include constant additions in the encryption function, and their ad-hoc structures make them
more suitable to be analysed with other types of differences, such as additive differences in
the case of TEA [11]. As a result, we have focused on searching related-key characteristics
and impossible differentials of some well-known ciphers.

3 https://github.com/ranea/ArxPy.

123

https://github.com/ranea/ArxPy

A bit-vector differential model for the modular addition by a constant 1827

Fig. 4 Workflow of ArxPy

Regarding the search for characteristics, we used Algorithm 2 to find related-key charac-
teristics starting from the first round of each cipher. For the case of impossible differentials,
we applied Algorithm 3 to search for related-key impossible differentials but skipping the
first rounds of the cipher. To this end, we repeatedly call Algorithm 3 while increasing the
number of skipped rounds in each call.

For related-key characteristics, the usual assumptions (i.e., round independence and the
hypothesis of stochastic equivalence) do not always hold. Thus, we empirically verify each
characteristic and stopped each round-reduced search after the first valid characteristic is
found.

To verify a related-key characteristic�, we split� in smaller characteristics�i = (�xi →
· · · → �yi) with weight wi lower than 20, and empirically compute the probability of
each differential (�xi ,�yi) by sampling a small multiple of 2wi input pairs for 210 related-
key pairs. After combining the probability of each differential, we obtain 210 characteristic
probabilities, one for each related-key pair. If the characteristic probability is non-zero for
several key pairs, we consider the characteristic valid and we define its empirical probability
(resp. weight) as the arithmetic mean of the 210 characteristic probabilities (resp. weights),
but excluding those key pairs with zero probability.

Thus, for each characteristic that we have found, i.e. strong related-key characteristic
(wKS = 0) andweak related-key characteristic (wKS > 0), Table 6 provides: (1) the theoretical
key schedule and encryption weights (wKS, wE), computed by summing the weight of each
ARX operation; (2) the empirical key schedule and encryption weights (wKS, wE), computed
by sampling input pairs as explained before; and (3) the percentage of the valid key pairs that
empirically lead to non-zero probability in theweight verification. In the appendix,weprovide
the round weights and the round differences for the characteristics covering the most rounds.

When searching for impossible differentials with skipped rounds, Algorithm 3 splits the
cipher into four parts.More specifically, the cipher E is represented as E = E2◦E1◦E0◦E−1,
where E−1 denotes the skipped rounds, E1 stands for the rounds of the inner impossible
differential, and E0 and E2 respectively denote the backward and the forward rounds of the
partial characteristics. In Table 7 we provide the number of rounds of each part for the best

123

1828 S. A. Azimi et al.

Table 6 Best related-key differential characteristics of XTEA, HIGHT, LEA, SHACAL-1, and SHACAL-2

Cipher Ch. Type Rounds (wKS, wKS) (wE , wE) % valid keys References

XTEA Strong 16 0 32 – [52]

16 (0,0) (37, 32.02) 46% This paper

18 (0,0) (57, 49.79) 48% This paper

Weak 18 17 19 – [45, 52]

18 (4.83, 3.15) (16, 14.46) 100% This paper

27 (6.89, 5.74) (40, 39.39) 7% This paper

HIGHT Strong 10 0 12 – [50]

10 (0, 0) (12, 9.97) 34% This paper

15 (0, 0) (45, 42.59) 8% This paper

Weak 12 2 19 – [40]

12 (2.48, 3.19) (19, 17.65) 40% This paper

14 (13.09, 9.85) (14, 11.46) 17% This paper

LEA Weak 11 – – – [32]

6 (1.56, 1.22) (24, 22.50) 100% This paper

7 (2.56, 4.68) (36, 34.35) 100% This paper

SHACAL-1 Strong 27 0 29 – [36]

30 (0, 0) (63, 47.36) 97% This paper

Weak 35 10 29 – [18, 72]

25 (1, 0.87) (22, 13.31) 47% This paper

SHACAL-2 Strong 24 0 38a – [51]

23 (0, 0) (58, 48.06) 100% This paper

Weak 24 – 52 – [12]

22 (6.67, 2.38) (29, 24.03) 100% This paper

aImposes extra conditions on plaintext values or intermediate values

Table 7 Best related-key impossible differentials of XTEA, HIGHT, LEA, SHACAL-1, and SHACAL-2

Cipher Rounds Start Backward Inner ID Forward References

XTEA 25(19 ∼ 43) 19 – – – [15]

25(0 ∼ 24) 0 7 13 5 This paper

HIGHT 22(6 ∼ 27) 6 – – – [63]

22(0 ∼ 21) 0 4 14 4 This paper

LEA 4(0 ∼ 3) 0 0 4 0 This paper

SHACAL-1 30(20 ∼ 49) 20 2 16 12 This paper

SHACAL-2 18(0 ∼ 17) 0 – – – [75]

24(0 ∼ 23) 0 1 12 11 This paper

related-key impossible differentials that we found, and in Table 8 we provide the input and
output differences of our longest impossible differentials.

Apart from all of the best-known impossible differentials that are indicated in Table 7,
we also implemented and searched impossible differentials using the automated method of
Sasaki and Todo [66] to compare the results with the ones observed byAlgorithm 3.While for
XTEA, LEA, and HIGHT, both methods find impossible differentials with the same number
of rounds, for SHACAL-1 and SHACAL-2 Algorithm 3 achieves impossible differentials

123

A bit-vector differential model for the modular addition by a constant 1829

Table 8 Input, output, and key differences of our longest related-key impossible differentials

Cipher Differences

XTEA �mk (0x80000000,0x00000000,0x00000000,0x00000000)

�p (0x80000000,0x00000000)

�c (0x00000000,0x80000000)

HIGHT �mk (0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x00)

�p (0x00,0x00,0x00,0x00,0x80,0x00,0x00,0x00)

�c (0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00)

LEA �mk (0x00000001,0x00000000,0x00000000,0x00000000)

�p (0x00000000,0x00000000,0x00000000,0x00000000)

�c (0x00000000,0x00000000,0x00000000,0x00000000)

SHACAL-1 �mk (0xa0000000,0x80000000,0xa0000000,0x00000000,

0x80000000,0x00000000,0xc0000000,0x00000000,

0x80000000,0x80000000,0x40000000,0x00000000,

0x80000000,0x80000000,0x40000000,0x00000000)

�p (0x00000000,0x00000000,0x00000000,0x80000000,0x00000000)

�c (0x00000000,0x00000000,0x00000000,0x00000000,0x00000000)

SHACAL-2 �mk (0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,

0x94857ee6,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000)

�p (0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000)

�c (0x80000000,0x00000000,0x00000000,0x00000000,

0x80000000,0x00000000,0x00000000,0x00000000)

covering more rounds. For XTEA and HIGHT, the longest impossible differentials found by
Algorithm 3 include a few active bits, and thus they could also be found by the other method.
However, for SHACAL-1 and SHACAL-2, our algorithm found impossible differentials
containing multiple active bits, which cannot be obtained by other methods that restrict to
predefined differential subsets with a low number of active bits.

For the experiments, we have used ArxPy equipped with the SMT solver Boolector [62],
winner of the SMT competition SMT-COMP 2019 in the bit-vector track [26]. We run the
characteristic search for one week on a single core of an Intel Xeon 6244 at 3.60GHz. The
search of impossible differentialswas done on similar hardware during oneweek aswell.Note
that better characteristics and impossible differentials could be found if the round-reduced
searches are not stopped after the first valid characteristic or if more time is employed.

5.1 TEA

Designed by Wheeler and Needham, TEA [73] is a block cipher with 64-bit block size and
128-bit key size. It iterates 64 times an ARX round function, including constant additions

123

1830 S. A. Azimi et al.

Fig. 5 The i-th round of TEA,
i = 0, 1 . . . , 63. The master key
mk is split into four 32-bit words
(mk0,mk1,mk2,mk3) and the
i-th round key is defined as
(ki,0, ki,1) = (mk0,mk1) if i is
even and (ki,0, ki,1) = (mk2,
mk3) if i is odd. The i-th round
constant is defined as
�i = �i−2 � �0, where
�−1 = �0 = 2654435769

� 4

� 5

Δi

ki,0

ki,1

and logical shifts, depicted in Fig. 5. Since the logical shifts propagate XOR differences
deterministically, the encoding method presented in Sect. 4.2 can be easily extended to
include these operations.

Kelsey et al. [35] presented the best related-key characteristics in [35]. They found a
2-round iterative strong related-key characteristic � with weight (wk, we) = (0, 1), which
they extended to a 60-round characteristic with weight (0, 30). They also discovered in [34]
that each TEA key has three other equivalent keys.

Using ArxPy, we revisited the results by Kelsey et al. [34], but in a fully automated way.
We found three related-key characteristics with weight zero over the full cipher, confirming
that each key is equivalent to exactly three other keys. Excluding these three characteristics,
we also obtained a 60-round strong related-key characteristic with weight (0, 30), and all
the 60-round SMT problems with smaller weights were found to be unsatisfiable. Since a
60-round related-key characteristic is sufficient to mount the related-key differential crypt-
analysis on full-round TEA [35], there is no need to search for characteristics containing
more rounds of TEA, and we stop at 60 rounds.

There is also no need to search for related-key impossible differentials of TEA, as each
of the three full-round zero-weight related-key characteristics induces roughly 2 × 264 full-
round related-key impossible differentials, simply by alternating either the plaintext or the
ciphertext difference.

5.2 XTEA

The block cipher XTEA [60] is designed by the same authors of TEA to fix the weakness
of the former cipher (in the related-key setting). XTEA has a 64-bit block size and 128-
bit key size, and it iterates 64 times the round function depicted in Fig. 6. Like TEA, the
round function also includes logical shifts, but the constant additions are included in the key
schedule.

The longest related-key characteristics found so far are the 16-round strong related-key
differential with weight 32, manually found by Lu in [52], and the 18-round weak related-key
characteristic with weights (wKS, wE) = (19, 19), manually found by Lee et al. [45] but later
improved to (17, 19) by Lu [52].

The results of our automated search for related-key characteristics are listed in Table 6.
In the strong related-key search, we found an 18-round characteristic with weight 57; all the
SMT problems for 19 rounds were found to be unsatisfiable. In the weak related-key search,
we found characteristics up to 27 rounds, where the 27-round characteristic has total weight
6 + 40 = 46. No equivalent keys were found for XTEA.

123

A bit-vector differential model for the modular addition by a constant 1831

Fig. 6 The i-th round of XTEA,
i = 0, 1 . . . , 63. The master key
mk is split into four 32-bit words
(mk0,mk1,mk2,mk3) and the
i-th round key is defined as
ki = si � mksi∧3 if i is even and
ki = si � mk(si�11)∧3 if i is
odd. The i-th constant si is
defined as si = si−2 � s0, where
s−1 = s0 = 2654435769

ki

� 4

� 5

Fig. 7 The i-th round function of HIGHT, i = 0, 1 . . . , 31 [31]. The i-th round key is denoted by ki =
(SK4i−1, SK4i−2, SK4i−3, SK4i−4) and the functions F0 and F1 are defined as F0(x) = (x ≪ 1)⊕ (x ≪
2) ⊕ (x ≪ 7) and F1(x) = (x ≪ 3) ⊕ (x ≪ 4) ⊕ (x ≪ 6)

In our automated search for related-key impossible differentials of XTEA, we observed
impossible differentials spanning 25 rounds, similar to the best impossible differential found
this far by Darbuka [15]. Denoting the cipher XTEA with 25 rounds by E = E2 ◦ E1 ◦ E0,
our related-key impossible differential contains a 13-round inner impossible differential over
E1, extended by a deterministic 7-round backward trail over E0 and a deterministic 5-round
forward trail over E2 as depicted in Table 7. Our automated tool was also able to complete the
search of related-key impossible differentials up to 31 rounds, but no impossible differentials
spanning more than 25 rounds were found.

5.3 HIGHT

Adopted as an international standard by ISO/IEC [33], HIGHT [31] is a lightweight cipher
with a block size of 64 bits and a key size of 128 bits. The encryption function performs
initial and final key whitening transformations, and iterates 32 times a round function includ-
ing XORs, 2-input additions and rotations; the constant additions are performed in the key
schedule.

The longest related-key characteristics found for HIGHT are a 10-round strong charac-
teristic with weight 12 found by Lu [50], and a 12-round weak characteristic with weights
(wKS, wE) = (2, 19) found by Koo et al. [40]. In our automated search, we found related-key
characteristics up to 15 rounds, listed in Table 6. The longest strong related-key characteris-
tic we found covered 15 rounds with weights (0, 45), whereas the longest weak related-key
characteristic covered 14 rounds with total weight 13 + 14 = 27.

123

1832 S. A. Azimi et al.

Fig. 8 The key schedule of HIGHT [31]. The round key words are denoted by SKi and the key schedule
constants are denoted by δ j

Özen et al. introduced the best-known 22-round related-key impossible differential for
HIGHT [63]. Using ArxPy, we found a new impossible differential covering the same
number of rounds, as shown in Table 7. Our impossible differential consists of a 14-round
inner impossible differential, extended by two zero-weight 4-round backward and forward
related-key trails. The mentioned 22-round impossible differential is the longest related-key
impossible differential that ArxPy could obtain in one week by checking up to 32 rounds
of HIGHT.

5.4 LEA

Among the family of ARX ciphers LEA [32], we analysed LEA-128, the version with 128-bit
block size, 24 rounds, and 128-bit key size. The encryption round function of LEA performs
2-input additions, rotations, and XORs, whereas the key schedule contains constant additions
and rotations.

The designers of LEA found related-key characteristics up to 11 rounds, but only speci-
fying that the 11-round characteristics are valid for a small part of the key space and without
providing the weights of such characteristics [32]. Excluding these characteristics, there are
no others examples of related-key characteristics of LEA. Our automated search found weak
related-key characteristics up to 7 rounds valid for the full key space, listed in Table 6. Strong
characteristics with weight smaller than 128 were found up to 4 rounds, and all the strong
related-key SMT problems for 5 rounds were found unsatisfiable. No equivalent keys were
found for LEA.

123

A bit-vector differential model for the modular addition by a constant 1833

Fig. 9 The i-th round function of the encryption (top) and the key schedule (bottom) of LEA-128, i =
0, 1 . . . , 23. The tuple (ki,0, . . . , ki,3) denotes the i-th round key and δi denotes the i-th key schedule constant

We applied ArxPy on LEA to automatically search for related-key impossible differen-
tials. While our method completed the search for a large number of rounds, only impossible
differentials with non-zero key difference spanning up to four rounds were found. The lack
of related-key impossible differentials, with low Hamming weight or with key schedule tran-
sitions with probability 1, seems to be due to the heavy and robust key schedule of LEA. By
and large, ciphers with lightweight key schedule algorithms tend to have longer related-key
impossible differentials in comparison to their single-key counterparts. However, the key
schedule and the round function of LEA are of the same complexity. Thus, finding an impos-

123

1834 S. A. Azimi et al.

sible differential that covers more rounds in related-key setting instead of single-key setting
seems infeasible. We confirmed this by applying our tool to LEA in the single-key setting,
obtaining multiple 10-round single-key impossible differentials within a few hours.

5.5 SHACAL-1

Based on the compression function of the NIST standard hash function SHA-1 [19], the
block cipher SHACAL-1 was initially suggested in [27] and submitted by Handschuh and
Naccache to the NESSIE project [61]. SHACAL-1 uses 160-bit block size and 80 rounds,
where its round function is similar to the SHA-1 compression function. The key size can be
variable from 0 to 512 bits, although a minimum of 128-bit key size is required in [28] and
we analysed SHACAL-1 for 512-bit keys.

There are some ad-hoc differential characteristics presented in [18, 30, 36]. However,
Wang et al. [72] indicated that many of the previous characteristics are invalid. The
longest valid XOR differential characteristic is a 35-round weak related-key characteris-
tic that appeared in [18] and was later corrected in [72] to obtain the corrected weights
(wKS, wE) = (10, 29). Moreover, the longest strong related-key XOR differential charac-
teristic that is not found to be invalid by [72] spans 27 rounds of SHACAL-1 with the
corresponding weights (wKS, wE) = (0, 29) [36].

These characteristics do not necessarily start from the first round of SHACAL-1 since they
are not used for a differential attack but rather for a rectangle attack [9]. Note that the round
function of SHACAL-1 changes in different rounds (see Fig. 10), and these characteristics
could take advantage of the variable definition of the round function. However, we are only
looking for the characteristics starting from the first round and for the particular case of
SHACAL-1 with variable round functions, we do not necessarily obtain the best possible
characteristics.

Our automated tool ArxPy obtained a weak-key 25-round characteristic with (wKS, wE)

= (1, 22). Moreover, the tool could also find a 30-round characteristic in the strong-key
setting with the corresponding weights (wKS, wE) = (0, 63). In our search, a large amount
of SHACAL-1 characteristics found by the SMT solver did not pass our empirical validation
test, which significantly increased the running time for finding each valid characteristic.
More specifically and in the weak-key setting, we found more than 100 empirically invalid
characteristics until we detected a valid 25-round one; we also obtained multiple 26-round
weak characteristics within a week, but they were found invalid by our empirical test. We
discarded more than 900 empirically invalid characteristics for the strong-key setting before
finding a valid 30-round characteristic, and none of the 31-round trails obtained in a week
could pass the test.

One of the main reasons for the large number of empirically invalid characteristics is the
5-input modular addition within the round function of SHACAL-1. Since the differential
model of the modular addition with three or more inputs is unknown, we had to approximate
the differential model of the 5-input addition with a chain of 2-input addition models. In
other words, to model the 5-input addition y = x1 � x2 � x3 � x4 � x5, we split it into four
2-input additions

123

A bit-vector differential model for the modular addition by a constant 1835

Fig. 10 The i-th round of SHACAL-1, i = 0, 1 . . . , 79. The 160-bit input is divided into five 32-bit words Ai ,
Bi , Ci , Di , and Ei . The function fi significantly changes regarding the round number. For a given 512-bit
master key mk = (M0, M1, · · · , M15), the round keys Ki are computed as described above, where Wi is the
round constant

z1 = x1 � x2, z2 = z1 � x3, z3 = z2 � x4, y = z3 � x5,

and we model the four 2-input additions independently. Thus, we are approximating the
differential probability of the 5-input addition

Pr[(�x1 , . . . , �x5)
�−→ �y]

with the multiplication of the differential probabilities of the four 2-input additions

Pr[(�x1 ,�x2)
�−→ �z1] × Pr[(�z1 ,�x3)

�−→ �z2] ×
Pr[(�z2 ,�x4)

�−→ �z3] × Pr[(�z3 ,�x5)
�−→ �y].

For many differentials, this approximation is not accurate, and this caused the appearance of
many empirically invalid characteristics in our search.

As depicted in Table 7, our automated tool found the first known related-key impossible
differential of SHACAL-1, extending to 30 rounds of the cipher from rounds 20 to 49. The

123

1836 S. A. Azimi et al.

Fig. 11 The i-th round of SHACAL-2, i = 0, 1 . . . , 63. The 256-bit input is divided into eight 32-bit words
Ai , Bi , Ci , Di , Ei , Fi , Gi , and Hi . The special operators used in the round function of SHACAL-2 are If,
Maj, �0, and �1 that are defined as above. For a given 512-bit master key mk = (M0, M1, · · · , M15), the
key schedule generates round keys Ki as described in above, where Wi is the round constant

backward and forward trails respectively traverse 2 and 12 rounds of SHACAL-1, delimiting
the inner 16-round impossible differential. The search for 31-round impossible differentials
did not finish after one week, and we stopped the search. Thus, we expect that dedicating
more time to the search may result in obtaining longer impossible differentials.

5.6 SHACAL-2

Similar to SHACAL-1, the block cipher SHACAL-2 [28]was designed based on the compres-
sion function of the NIST standard hash function SHA-256 [20]. The cipher was submitted to

123

A bit-vector differential model for the modular addition by a constant 1837

the NESSIE project [61] and was approved as one of the NESSIE final selections. SHACAL-
2 is a 256-bit block cipher, has 64 rounds, and supports a variable key size up to 512 bits. We
analysed SHACAL-2 for 512-bit keys.

The longest ad-hoc related-key XOR differential characteristic in the strong-key setting is
a 24-round characteristic presented in [51] with (wKS, wE) = (0, 38), which relies on some
additional conditions on specific values alongside the differences to improve the weights.
Moreover, in the weak-key setting, Biryukov et al. [12] provided two 24-round related-
key XOR differential characteristics of SHACAL-2, each has encryption weight wE = 52.
However, they did not explicitly mention the key schedule weightwKS for each characteristic.

Our automated search resulted in a 23-round characteristic in the strong-key setting with
encryption weight wE = 58 and a 22-round characteristic in the weak-key setting with
total weight wKS + wE = 6 + 29 = 35. Like SHACAL-1, our automated search could
not find longer characteristics of SHACAL-2 within a week due to the large number of
empirically invalid characteristics found. The round function of SHACAL-2 also contains a
modular addition with multiple inputs (i.e., seven operands), and modelling it with 2-input
additions is one of the main reasons for the inaccurate differential behaviour for some special
differences.

Table 7 lists the results of the best related-key impossible differentials of SHACAL-2.
The 18-round impossible differential presented by Yang et al. in [75] has been the longest
known related-key impossible differential for SHACAL-2 so far. Our automated tool ArxPy
obtained a 24-round impossible differential, improving the previous best result by 6 rounds.
This impossible differential includes a 12-round inner impossible differential, extended by
two deterministic 1-round backward and 11-round forward trails. We checked up to 28-
rounds of SHACAL-2 in one week, and the longest impossible differential we observed was
the 24-round related-key impossible differential.

6 Conclusion

In this paper, we proposed the first bit-vector differential model of the n-bit modular addi-
tion with a constant. We described a bit-vector formula, with bit-vector complexity O(1),
that determines whether a differential is valid and a bit-vector function, with complexity
O(log2 n), that provides a close approximation of the differential weight. In this regard, we
carefully studied our approximation error and obtained almost tight bounds. Moreover, we
described two new SMT-based automated methods to search for characteristics and impos-
sible differentials of ARX ciphers including constant additions, respectively.

Each of our methods formulates the search problem as a sequence of bit-vector SMT
problems, encoded from the cipher’s SSArepresentation and the bit-vector differentialmodels
of each operation. We have implemented our methods in ArxPy, an open-source tool to find
characteristics and impossible differentials of ARX ciphers in a fully automated way. To
show some examples, we have applied our automated methods to search for equivalent keys,
related-key characteristics, and related-key impossible differentials of TEA, XTEA, HIGHT,
LEA, SHACAL-1, and SHACAL-2.

Regarding the characteristic results, for TEA we revisited previous results obtained in
a manual approach. In contrast, for XTEA, HIGHT, and LEA, we improved the previous
best-known related-key characteristics in both the strong-key and the weak-key settings. Our
characteristic results of SHACAL-1 and SHACAL-2 did not outperform previous works in

123

1838 S. A. Azimi et al.

all settings due to the presence of modular additions with more than two inputs, for which
no efficient differential model has been proposed yet.

Concerning the impossible differentials, our results for TEA,XTEA, andHIGHTare of the
same length, compared to the best-known related-key impossible differentials. On the other
hand, we obtained the longest related-key impossible differentials for LEA, SHACAL-1, and
SHACAL-2.

Our differential model relies on a bit-vector-friendly approximation on the binary log-
arithm. Thus, future works could explore other approximations improving the bit-vector
complexity or the approximation error, which could also be applied to other SMT problems
involving the binary logarithm.While we have focused on themodular addition by a constant,
there are other simple operations for which no differential model has been proposed so far,
such as the modular multiplication, and the modular addition with more than two inputs.
Obtaining differential models for more operations will allow designing ciphers with more
flexibility, leading to new designs that potentially are more efficient.

Acknowledgements Seyyed Arash Azimi and Mohammad Reza Aref were partially supported by Iran
National Science Foundation (INSF) under Contract No. 96/53979. Adrián Ranea is supported by a PhD
Fellowship from the Research Foundation - Flanders (FWO).

Appendix A: Characteristics

We describe the characteristics covering most rounds that we obtained in Sect. 5. For each
characteristic, we provide the difference of the master key words �mk , the difference of the
plaintext words �p and the difference of the ciphertext words �c. Furthermore, for each
round i = 0, 1, . . . of the cipher, we provide the difference of the i-th round key words, the
output difference of the i-th round function �xi , the (cumulative) weight of the operations
that compute the i-th round key words wki and the weight of the i-th round function wxi .
The differences are given in hexadecimal values.

123

A bit-vector differential model for the modular addition by a constant 1839

Table 9 The 60-round strong related-key characteristic of TEA

i-th round �xi wxi

0 (0x00000000, 0x80000000) 0

1 (0x80000000, 0x00000000) 1

2 (0x00000000, 0x80000000) 0

3 (0x80000000, 0x00000000) 1

4 (0x00000000, 0x80000000) 0

5 (0x80000000, 0x00000000) 1

6 (0x00000000, 0x80000000) 0

7 (0x80000000, 0x00000000) 1

8 (0x00000000, 0x80000000) 0

9 (0x80000000, 0x00000000) 1

10 (0x00000000, 0x80000000) 0

11 (0x80000000, 0x00000000) 1

12 (0x00000000, 0x80000000) 0

13 (0x80000000, 0x00000000) 1

14 (0x00000000, 0x80000000) 0

15 (0x80000000, 0x00000000) 1

16 (0x00000000, 0x80000000) 0

17 (0x80000000, 0x00000000) 1

18 (0x00000000, 0x80000000) 0

19 (0x80000000, 0x00000000) 1

20 (0x00000000, 0x80000000) 0

21 (0x80000000, 0x00000000) 1

22 (0x00000000, 0x80000000) 0

23 (0x80000000, 0x00000000) 1

24 (0x00000000, 0x80000000) 0

25 (0x80000000, 0x00000000) 1

26 (0x00000000, 0x80000000) 0

27 (0x80000000, 0x00000000) 1

28 (0x00000000, 0x80000000) 0

29 (0x80000000, 0x00000000) 1

30 (0x00000000, 0x80000000) 0

31 (0x80000000, 0x00000000) 1

32 (0x00000000, 0x80000000) 0

33 (0x80000000, 0x00000000) 1

34 (0x00000000, 0x80000000) 0

35 (0x80000000, 0x00000000) 1

36 (0x00000000, 0x80000000) 0

37 (0x80000000, 0x00000000) 1

38 (0x00000000, 0x80000000) 0

39 (0x80000000, 0x00000000) 1

40 (0x00000000, 0x80000000) 0

41 (0x80000000, 0x00000000) 1

123

1840 S. A. Azimi et al.

Table 9 continued

i-th round �xi wxi

42 (0x00000000, 0x80000000) 0

43 (0x80000000, 0x00000000) 1

44 (0x00000000, 0x80000000) 0

45 (0x80000000, 0x00000000) 1

46 (0x00000000, 0x80000000) 0

47 (0x80000000, 0x00000000) 1

48 (0x00000000, 0x80000000) 0

49 (0x80000000, 0x00000000) 1

50 (0x00000000, 0x80000000) 0

51 (0x80000000, 0x00000000) 1

52 (0x00000000, 0x80000000) 0

53 (0x80000000, 0x00000000) 1

54 (0x00000000, 0x80000000) 0

55 (0x80000000, 0x00000000) 1

56 (0x00000000, 0x80000000) 0

57 (0x80000000, 0x00000000) 1

58 (0x00000000, 0x80000000) 0

59 (0x80000000, 0x00000000) 1

Total 30

�p (0x80000000, 0x00000000)

�c (0x80000000, 0x00000000)

�mk (0x00000000, 0x00000000, 0x00000000, 0x84000000)

Table 10 The three full-round related-key characteristics with total weight 0 of TEA

�mk �p �c

(0x80000000, 0x80000000,
0x80000000, 0x80000000)

(0x00000000, 0x00000000) (0x00000000, 0x00000000)

(0x00000000, 0x00000000,
0x80000000, 0x80000000)

(0x00000000, 0x00000000) (0x00000000, 0x00000000)

(0x80000000, 0x80000000,
0x00000000, 0x00000000)

(0x00000000, 0x00000000) (0x00000000, 0x00000000)

123

A bit-vector differential model for the modular addition by a constant 1841

Table 11 The 18-round strong related-key characteristic of XTEA

i-th round �ki wki �xi wxi

0 0x00000000 0 (0x00010000, 0x44200000) 9

1 0x00000000 0 (0x44200000, 0x04000000) 6

2 0x00000000 0 (0x04000000, 0x80000000) 6

3 0x80000000 0 (0x80000000, 0x00000000) 2

4 0x80000000 0 (0x00000000, 0x00000000) 0

5 0x00000000 0 (0x00000000, 0x00000000) 0

6 0x00000000 0 (0x00000000, 0x00000000) 0

7 0x00000000 0 (0x00000000, 0x00000000) 0

8 0x00000000 0 (0x00000000, 0x00000000) 0

9 0x00000000 0 (0x00000000, 0x00000000) 0

10 0x00000000 0 (0x00000000, 0x00000000) 0

11 0x00000000 0 (0x00000000, 0x00000000) 0

12 0x80000000 0 (0x00000000, 0x80000000) 0

13 0x80000000 0 (0x80000000, 0x04000000) 2

14 0x00000000 0 (0x04000000, 0x44200000) 6

15 0x00000000 0 (0x44200000, 0x00010000) 6

16 0x00000000 0 (0x00010000, 0xc4310800) 9

17 0x00000000 0 (0xc4310800, 0x01010040) 11

Total 0 57

�p (0xc4310800, 0x00010000)

�c (0xc4310800, 0x01010040)

�mk (0x00000000, 0x00000000, 0x80000000, 0x00000000)

123

1842 S. A. Azimi et al.

Table 12 The 27-round weak related-key characteristic of XTEA

i-th round �ki wki �xi wxi

0 0x00000000 0 (0x00000000, 0x00000000) 0

1 0x80000000 0 (0x00000000, 0x80000000) 0

2 0x80000000 0 (0x80000000, 0x04000000) 2

3 0x40200000 1.179 (0x04000000, 0x04000000) 4

4 0x40200000 0 (0x04000000, 0x80000000) 4

5 0x80000000 0 (0x80000000, 0x00000000) 2

6 0x80000000 0 (0x00000000, 0x00000000) 0

7 0x00000000 0 (0x00000000, 0x00000000) 0

8 0x00000000 0 (0x00000000, 0x00000000) 0

9 0x00000000 0 (0x00000000, 0x00000000) 0

10 0x80000000 0 (0x00000000, 0x80000000) 0

11 0x80000000 0 (0x80000000, 0x04000000) 2

12 0x40200000 1.006 (0x04000000, 0x04000000) 4

13 0x40200000 0.734 (0x04000000, 0x80000000) 4

14 0x80000000 0 (0x80000000, 0x00000000) 2

15 0x80000000 0 (0x00000000, 0x00000000) 0

16 0x00000000 0 (0x00000000, 0x00000000) 0

17 0x00000000 0 (0x00000000, 0x00000000) 0

18 0x80000000 0 (0x00000000, 0x80000000) 0

19 0x00000000 0 (0x80000000, 0x84000000) 2

20 0x40600000 2.067 (0x84000000, 0x80000000) 4

21 0x80000000 0 (0x80000000, 0x80000000) 2

22 0x80000000 0 (0x80000000, 0x84000000) 2

23 0xc0600000 1.907 (0x84000000, 0x80000000) 4

24 0x00000000 0 (0x80000000, 0x00000000) 2

25 0x80000000 0 (0x00000000, 0x00000000) 0

26 0x80000000 0 (0x00000000, 0x80000000) 0

Total 6.893 40

�p (0x00000000, 0x00000000)

�c (0x80000000, 0x00000000)

�mk (0x00000000, 0x80000000, 0xc0200000, 0x80000000)

123

A bit-vector differential model for the modular addition by a constant 1843

Ta
bl
e
13

T
he

15
-r
ou

nd
st
ro
ng

re
la
te
d-
ke
y
ch
ar
ac
te
ri
st
ic
of

H
IG

H
T.

T
he

ro
un

d
-1

co
rr
es
po

nd
s
to

th
e
in
iti
al
ke
y
w
hi
te
ni
ng

i-
th

ro
un

d
�
k i

w
k i

�
x i

w
x i

−
1

(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
9
,0

x
2
0
,0

x
b
8
,0

x
e
9
,0

x
8
0
,0

x
0
0
)

1

0
(0
x
0
0
,0

x
0
0
,0

x
8
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
2
0
,0

x
b
8
,0

x
e
9
,0

x
8
0
,0

x
0
0
,0

x
0
0
)

3

1
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
b
8
,0

x
2
c
,0

x
8
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

6

2
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
2
c
,0

x
8
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

3

3
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
8
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

3

4
(0
x
0
0
,0

x
8
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0

5
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0

6
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0

7
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0

8
(0
x
8
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
8
0
)

0

9
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
d
4
,0

x
8
0
,0

x
0
0
)

5

10
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
9
0
,0

x
d
4
,0

x
8
0
,0

x
0
0
,0

x
0
0
)

1

11
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
0
0
,0

x
e
9
,0

x
9
0
,0

x
9
5
,0

x
8
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

7

12
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
e
9
,0

x
0
0
,0

x
9
5
,0

x
8
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
8
0
)

1

13
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
8
0
)

0
(0
x
0
0
,0

x
e
9
,0

x
8
0
,0

x
0
0
,0

x
0
0
,0

x
a
4
,0

x
8
0
,0

x
e
9
)

9

14
(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
)

0
(0
x
8
0
,0

x
e
9
,0

x
8
0
,0

x
0
0
,0

x
8
9
,0

x
a
4
,0

x
2
b
,0

x
e
9
)

6

To
ta
l

0
45

�
p

(0
x
0
0
,0

x
0
0
,0

x
0
9
,0

x
2
0
,0

x
b
8
,0

x
e
9
,0

x
8
0
,0

x
0
0
)

�
c

(0
x
8
0
,0

x
e
9
,0

x
8
0
,0

x
0
0
,0

x
8
9
,0

x
a
4
,0

x
2
b
,0

x
e
9
)

�
m
k

(0
x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,0

x
0
0
,

0
x
0
0
,0

x
8
0
,0

x
0
0
)

123

1844 S. A. Azimi et al.

Table 14 The 14-round weak related-key characteristic of HIGHT. The round -1 corresponds to the initial key
whitening

i-th round�ki wki �xi wxi

-1 (0x00, 0x00, 0x00, 0x40) 0 (0x62, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

1

0 (0x40, 0x00, 0x00, 0x00) 0.791 (0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

2

1 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xc0)

0

2 (0x00, 0x00, 0x00, 0x3a) 1.0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0,
0x00)

0

3 (0x00, 0x00, 0x00, 0x40) 0.752 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

1

4 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

0

5 (0x00, 0x00, 0x00, 0x40) 0.791 (0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00,
0x00)

1

6 (0x00, 0x00, 0x2e, 0x00) 4.0 (0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00,
0x00)

5

7 (0x00, 0x00, 0x40, 0x00) 1.093 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

1

8 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

0

9 (0x00, 0x00, 0xc0, 0x00) 0.046 (0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
0x00)

1

10 (0x00, 0x16, 0x00, 0x00) 4.0 (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00,
0x00)

0

11 (0x00, 0x40, 0x00, 0x00) 0.142 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

1

12 (0x00, 0x00, 0x00, 0x00) 0 (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

0

13 (0x00, 0x00, 0xc0, 0x00) 0.476 (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00,
0x00)

1

Total 13.091 14

�p (0x62, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40)

�c (0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00)

�mk (0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x7a, 0x00, 0x00, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00)

123

A bit-vector differential model for the modular addition by a constant 1845

Table 15 The 7-round weak related-key characteristic of LEA

i-th round �ki wki �xi wxi

0 (0x20000000, 0x00000000,
0x00000000, 0x00000000)

0.408 (0x80000000, 0x40000000,
0xc0000010, 0x4000000c)

14

1 (0x40000000, 0x00000000,
0x00000000, 0x00000000)

0.462 (0x00000000, 0x80000000,
0x80000000, 0x80000000)

7

2 (0x80000000, 0x00000000,
0x00000000, 0x00000000)

0.695 (0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

3 (0x00000001, 0x00000000,
0x00000000, 0x00000000)

0 (0x00000200, 0x00000000,
0x00000000, 0x00000000)

1

4 (0x00000002, 0x00000000,
0x00000000, 0x00000000)

0 (0x00040400, 0x00000000,
0x00000000, 0x00000200)

2

5 (0x00000004, 0x00000000,
0x00000000, 0x00000000)

0 (0x08080800, 0x00000000,
0x00000040, 0x00040400)

4

6 (0x00000008, 0x00000000,
0x00000000, 0x00000000)

1.0 (0x10101010, 0x00000002,
0x00008088, 0x08080800)

8

Total 2.565 36

�p (0x4000000c, 0x2040000c, 0x20400004, 0x20400082)

�c (0x10101010, 0x00000002, 0x00008088, 0x08080800)

�mk (0x10000000, 0x00000000, 0x00000000, 0x00000000)

Table 16 The 30-round strong related-key characteristic of SHACAL-1

i-th round �ki wki �xi wxi

0 0x80000000 0 (0x00000000, 0x00000002, 0x00000000,
0x80100008, 0x00008000)

7

1 0x80000000 0 (0x00008000, 0x00000000, 0x80000000,
0x00000000, 0x80100008)

5

2 0x00000000 0 (0x00000008, 0x00008000, 0x00000000,
0x80000000, 0x00000000)

5

3 0x00000000 0 (0x00000100, 0x00000008, 0x00002000,
0x00000000, 0x80000000)

5

4 0x80000000 0 (0x00000008, 0x00000100, 0x00000002,
0x00002000, 0x00000000)

6

5 0x00000000 0 (0x00000102, 0x00000008, 0x00000040,
0x00000002, 0x00002000)

8

6 0x00000000 0 (0x00000000, 0x00000102, 0x00000002,
0x00000040, 0x00000002)

8

7 0x00000000 0 (0x00000000, 0x00000000, 0x80000040,
0x00000002, 0x00000040)

5

8 0x80000000 0 (0x00000000, 0x00000000, 0x00000000,
0x80000040, 0x00000002)

5

9 0x00000000 0 (0x00000002, 0x00000000, 0x00000000,
0x00000000, 0x80000040)

3

123

1846 S. A. Azimi et al.

Table 16 continued

i-th round �ki wki �xi wxi

10 0x80000000 0 (0x00000000, 0x00000002, 0x00000000,
0x00000000, 0x00000000)

3

11 0x00000000 0 (0x00000000, 0x00000000, 0x80000000,
0x00000000, 0x00000000)

1

12 0x80000000 0 (0x00000000, 0x00000000, 0x00000000,
0x80000000, 0x00000000)

1

13 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x80000000)

1

14 0x80000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

15 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

16 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

17 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

18 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

19 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

20 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

21 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

22 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

23 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

24 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

25 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

26 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

27 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

28 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

29 0x00000000 0 (0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000)

0

Total 0 63

�p (0x00000002, 0x00000000, 0x80100008, 0x00008000, 0x80000040)

�c (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000)

�mk (0x80000000, 0x80000000, 0x00000000, 0x00000000,

0x80000000, 0x00000000, 0x00000000, 0x00000000,

0x80000000, 0x00000000, 0x80000000, 0x00000000,

0x80000000, 0x00000000, 0x80000000, 0x00000000)

123

A bit-vector differential model for the modular addition by a constant 1847

Ta
bl
e
17

T
he

25
-r
ou
nd

w
ea
k
re
la
te
d-
ke
y
ch
ar
ac
te
ri
st
ic
of

SH
A
C
A
L
-1

i-
th

ro
un

d
�
k i

w
k i

�
x i

w
x i

0
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
8
0
0
0
0
0
4
0
,0

x
0
0
0
0
0
0
0
2
,0

x
8
0
0
0
0
0
0
0
)

3

1
0
x
8
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
8
0
0
0
0
0
4
0
,0

x
0
0
0
0
0
0
0
2
)

3

2
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
2
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
8
0
0
0
0
0
4
0
)

3

3
0
x
8
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
2
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

3

4
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
8
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

1

5
0
x
8
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
8
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

1

6
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
8
0
0
0
0
0
0
0
)

1

7
0
x
8
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

8
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

9
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

10
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

11
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

12
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

13
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

14
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

123

1848 S. A. Azimi et al.

Ta
bl
e
17

co
nt
in
ue
d

i-
th

ro
un

d
�
k i

w
k i

�
x i

w
x i

15
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

16
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

17
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

18
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

19
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

20
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

21
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

22
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

0

23
0
x
0
0
0
0
0
0
0
3

1
(0
x
0
0
0
0
0
0
0
1
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

4

24
0
x
0
0
0
0
0
0
0
0

0
(0
x
0
0
0
0
0
0
2
0
,0

x
0
0
0
0
0
0
0
1
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
,0

x
0
0
0
0
0
0
0
0
)

3

To
ta
l

1
22

�
p

(
0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
1
0
2
,

0
x
0
0
0
0
0
0
0
2
,

0
x
8
0
0
0
0
0
0
0
,

0
x
8
0
0
0
0
0
0
0
)

�
c

(
0
x
0
0
0
0
0
0
2
0
,

0
x
0
0
0
0
0
0
0
1
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
)

�
m
k

(
0
x
0
0
0
0
0
0
0
0
,

0
x
8
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
8
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
8
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
8
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
,

0
x
0
0
0
0
0
0
0
0
)

123

A bit-vector differential model for the modular addition by a constant 1849

Table 18 The 23-round strong related-key characteristic of SHACAL-2

i-th round �ki wki �xi wxi

0 0x00000000 0 (0x00000000, 0x00000000, 0x221c0240, 0x80000000, 12

0x00000000, 0x00082200, 0x20040000, 0x80000000)

1 0x00000000 0 (0x80000000, 0x00000000, 0x00000000, 0x221c0240, 26

0x00000000, 0x00000000, 0x00082200, 0x20040000)

2 0x00000000 0 (0x00000000, 0x80000000, 0x00000000, 0x00000000, 7

0x02100040, 0x00000000, 0x00000000, 0x00082200)

3 0x00000000 0 (0x00000000, 0x00000000, 0x80000000, 0x00000000, 4

0x00000000, 0x02100040, 0x00000000, 0x00000000)

4 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x80000000, 3

0x00000000, 0x00000000, 0x02100040, 0x00000000)

5 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 4

0x80000000, 0x00000000, 0x00000000, 0x02100040)

6 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 1

0x00000000, 0x80000000, 0x00000000, 0x00000000)

7 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 1

0x00000000, 0x00000000, 0x80000000, 0x00000000)

8 0x80000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x80000000)

9 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

10 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 3

0x00000000, 0x00000000, 0x00000000, 0x00000000)

11 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

12 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

13 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

14 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

15 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

16 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

17 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

18 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

19 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

20 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

123

1850 S. A. Azimi et al.

Table 18 continued

i-th round �ki wki �xi wxi

21 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

22 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

Total 0 58

�p (0x00000000, 0x00000000, 0x221c0240, 0x80000000,

0x00000000, 0x00082200, 0x20040000, 0x80000000)

�c (0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000)

�mk (0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x80000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000)

Table 19 The 22-round weak related-key characteristic of SHACAL-2

i-th round�ki wki �xi wxi

0 0x00000000 0 (0x00000000, 0x00020000, 0x00000000, 0x00000000, 6

0x01000840, 0x00000000, 0x00000000, 0x88000020)

1 0x00000000 0 (0x00000000, 0x00000000, 0x00020000, 0x00000000, 4

0x00000000, 0x01000840, 0x00000000, 0x00000000)

2 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00020000, 4

0x00000000, 0x00000000, 0x01000840, 0x00000000)

3 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 4

0x00020000, 0x00000000, 0x00000000, 0x01000840)

4 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 1

0x00000000, 0x00020000, 0x00000000, 0x00000000)

5 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 1

0x00000000, 0x00000000, 0x00020000, 0x00000000)

6 0x00020000 0.405(0x00000000, 0x00000000, 0x00000000, 0x00000000, 3

0x00000000, 0x00000000, 0x00000000, 0x00020000)

7 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

8 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

9 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

10 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

11 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

123

A bit-vector differential model for the modular addition by a constant 1851

Table 19 continued

i-th round�ki wki �xi wxi

12 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 3

0x00000000, 0x00000000, 0x00000000, 0x00000000)

13 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

14 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

15 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

16 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

17 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

18 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

19 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

20 0x00000000 0 (0x00000000, 0x00000000, 0x00000000, 0x00000000, 0

0x00000000, 0x00000000, 0x00000000, 0x00000000)

21 0x80004400 6.262(0x00000000, 0x00000000, 0x00000000, 0x00000000, 6

0x00000000, 0x00000000, 0x00000000, 0x00000000)

Total 6.67 29

�p (0x00000000, 0x00020000, 0x00000000, 0x00000000,

0x01000840, 0x00000000, 0x00000000, 0x88000020)

�c (0x80004400, 0x00000000, 0x00000000, 0x00000000,

0x80004400, 0x00000000, 0x00000000, 0x00000000)

�mk (0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00020000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000)

References

1. Aumasson J.P., Henzen L., Meier W., Phan R.C.W.: Sha-3 proposal blake. NIST (round 3) 92, 2008
(2009).

2. Aumasson J.P., Jovanovic P., Neves S.: Analysis of NORX: investigating differential and rotational prop-
erties. In: LATINCRYPT, volume 8895 of Lecture Notes in Computer Science. Springer, Cham (2014).

3. Azimi S.A., Ranea A., Salmasizadeh M., Mohajeri J., Aref M.R., Rijmen V.: A bit-vector differential
model for the modular addition by a constant. In: International Conference on the Theory and Application
of Cryptology and Information Security, pp. 385–414. Springer, Cham (2020).

4. Bagherzadeh E., Ahmadian Z.: Milp-based automatic differential searches for LEA and HIGHT. IACR
Cryptol. 2018, 948 (2018).

5. Barrett C., Tinelli C.: Satisfiability modulo theories. In: Clarke E.M., Henzinger T.A., Veith H., Bloem
R. (eds.) Handbook of Model Checking, pp. 305–343. Springer, Cham (2018).

6. Beaulieu R., Shors D., Smith J., Treatman-Clark S., Weeks B., Wingers L.: The SIMON and SPECK
families of lightweight block ciphers. IACR Cryptol. 2013, 404 (2013).

123

1852 S. A. Azimi et al.

7. Bernstein D.J.: The salsa20 family of stream ciphers. New stream cipher designs. Springer, New York
(2008).

8. Biham E., Biryukov A., Shamir A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible
differentials. In: EUROCRYPT, volume 1592 of Lecture Notes in Computer Science. Springer (1999).

9. Biham E., Dunkelman O., Keller N.: The rectangle attack-rectangling the serpent. In: Proceedings of
the International Conference on the Theory and Application of Cryptographic Techniques, Advances in
Cryptology - EUROCRYPT 2001, Innsbruck, Austria, May 6–10, 2001 (2001).

10. Biham E., Shamir A.: Differential cryptanalysis of des-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991).
11. Biryukov A., Velichkov V.: Automatic search for differential trails in arx ciphers. In Cryptographers’

Track at the RSA Conference. Springer, Cham (2014)
12. Biryukov A., Lamberger M., Mendel F., Nikolić I.: Second-order differential collisions for reduced sha-

256. In: International Conference on the Theory and Application of Cryptology and Information Security.
Springer (2011)

13. Biryukov A., Velichkov V., Le Corre Y.: Automatic search for the best trails in arx: application to block
cipher speck. In: International Conference on Fast Software Encryption, pp. 289–310. Springer (2016).

14. Cui T., Chen S., Fu K., Wang M., Jia K.: New automatic tool for finding impossible differentials and
zero-correlation linear approximations. Sci. China 64(2), 129103 (2021).

15. Darbuka A.: Related-key attacks on block ciphers. Master’s thesis. Master’s thesis, Middle East Technical
University (2009).

16. Dinu D., Perrin L., Udovenko A., Velichkov V., Großschädl J., Biryukov A.: Design strategies for ARX
with provable bounds: Sparx and LAX. In: ASIACRYPT (1), volume 10031 of Lecture Notes in Computer
Science (2016).

17. Dinu D., Corre Y.L., Khovratovich D., Perrin L., Großschädl J., Biryukov A.: Triathlon of lightweight
block ciphers for the internet of things. J. Cryptogr. Eng. 9(3), 283–302 (2019).

18. Dunkelman O., Keller N., Kim J.: Related-key rectangle attack on the full shacal-1. In: International
Workshop on Selected Areas in Cryptography. Springer (2006).

19. FIPS. Secure hash standard. Federal Information Processing Standards Publication 180-1. (1995).
20. FIPS. Secure hash standard. Federal Information Processing Standards Publication 180-4 (2015).
21. Fu K., Wang M., Guo Y., Sun S., Hu L.: Milp-based automatic search algorithms for differential and

linear trails for speck. In: Fast Software Encryption—23rd International Conference, FSE 2016, Bochum,
Germany, March 20–23, 2016 Revised Selected Papers (2016).

22. Ganesh V., Dill D.L.: A decision procedure for bit-vectors and arrays. In: CAV, volume 4590 of Lecture
Notes in Computer Science. Springer (2007).

23. Gario M., Micheli A.: Pysmt: a solver-agnostic library for fast prototyping of smt-based algorithms. In:
SMT Workshop 2015 (2015).

24. Gartner. Gartner identifies top 10 strategic IoT technologies and trends. https://www.gartner.com/en/
newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
(2018).

25. Gartner. Gartner survey reveals 47 percent of organizations will increase investments in IoT despite the
impact of covid-19. https://www.gartner.com/en/newsroom/press-releases/2020-10-29-gartner-survey-
reveals-47-percent-of-organizations-will-increase-investments-in-iot-despite-the-impact-of-covid-19-
(2020).

26. Hadarean L., Hyvarinen A., Niemetz A., Reger G.: 14th international satisfiability modulo theories com-
petition (smt-comp 2019). https://smt-comp.github.io/2019/ (2019).

27. Handschuh H., Knudsen L.R., RobshawM.J.: Analysis of sha-1 in encryption mode. In: Track at the RSA
Conference. Springer (2001)

28. Handschuh H., Naccache D.: Shacal: a family of block ciphers. Submission to the NESSIE project (2002).
29. Henry J., Warren S.: Hacker’s delight. Addison-Wesley, Boston (2003).
30. Hong S., Kim J., Lee S., Preneel B.: Related-key rectangle attacks on reduced versions of shacal-1 and

aes-192. Springer, In International Workshop on Fast Software Encryption (2005).
31. Hong D., Sung J., Hong S., Lim J., Lee S., Koo B.S., Lee C., Chang D., Lee J., Jeong K., KimH.: HIGHT:

A new block cipher suitable for low-resource device. In: Cryptographic Hardware and Embedded Systems
- CHES 2006, 8th International Workshop, Yokohama, Japan, October 10–13, 2006, Proceedings (2006).

32. Hong D., Lee J.K., Kim D.C., Kwon D., Ryu K.H., Lee D.G.: LEA: A 128-bit block cipher for fast
encryption on common processors. In: WISA, volume 8267 of Lecture Notes in Computer Science.
Springer (2013).

33. ISO/IEC 18033-3:2010. Information technology, Security techniques, Encryption algorithms, Part 3:
Block ciphers. Standard, International Organization for Standardization (2010).

34. Kelsey J., Schneier B.,Wagner D.A.: Key-schedule cryptanalysis of idea, g-des, gost, safer, and triple-des.
In: CRYPTO, volume 1109 of Lecture Notes in Computer Science. Springer (1996).

123

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2020-10-29-gartner-survey-reveals-47-percent-of-organizations-will-increase-investments-in-iot-despite-the-impact-of-covid-19-
https://www.gartner.com/en/newsroom/press-releases/2020-10-29-gartner-survey-reveals-47-percent-of-organizations-will-increase-investments-in-iot-despite-the-impact-of-covid-19-
https://smt-comp.github.io/2019/

A bit-vector differential model for the modular addition by a constant 1853

35. Kelsey J., Schneier B., Wagner B.A.: Related-key cryptanalysis of 3-way, biham-des, cast, des-x, newdes,
rc2, and TEA. In: ICICS, volume 1334 of Lecture Notes in Computer Science. Springer (1997).

36. Kim J., Kim G., Hong S., Lee S., Hong D.: The related-key rectangle attack, application to shacal-1. In:
Australasian Conference on Information Security and Privacy. Springer (2004).

37. Knudsen L.: Deal-a 128-bit block cipher. Complexity 258(2), 216 (1998).
38. Kölbl S., Hadipour H.: Cryptosmt: An easy to use tool for cryptanalysis of symmetric primitives based

on smt/sat solvers. https://github.com/kste/cryptosmt.
39. Kölbl S., Leander G., Tiessen T., Observations on the SIMON block cipher family. In Advances in

Cryptology - CRYPTO 2015–35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16–20,: Proceedings. Part I, 2015 (2015).

40. Koo B., Hong D., Kwon D.: Related-key attack on the full HIGHT. In: Information Security and Cryptol-
ogy - ICISC 2010 - 13th International Conference, Seoul, Korea, December 1–3, 2010, Revised Selected
Papers (2010).

41. Koo B, Roh D, Kim H, Jung Y, Lee D, Kwon, D: CHAM: A family of lightweight block ciphers for
resource-constrained devices. In: Information Security and Cryptology - ICISC 2017 - 20th International
Conference, Seoul, South Korea, November 29–December 1, 2017, Revised Selected Papers (2017).

42. Kovásznai G., Fröhlich A., Biere A.: Complexity of fixed-size bit-vector logics. Theory Comput. Syst.
59(2), 323 (2016).

43. Lai X., Massey J.L.: A proposal for a new block encryption standard. In EUROCRYPT, volume 473 of
Lecture Notes in Computer Science. Springer (1990).

44. Lai X., Massey J.L., Murphy S.:Markov ciphers and differential cryptanalysis. In: EUROCRYPT, volume
547 of Lecture Notes in Computer Science. Springer (1991).

45. Lee E., Hong D., Chang D., Hong S., Lim J.: A weak key class of XTEA for a related-key rectangle
attack. In: VIETCRYPT, volume 4341 of Lecture Notes in Computer Science. Springer (2006).

46. Lipmaa H.: On differential properties of pseudo-hadamard transform and related mappings. In:
A. Menezes, P. Sarkar (eds) Progress in Cryptology - INDOCRYPT 2002, Third International Con-
ference on Cryptology in India, Hyderabad, India, December 16–18, 2002, vol. 2551 of Lecture Notes in
Computer Science. Springer (2002).

47. Lipmaa H., Moriai S.: Efficient algorithms for computing differential properties of addition. In: Fast
Software Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April 2–4, 2001, Revised
Papers (2001).

48. Liu Y., Witte G.D., Ranea A., Ashur T.: Rotational-xor cryptanalysis of reduced-round SPECK. IACR
Trans. Symmetric Cryptol. 3, 2017 (2017).

49. Lodi A.:Mixed integer programming computation. In: 50Years of Integer Programming. Springer (2010).
50. Lu J.: Cryptanalysis of reduced versions of the HIGHT block cipher from CHES 2006. In: Information

Security and Cryptology - ICISC 2007, 10th International Conference, Seoul, Korea, November 29–30,
2007, Proceedings (2007).

51. Lu J., Kim J., Keller N., Dunkelman O.: Related-key rectangle attack on 42-round shacal-2. In: Interna-
tional Conference on Information Security. Springer (2006).

52. Lu J.: Related-key rectangle attack on 36 rounds of the XTEA block cipher. Int. J. Inf. Sec. 8(1), 15
(2009).

53. Machado A.W.: Differential probability of modular addition with a constant operand. IACR Cryptol.
2001, 52 (2001).

54. Matsui M.: On correlation between the order of s-boxes and the strength of des. Springer, In Workshop
on the Theory and Application of of Cryptographic Techniques (1994).

55. Meurer A., Smith C.P., Paprocki M., et al.: Sympy: symbolic computing in python. PeerJ 3, e103 (2017).
56. Mitchell J.N.: Computer multiplication and division using binary logarithms. IRE Trans. Electron. Com-

put. 4, 512 (1962).
57. Mouha N., Preneel B.: Towards finding optimal differential characteristics for ARX: application to

Salsa20. IACR Cryptol. 2013, 328 (2013).
58. Mouha N., Mennink B., Van Herrewege A., Watanabe D., Preneel B., Verbauwhede I.: Chaskey: an

efficient mac algorithm for 32-bit microcontrollers. In International Conference on Selected Areas in
Cryptography. Springer (2014).

59. National Institute of Standards and Technology. Lightweight cryptography project. https://csrc.nist.gov/
Projects/Lightweight-Cryptography.

60. Needham R., Wheeler D.: Tea extensions. Technical report, Computer Laboratory, University of Cam-
bridge (1997).

61. NESSIE. New european schemes for signatures, integrity and encryption. https://www.cosic.esat.
kuleuven.be/nessie/index.html.

123

https://github.com/kste/cryptosmt
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://www.cosic.esat.kuleuven.be/nessie/index.html
https://www.cosic.esat.kuleuven.be/nessie/index.html

1854 S. A. Azimi et al.

62. Niemetz A., Preiner M., Biere A.: Boolector 2.0 system description. J. Satisf. BooleanModeling Comput.
9, 53–58 (2015).

63. Özen O., Varıcı K., Tezcan C., Kocair C.: Lightweight block ciphers revisited: Cryptanalysis of reduced
round present and height. In Australasian Conference on Information Security and Privacy. Springer
(2009).

64. Ranea A., Liu Y., Ashur T.: An easy-to-use tool for rotational-xor cryptanalysis of ARX block ciphers.
Proc. Roman. Acad. Series A 18(3), 1–8 (2017).

65. Ren J., Chen S.: Cryptanalysis of reduced-round speck. IEEE Access 7, 63045–63056 (2019).
66. Sasaki Y., Todo Y.: New impossible differential search tool from design and cryptanalysis aspects -

revealing structural properties of several ciphers. In EUROCRYPT (3), volume 10212 of Lecture Notes
in Computer Science (2017).

67. Schulte-Geers E.: On ccz-equivalence of addition mod 2n . Designs Codes Cryptogr. 66(1–3), 111–127
(2013).

68. Song L., Huang Z., Yang Q.: Automatic differential analysis of ARX block ciphers with application to
SPECKandLEA. In InformationSecurity andPrivacy - 21stAustralasianConference,ACISP:Melbourne,
VIC, Australia, July 4–6, 2016, Proceedings. Part I, 2016 (2016).

69. Sun S., Hu L., Wang P., Qiao K., Ma X., Song L.: Automatic security evaluation and (related-key)
differential characteristic search: Application to simon, present, lblock, DES(L) and other bit-oriented
block ciphers. In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December
7–11, 2014. Proceedings, Part I (2014).

70. Sun S., Gerault D., Lafourcade P., Yang Q., Todo Y., Qiao K., Hu L.: Analysis of aes, skinny, and others
with constraint programming. IACR Trans. Symmetric Cryptol. 1, 2017 (2017).

71. Wagner DA. The boomerang attack. In Fast Software Encryption, 6th International Workshop, FSE ’99,
Rome, Italy, March 24–26, 1999, Proceedings (1999).

72. Wang G., Keller N., Dunkelman O.: The delicate issues of addition with respect to xor differences. In:
International Workshop on Selected Areas in Cryptography. Springer (2007).

73. Wheeler D.J., Needham R.M.: Tea, a tiny encryption algorithm. In FSE, volume 1008 of Lecture Notes
in Computer Science. Springer (1994).

74. Winternitz R.S., Hellman M.E.: Chosen-key attacks on a block cipher. Cryptologia 11(1), 1–7 (1987).
75. Yang S.P., Hu Y.P., Zhong M.F.: Related-key impossible differential attacks on 31-round shacal-2. J.

Commun. 28(11A), 54–58 (2006).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Seyyed Arash Azimi1 · Adrián Ranea2 ·Mahmoud Salmasizadeh3 ·
Javad Mohajeri3 ·Mohammad Reza Aref1 · Vincent Rijmen2,4

Adrián Ranea
adrian.ranea@esat.kuleuven.be

Mahmoud Salmasizadeh
salmasi@sharif.edu

Javad Mohajeri
mohajer@sharif.edu

Mohammad Reza Aref
aref@sharif.edu

Vincent Rijmen
vincent.rijmen@esat.kuleuven.be

1 Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
2 imec-COSIC, KU Leuven, Leuven, Belgium

123

http://orcid.org/0000-0001-6614-9738

A bit-vector differential model for the modular addition by a constant 1855

3 Electronic Research Institute, Sharif University of Technology, Tehran, Iran
4 Department of Informatics, UiB, Bergen, Norway

123

	A bit-vector differential model for the modular addition by a constant and its applications to differential and impossible-differential cryptanalysis
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Differences to the conference version
	1.3 Outline

	2 Preliminaries
	2.1 Notations
	2.2 Differential and impossible-differential cryptanalysis
	Searching for characteristics and impossible differentials.
	SMT solvers

	2.3 Differential models

	3 Bit-vector differential model of the constant addition
	3.1 Validity
	3.2 Weight of a valid differential
	3.3 Error analysis: proof of Theorem 4

	4 SMT-based search of characteristics and impossible differentials
	4.1 Searching for characteristics
	4.2 Encoding the SMT problems
	4.3 Searching of impossible differentials
	4.4 Implementation

	5 Experiments
	5.1 TEA
	5.2 XTEA
	5.3 HIGHT
	5.4 LEA
	5.5 SHACAL-1
	5.6 SHACAL-2

	6 Conclusion
	Acknowledgements
	Appendix A: Characteristics
	References

