Skip to main content
Log in

Practical attacks on small private exponent RSA: new records and new insights

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

As a typical representative of the public key cryptosystem, RSA has attracted a great deal of cryptanalysis since its invention, among which a famous attack is the small private exponent attack. It is well-known that the best theoretical upper bound for the private exponent d that can be attacked is \(d\le N^{0.292}\), where N is a RSA modulus. However, this bound may not be achieved in practical attacks since the lattice constructed by Coppersmith method may have a large enough dimension and the lattice-based reduction algorithms cannot work so well in both efficiency and quality. In this paper, we propose a new practical attack based on the binary search for the most significant bits (MSBs) of prime divisors of N and the Herrmann-May’s attack in 2010. The idea of binary search is inspired by the discovery of phenomena called “multivalued-continuous phenomena”, which can significantly accelerate our attack. Together with several carefully selected parameters according to our exact and effective numerical estimations, we can improve the upper bound of d that can be practically achieved. More specifically, without the binary search method, we successfully attack RSA with a 1024-bit-modulus N when \(d\le N^{0.285}\). Moreover, by our new method, we can implement a successful attack for a 1024-bit-modulus RSA when \(d\le N^{0.292}\) and for a 2048-bit-modulus RSA when \(d\le N^{0.287}\) in about a month. We believe our method can provide some inspiration to practical attacks on RSA with mainstream-size moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blömer J., May A.: Low secret exponent RSA revisited. In: Silverman J.H. (ed.) CaLC 2001. Lecture Notes in Computer Science, vol. 2146, pp. 4–19. Springer, Heidelberg (2001).

    Google Scholar 

  2. Blömer J., May A.: A generalized wiener attack on RSA. In: Bao F., Deng R., Zhou J. (eds.) PKC 2004. Lecture Notes in Computer Science, vol. 2947, pp. 1–13. Springer, Heidelberg (2004).

    Google Scholar 

  3. Boneh D., Durfee G.: Cryptanalysis of RSA with private key \(d\) less than \(N^{0.292}\). In: Stern J. (ed.) EUROCRYPT 1999. Lecture Notes in Computer Science, vol. 1592, pp. 1–11. Springer, Heidelberg (1999).

    Google Scholar 

  4. Boneh D., Durfee G.: Cryptanalysis of RSA with private key \(d\) less than \(N^{0.292}\). IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000).

    Article  MATH  Google Scholar 

  5. Bunder M., Tonien J.: A new attack on the RSA cryptosystem based on continued fractions. Malays. J. Math. Sci. 11(S3), 45–57 (2017).

    MathSciNet  MATH  Google Scholar 

  6. Coppersmith D.: Finding a small root of a univariate modular equation. In: Maurer U.M. (ed.) EUROCRYPT 1996. Lecture Notes in Computer Science, vol. 1070, pp. 155–165. Springer, Heidelberg (1996).

    Google Scholar 

  7. Coppersmith D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer U. (ed.) EUROCRYPT 1996. Lecture Notes in Computer Science, vol. 1070, pp. 178–189. Springer, Heidelberg (1996).

    Google Scholar 

  8. Coppersmith D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  9. de Weger B.: Cryptanalysis of RSA with small prime difference. AAECC 13, 17–28 (2002). https://doi.org/10.1007/s002000100088.

    Article  MathSciNet  MATH  Google Scholar 

  10. Durfee G.: Public key cryptanalysis using algebraic and lattice methods. Ph.D. thesis. Stanford University, Stanford (2002).

  11. Hashimoto Y: On small secret key attack against RSA with high bits known prime factor. In: Cryptology ePrint Archive (2010).

  12. Herrmann M., May A.: Attacking power generators using unravelled linearization: when do we output too much? In: Matsui M. (ed.) ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 487–504. Springer, Heidelberg (2009).

    Google Scholar 

  13. Herrmann M., May A.: Maximizing small root bounds by linearization and applications to small secret exponent RSA. In: Nguyen P.Q., Pointcheval D. (eds.) PKC 2010. Lecture Notes in Computer Science, vol. 6056, pp. 53–69. Springer, Heidelberg (2010).

    Google Scholar 

  14. Hinek M.J.: Cryptanalysis of RSA and Its Variants. CRC Press, Boca Raton (2009).

    Book  MATH  Google Scholar 

  15. Howgrave-Graham N.: Finding small roots of univariate modular equations revisited. In: Darnell M.J. (ed.) Cryptography and Coding 1997. Lecture Notes in Computer Science, vol. 1355, pp. 131–142. Springer, Heidelberg (1997).

    Google Scholar 

  16. Lenstra A.K., Lenstra H.W., Lovász L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu C., Yang C.: Factoring RSA modulo \(N\) with high bits of \(p\) known revisited. In: 2009 IEEE International Symposium on IT in Medicine & Education, vol. 1, pp. 495–500. IEEE (2009).

  18. Lu Y., Zhang R., Lin D.: Factoring RSA modulus with known bits from both \(p\) and \(q\): a Lattice method. In: Lopez J., Huang X., Sandhu R. (eds.) Network and System Security 2013. Lecture Notes in Computer Science, vol. 7873, pp. 393–404. Springer, Heidelberg (2013).

    Google Scholar 

  19. Miller S.D., Narayanan B., Venkatesan R.: Coppersmith’s lattices and “focus groups’’: an attack on small-exponent RSA. J. Number Theory 222, 376–392 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  20. Nguyen P.Q., Stehlé D.: Floating-point LLL revisited. In: Cramer R.J.F. (ed.) EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 215–233. Springer, Heidelberg (2005).

    Google Scholar 

  21. Nguyen P., Stehlé D.: LLL on the average. In: Hess F., Pauli S., Pohst M. (eds.) ANTSVII. Lecture Notes in Computer Science, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).

    Google Scholar 

  22. Nitaj A., Ariffin M.R.K., Adenan N.N.H., et al.: Exponential increment of RSA attack range via lattice based cryptanalysis. Multimed. Tools Appl. 81, 36607–36622 (2022).

    Article  Google Scholar 

  23. Peng L., Hu L., Huang Z., et al.: Partial prime factor exposure attacks on RSA and its Takagi’s variant. In: Lopez J., Wu Y. (eds.) ISPEC 2015. Lecture Notes in Computer Science, vol. 9065, pp. 96–108. Springer, Cham (2015).

    Google Scholar 

  24. Rivest R.L., Shamir A.: Efficient factoring based on partial information. In: Pichler F. (ed.) EUROCRYPT 1985. Lecture Notes in Computer Science, vol. 219, pp. 31–34. Springer, Heidelberg (1986).

    Google Scholar 

  25. Rivest R.L., Shamir A., Adleman L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  26. Sarkar S., Maitra S.: Improved partial key exposure attacks on RSA by guessing a few bits of one of the prime factors. In: Lee P.J., Cheon J.H. (eds.) ICISC 2008. Lecture Notes in Computer Science, vol. 5461, pp. 37–51. Springer, Heidelberg (2009).

    Google Scholar 

  27. Sarkar S., Maitra S., Sarkar S.: RSA cryptanalysis with increased bounds on the secret exponent using less lattice dimension. In: IACR Cryptology ePrint Archive, vol. 315 (2008).

  28. Schnorr C.P.: A more efficient algorithm for lattice basis reduction. J. Algorithm. 9(1), 47–62 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  29. Suk A.H.: Cryptanalysis of RSA with lattice attacks. University of Illinois, Illinois, Ph.D.thesis (2003).

    Google Scholar 

  30. Susilo W., Tonien J., Yang G.: The Wiener attack on RSA revisited: a quest for the exact bound. In: Australasian Conference on Information Security and Privacy. Lecture Notes in Computer Science, vol. 11547, pp. 381–398. Springer, Cham (2019).

    Google Scholar 

  31. Takayasu A., Kunihiro N.: A tool kit for partial key exposure attacks on RSA. In: Handschuh H. (ed.) CT-RSA 2017. Lecture Notes in Computer Science, vol. 10159, pp. 58–73. Springer, Cham (2017).

    MATH  Google Scholar 

  32. Wiener M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36(3), 553–558 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. Wong D.: https://github.com/mimoo/RSA-and-LLL-attacks.

Download references

Acknowledgements

This research was supported by NSF of China (No. 12371526, No. 61872383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun-xiong Zheng.

Additional information

Communicated by K. Matsuura.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lamma 3

Proof

Take \(\tau =t/m\), then we have

$$\begin{aligned} s_{X}= & {} \sum _{k=0}^{m}\sum _{i=0}^{m-k}i=\sum _{k=0}^{m}\frac{(m-k)(m-k+1)}{2} \\= & {} \frac{1}{2}\sum _{k=0}^{m}\left( m(m+1)-(2m+1)k+k^{2}\right) \\= & {} \frac{1}{2}\left( m(m+1)^{2}-(2m+1)\frac{m(m+1)}{2}+\frac{m(m+1)(2m+1)}{6} \right) \\= & {} \frac{m(m+1)(m+2)}{6}, \\ s_{Y}= & {} \sum _{j=1}^{\tau m}\sum _{k=\big \lfloor \frac{1}{\tau } \big \rfloor j}^{m}j=\sum _{j=1}^{\tau m}j\left( m-\Bigg \lfloor \frac{1}{ \tau }\Bigg \rfloor j+1\right) \\= & {} \sum _{j=1}^{\tau m}(m+1)j-\sum _{j=1}^{\tau m}\Bigg \lfloor \frac{1}{\tau } \Bigg \rfloor j^{2} \\= & {} \frac{(m+1)\tau m(\tau m+1)}{2}-\Bigg \lfloor \frac{1}{\tau }\Bigg \rfloor \cdot \frac{\tau m(\tau m+1)(2\tau m+1)}{6} \\\approx & {} \frac{(m+1)\tau m(\tau m+1)}{2}-\frac{1}{\tau }\cdot \frac{\tau m(\tau m+1)(2\tau m+1)}{6} \\= & {} \frac{\tau ^{2}m^{3}+3\tau ^{2}m^{2}+3\tau m-m}{6}, \\ s_{U}= & {} \sum _{k=0}^{m}\sum _{i=0}^{m-k}k+\sum _{j=1}^{\tau m}\sum _{k=\big \lfloor \frac{1}{\tau }\big \rfloor j}^{m}k \\= & {} \sum _{k=0}^{m}k(m-k+1)+\sum _{j=1}^{\tau m}\frac{\left( m+\Bigg \lfloor \frac{1}{\tau }\Bigg \rfloor j\right) \left( m-\Bigg \lfloor \frac{1}{\tau } \Bigg \rfloor j+1\right) }{2} \\\approx & {} \sum _{k=0}^{m}k(m-k+1)+\sum _{j=1}^{\tau m}\frac{(m+\frac{1}{\tau } j)(m-\frac{1}{\tau }j+1)}{2} \\= & {} \sum _{k=0}^{m}k(m+1)-\sum _{k=0}^{m}k^{2}+\frac{1}{2}\sum _{j=1}^{\tau m}(m+ \frac{1}{\tau }j)(m-\frac{1}{\tau }j+1) \\= & {} \sum _{k=0}^{m}k(m+1)-\sum _{k=0}^{m}k^{2}+\frac{1}{2}\sum _{j=1}^{\tau m}\left( m(m+1)+\frac{1}{\tau }j-\frac{1}{\tau ^{2}}j^{2}\right) \\= & {} \frac{m(m+1)^{2}}{2}-\frac{m(m+1)(2m+1)}{6} \\{} & {} +\frac{1}{2}\left( m(m+1)\tau m+\frac{\tau m(\tau m+1)}{2\tau }-\frac{\tau m(\tau m+1)(2\tau m+1)}{6\tau ^{2}}\right) \\= & {} \frac{m(m+1)(m+2)}{6}+\frac{(4\tau ^{2}m^{3}+(9\tau ^{2}-3\tau )m^{2}+(3\tau -1)m)}{12\tau } \\= & {} \frac{(4\tau ^{2}+2\tau )m^{3}+(9\tau ^{2}+3\tau )m^{2}+(7\tau -1)m}{ 12\tau },\\ s_{e}= & {} \sum _{k=0}^{m}\sum _{i=0}^{m-k}(m-k)+\sum _{j=1}^{\tau m}\sum _{k=\big \lfloor \frac{1}{\tau }\big \rfloor j}^{m}(m-k) \\= & {} \sum _{k=0}^{m}(m-k)(m-k+1) \\{} & {} +\sum _{j=1}^{\tau m}\left( m\left( m-\Bigg \lfloor \frac{1}{\tau }\Bigg \rfloor j+1\right) -\frac{\left( m+\Bigg \lfloor \frac{1}{\tau }\Bigg \rfloor j\right) \left( m-\Bigg \lfloor \frac{1}{\tau }\Bigg \rfloor j+1\right) }{2}\right) \\\approx & {} \sum _{k=0}^{m}(m-k)(m-k+1) \\{} & {} +\sum _{j=1}^{\tau m}\left( m\left( m-\frac{1}{\tau }j+1\right) -\frac{\left( m+\frac{1}{\tau } j\right) \left( m-\frac{1}{\tau }j+1\right) }{2}\right) \\= & {} \sum _{k=0}^{m}(m(m+1)-(2m+1)k+k^{2})+\frac{1}{2}\sum _{j=1}^{\tau m}\left( \left( m-\frac{1}{\tau }j\right) \left( m-\frac{1}{\tau }j+1\right) \right) \\= & {} m(m+1)^{2}-\frac{(2m+1)m(m+1)}{2}+\frac{m(m+1)(2m+1)}{6} \\{} & {} +\sum _{j=1}^{\tau m}\left( m(m+1)-(2m+1)\frac{1}{\tau }j+\frac{1}{\tau ^{2} }j^{2}\right) \\= & {} \frac{m(m+1)(m+2)}{3} \\{} & {} +\frac{1}{2}\left( m(m+1)\tau m-\frac{(2m+1)\tau m(\tau m+1)}{2\tau }+ \frac{\tau m(\tau m+1)(2\tau m+1)}{6\tau ^{2}}\right) \\= & {} \frac{m(m+1)(m+2)}{3}+\frac{2\tau ^{2}m^{3}+(3\tau ^{2}-3\tau )m^{2}-(3\tau -1)m}{12\tau }, \\ \dim L= & {} \sum _{k=0}^{m}\sum _{i=0}^{m-k}1+\sum _{j=1}^{\tau m}\sum _{k=\big \lfloor \frac{1}{\tau }\big \rfloor j}^{m}1 \\= & {} \sum _{k=0}^{m}(m-k+1)+\sum _{j=1}^{\tau m}\left( m-\Bigg \lfloor \frac{1}{ \tau }\Bigg \rfloor j+1\right) \\\approx & {} \sum _{k=0}^{m}(m-k+1)+\sum _{j=1}^{\tau m}\left( m-\frac{1}{\tau } j+1\right) \\= & {} (m+1)^{2}-\frac{m(m+1)}{2}+\tau m(m+1)-\frac{1}{\tau }\cdot \frac{\tau m(\tau m+1)}{2} \\= & {} \frac{(m+1)(m+2)}{2}+\frac{\tau m^{2}+(2\tau -1)m}{2}. \end{aligned}$$

The proof of Lamma 3 has completed. \(\square \)

Appendix B: Proof of Proposition 1

Proof

It must be pointed out that the largest size of the vector norm B can be perfectly approximated by the maximum component of all the vectors in the lattice basis, e.g., the maximum coefficient of the term in all the polynomials.

At first we compute B in the lattice of the HM2010 attack. Note that vectors are produced by x-shift polynomials and y-shift polynomials:

$$\begin{aligned} \tilde{g}_{i,k}(u,x)&=x^{i}\tilde{f}^{k}e^{m-k},\,i=0,\ldots ,m-k, \,k=0,\ldots ,m \\ \tilde{h}_{j,k}(u,x,y)&=y^{j}\tilde{f}^{k}e^{m-k},\,j=1,\ldots ,\tau m, \,k=\lfloor 1/\tau \rfloor j,\ldots ,m, \end{aligned}$$

where \(\tilde{f}(u,x)=A+ux\) and \(t=\tau m\).

(I) The size of the maximum coefficient in \( {\varvec{x}}\) -shift polynomials

Note that

$$\begin{aligned} \tilde{g}_{i,k}(u,x)=x^{i}\tilde{f}^{k}e^{m-k}=\sum \limits _{a=0}^{k}\left( {\begin{array}{c}k \\ a\end{array}}\right) x^{i}u^{a}A^{k-a}x^{k-a}e^{m-k}. \end{aligned}$$

Terms in \(\tilde{g}_{i,k}(u,x)\) are of the form \(\left( {\begin{array}{c}k\\ a\end{array}}\right) u^{a}A^{k-a}x^{k-a+i}e^{m-k}.\) The final coefficients of such terms (i.e., the values of vector components when constructing lattices) is \(\left( {\begin{array}{c}k\\ a\end{array}}\right) U^{a}A^{k-a}X^{k-a+i}e^{m-k}\) with a size of

$$\begin{aligned} \left( a\left( \frac{1}{2}+\delta \right) +k-a+(k-a+i)\delta +m-k\right) \log N=\left( m- \frac{1}{2}a+(k+i)\delta \right) \log N. \end{aligned}$$

The size of the maximum coefficient is \(\varvec{(m+m\delta )\log N}\) according to the formula above since \(0\le a\le k<m,0\le k+i\le k+m-k=m.\)

(II) The size of the maximum coefficient in \( {\varvec{y}}\) -shift polynomials

Note that Terms in \(\tilde{h}_{j,k}(u,x,y)\) is of the form \(\left( {\begin{array}{c}k\\ b\end{array}}\right) y^{j}u^{b}A^{k-b}x^{k-b}e^{m-k}.\)

Case A

When \(j\ge k-b\),

$$\begin{aligned} \sum \limits _{b=0}^{k}\left( {\begin{array}{c}k\\ b\end{array}}\right) y^{j}u^{b}A^{k-b}x^{k-b}e^{m-k} = \sum \limits _{b=0}^{k}\left( {\begin{array}{c}k\\ b\end{array}}\right) y^{j-(k-b)}u^{b}A^{k-b}e^{m-k}(u-1)^{k-b}. \end{aligned}$$

Therefore, the term which has the maximum coefficient is \(\left( {\begin{array}{c}k\\ b\end{array}}\right) y^{j-(k-b)}A^{k-b}u^{k}e^{m-k}\) with the final coefficient \(\left( {\begin{array}{c}k\\ b\end{array}}\right) Y^{j-(k-b)}A^{k-b}U^{k}e^{m-k}.\) In this case the size of the maximum coefficient is

$$\begin{aligned} \left( \frac{1}{2}(j-(k-b))+k\left( \frac{1}{2}+\delta \right) +k-b+m-k\right) \log N=\left( \frac{1}{2}j-\frac{1}{2}b+\delta k+m\right) \log N. \end{aligned}$$

We get \(\left( \frac{1}{2}j-\frac{1}{2}b+\delta k+m\right) \log N\le ( \frac{1}{2}j-\frac{1}{2}b+\delta j+\delta b+m)\) for \(k\le j+b.\) Finally, the size of the maximum coefficient is \(\varvec{(m+\tau \delta m+\frac{1}{2}\tau m)\log N}\) when \(j=\tau m, b=0\) as \(0\le b\le k\le m,1\le j\le \tau m.\)

Case B

When \(j< k-b\), after a similar discussion as Case A, we can get the size of the maximum coefficient in \(y^{j}\tilde{f}^{k}e^{m-k}\) is

$$\begin{aligned} \left( (b+j)\left( \frac{1}{2}+\delta \right) +k-b+(k-b-j)\delta +m-k\right) \log N=\left( \frac{1}{2}j-\frac{1}{2}b+\delta k+m\right) \log N. \end{aligned}$$

Finally, since \(j< k-b,0\le b\le k,1\le j\le \tau m,\lfloor 1/\tau \rfloor j\le k\le m\), the size of the maximum coefficient is \(\varvec{(m+\delta m+ \frac{1}{2}\tau m)\log N}\) when \(j=\tau m,b=0,k=m\).

According to the detailed discussion, we obtain that

$$\begin{aligned} B&=\max \left\{ (m+m\delta )\log N,\left( m+\tau \delta m+\frac{1}{2}\tau m\right) \log N,\left( m+\delta m+\frac{1}{2}\tau m\right) \log N\right\} \\&=\left( m+\delta m+\frac{1}{2}\tau m\right) \log N. \end{aligned}$$

At the second step we compute B in our lattice. Use the notations above, the upper bound of each variable becomes to

$$\begin{aligned} x^{\prime }< & {} X^{\prime }=N^{\delta },\,y^{\prime }<Y^{\prime }=N^{ \frac{1}{2}-\xi }, \\ e< & {} N,\,u^{\prime }<U^{\prime }=N^{\delta +\frac{1}{2}-\xi }, \end{aligned}$$

where \(2^{s}=N^{\xi }\) and s is the amount of MSBs exhaustion. Note that the terms in the polynomials do not change while the bounds of variables differs comparing the lattice of HM2010 with ours. With a simple analysis as former, we can obtain the maximum sizes of coefficient in \(x^{\prime }\)-shift polynomials and \(y^{\prime }\)-shift polynomials are \((m+m\delta )\log N\) and \((m+\delta m+(\frac{1}{2}-\xi ) \tau m)\log N\). Finally we obtain \(\varvec{B=(m+\delta m+(\frac{1}{2}-\xi )\tau m)\log N}.\)

Based on the discussion above, we can see that the largest size of vector norm B is \(\varvec{(m+\delta m+(\frac{1}{2}-\xi )\tau m)\log N}\). The proof of Proposition 1 has completed. \(\square \)

Appendix C: Detailed parameters of the three experiments in Table 9

Exp. 1

\(N=\)

$$\begin{aligned}{} & {} 46126089040452448339448600417060313922101098426244293259787635 \\{} & {} 87074530673491676174094741308570008991308086429133694253082502 \\{} & {} 08322979383825756505663848479411358228528222527395327435101891 \\{} & {} 24124500359010333442383692988340095271183825614638791911699269 \\{} & {} 162046275028679426500348785157345976662456325437259705160061 \end{aligned}$$

\(e=\)

$$\begin{aligned}{} & {} 36614584641331081308456049556562616703353184435474954472543851 \\{} & {} 64159874655507513240178939924241301243795285290427026969984191 \\{} & {} 93417336370186256151741426122690631967234543279797441311494545 \\{} & {} 48205774006091224643569311902728986446145416739772661245661572 \\{} & {} 872595702072188094041649860081717657262961694486055770442903 \end{aligned}$$

\(p=\)

$$\begin{aligned}{} & {} 67948679188399660033177882768593480036059591634701532395565550 \\{} & {} 86565666723761153014913169297896634069961179454031340099285043 \\{} & {} 376680194594851361518965438191 \end{aligned}$$

\(q=\)

$$\begin{aligned}{} & {} 67883716933716631074522673334050992083124031396996898938020837 \\{} & {} 71485358806632262195329165541096647967833821293875054198640528 \\{} & {} 209010624705809648621661183571 \end{aligned}$$

\(d=\)

$$\begin{aligned}{} & {} 68845001992677564960353986498476584008893082985088950620216788 \\{} & {} 3636867990095285712393863167 \end{aligned}$$

Exp. 2

\(N=\)

$$\begin{aligned}{} & {} 93502450932903310633064573151907317024294867669134678632093362 \\{} & {} 46297788099166895737544153127851852138932264560083819167132205 \\{} & {} 42943047406167744180006421454219231575086254775401435086568101 \\{} & {} 80893794178324182089403622394064939255883017451942933893424910 \\{} & {} 850870147643227272288485474147840684850717753717586472451201 \end{aligned}$$

\(e=\)

$$\begin{aligned}{} & {} 66858620224726705843141951973966747720864781039484831550691634 \\{} & {} 09294281451926768980157225811154880346715028924829626919171141 \\{} & {} 60786364943066431341308061576266724936876531701099477141597025 \\{} & {} 75928828432166081285992511952702707653041998543208057095834381 \\{} & {} 069598542543859865005532560613469773387993762913083830903645 \end{aligned}$$

\(p=\)

$$\begin{aligned}{} & {} 99518569133681654608883617987619781762536839523918823141580161 \\{} & {} 97123835376178581844008644586889905048955222245453609041221097 \\{} & {} 121126837776453250821684510563 \end{aligned}$$

\(q=\)

$$\begin{aligned}{} & {} 93954778235710974203677377216985836253852371657508142242651124 \\{} & {} 33882347772961954728089804437932682899351880809635985985823721 \\{} & {} 278448590959326657930561582027 \end{aligned}$$

\(d=\)

$$\begin{aligned}{} & {} 84621421118866086279480677455817189905395785567701311624227231 \\{} & {} 1992184907517426187202723837 \end{aligned}$$

Exp. 3

\(N=\)

$$\begin{aligned}{} & {} 10205793884912309428243538885795108687967400364358859068757105 \\{} & {} 27366676256258700648163154922583229485417321567269849917383364 \\{} & {} 64656067954130787989822823376442710598097310129836268241537114 \\{} & {} 71952829908327055972448207678376586518255364121854918727930884 \\{} & {} 3770512577006453837517293155340490761206708661611812914183899 \end{aligned}$$

\(e=\)

$$\begin{aligned}{} & {} 80900458040712014796201499026385729329804135026384835491013425 \\{} & {} 86092605732136485389209880857013543736344572515888256253718707 \\{} & {} 08436780537181756263571337006232687007715876604623603003318929 \\{} & {} 36401425760635712653711506424050436067133668344381418365690036 \\{} & {} 931579614717233156905341293247889945042931394909865508914479 \end{aligned}$$

\(p=\)

$$\begin{aligned}{} & {} 130550858861846841747727958575739547701679174283776488146464000 \\{} & {} 035126653179894990637272044524427541060375052834227051238884085 \\{} & {} 86029300473284150150163760489 \end{aligned}$$

\(q=\)

$$\begin{aligned}{} & {} 781748505822731655261191706621539039622764767903458858428781536 \\{} & {} 263460148861416123276603543978929241699568615263385404823218907 \\{} & {} 1292155782177922355115574691 \end{aligned}$$

\(d=\)

$$\begin{aligned}{} & {} 868126999952902548361525189983896174511773826207382896837234598 \\{} & {} 157112101757767726001029119 \end{aligned}$$

Appendix D: Detailed parameters of the three experiments in Table 10

Exp. 4

\(N=\)

$$\begin{aligned}{} & {} 13108249020538785310663414698582637064820950198561878706735851 \\{} & {} 65703644339810427940041439226962830915168487281788869208017778 \\{} & {} 64923887358082167988616026368541195282045124591109789444274263 \\{} & {} 26718715032735164557685449265721895500116475985815536552066383 \\{} & {} 98902635748400290357538362875036895327848802671465354828268316 \\{} & {} 19459190428496888414853786863007208331552517424436288121969788 \\{} & {} 57993634225342593766658498158262129054566502609859174903015093 \\{} & {} 10543060200243513864877744474764130353698543557524799219837216 \\{} & {} 81177688022836416789341375825625350075504640416012415003418082 \\{} & {} 73695609938403611734357471580735947449865433515838599015767 \end{aligned}$$

\(e=\)

$$\begin{aligned}{} & {} 89451479500251299951266471597772406719039486388733814263161727 \\{} & {} 77277693744087994022236345476762214316234081707614457014149993 \\{} & {} 07086353862705412696231771650983658024823969641299772311875452 \\{} & {} 35751367575578627668994418983506635558378045495835658481986197 \\{} & {} 64498956959651824723201619704850371101473507734971701102683193 \\{} & {} 24725402870657449338885605852347781947910706904405925408817023 \\{} & {} 60111680067003156460400937994396681812731602263538839593687345 \\{} & {} 62219589235850846108119781315380911546600335260644624325458166 \\{} & {} 47435720465040339844832330681577201708958823066483795645154297 \\{} & {} 8645874176685545024632447680732323591071139368778498577639 \end{aligned}$$

\(p=\)

$$\begin{aligned}{} & {} 12475716189463277471168125160458453539576717759904860818958950 \\{} & {} 12014825348919743719578184669777821230125550070704404895576204 \\{} & {} 52941396889634025921970794255590369593505603793752936553527919 \\{} & {} 38379990938303607598997653011866480954848015397181895617491220 \\{} & {} 3077504115908974119391542269233365957211095336385587786710643 \end{aligned}$$

\(q=\)

$$\begin{aligned}{} & {} 10507011238047985984905944714077857914018323916121653018787711 \\{} & {} 19630266681204488009378026133638912480941505942176252858307437 \\{} & {} 32991043217939651634566680101998984493904772645000773580396638 \\{} & {} 66392564560306397986626626825696478790443273047686349310580634 \\{} & {} 5028770283044102294594624281933734776943133629178895741769869 \end{aligned}$$

\(d=\)

$$\begin{aligned}{} & {} 16203833775447352356853531181274614215508930119487698497783433 \\{} & {} 20417126835821821597640064942591829248499538916881397751938428 \\{} & {} 70347081603575753080006255052855504063533452418351103 \end{aligned}$$

Exp. 5

\(N=\)

$$\begin{aligned}{} & {} 18909672181904151395097968169920434800151774976081336450891174\\{} & {} 87637992213220042585977009330732380044765810427401976038590837\\{} & {} 11873143826745772602607516127893011661052190642253756693227076\\{} & {} 98926584779010796261564768643160271391197294787916627864241401\\{} & {} 91442506166372883954050983092065122469794049346568026032600851\\{} & {} 06520619119309685394418339932570134971764214265160652504821910\\{} & {} 54728868131847284573195025675911240577689925121207663441802463\\{} & {} 95424763276465590987069458679529387973710595569647138338589685\\{} & {} 41003463475729539029975985698319117707054049488848688491897152\\{} & {} 76445558134402328090544913847971380379882458726005541831877 \end{aligned}$$

\(e=\)

$$\begin{aligned}{} & {} 71750525858644602573827151612109334198329801833575974634891308\\{} & {} 81495398383619485101066743946892399989979056836606216684862725\\{} & {} 57211251358518687663563498732052487860671897005525731875587709\\{} & {} 48285298803158025787222714686015007936511780408515333161477308\\{} & {} 33938515599770436750069222320451660592526204534805678560379611\\{} & {} 66401313318683780361047153401836775380248541241640858508425424\\{} & {} 17567958496040977474953521700071041506080838448030690016792476\\{} & {} 72933113105225110610011794291511678512931585633775157710522063\\{} & {} 46208952124338836289923112469153753848820848393483936342199771\\{} & {} 0031387152470262859696222361705999483806613844394759888651 \end{aligned}$$

\(p=\)

$$\begin{aligned}{} & {} 17632053007251238779460491844609267953184637057432293238819260\\{} & {} 45182034840480286908458849795483938148101996899679104684164224\\{} & {} 74443986695404811633893785378170226481910000920070470403858119\\{} & {} 63853022804280585705368356890551045545683993527388328068472661\\{} & {} 0142603148675130345130093490471284531708421254883794726933731 \end{aligned}$$

\(q=\)

$$\begin{aligned}{} & {} 10724600348086231138978615424494121452147302572884539393558466\\{} & {} 49494608032097842525445414641585733688186933655325569963690234\\{} & {} 73297386324910499142225474129024782995490552263782465106021625\\{} & {} 38318333121616296839163140328592966430893795983414382893135148\\{} & {} 9815771244076937362708739778582739737422552531974179680294967 \end{aligned}$$

\(d=\)

$$\begin{aligned}{} & {} 74371802615146241472896188271041978689492703240379646141995046\\{} & {} 73820493661253184594168451370887921723607130820247798059973262\\{} & {} 06710810842150444333271043589416784775482885854461951 \end{aligned}$$

Exp. 6

\(N=\)

$$\begin{aligned}{} & {} 23106605651041615213646000110077851420712757917776430930326056 \\{} & {} 60296830951476238797402172985663226841689573922131931924256474 \\{} & {} 42373164767688138199312178870617014197433167498889179888412544 \\{} & {} 74185076959806015212320711881448073618683164329640885570487353 \\{} & {} 50354182223829749002048540419684771479273577984952576597834431 \\{} & {} 10876017808739917408013571983470008797535808485837831985030128 \\{} & {} 18980694013921518439031616253599644305480276822960370194442400 \\{} & {} 29680528535253331304066794571579472555287555198582878649996706 \\{} & {} 70189200424088850932169339900976909686922394456370919349825147 \\{} & {} 79933248467489575820613721302800274215988236180595306270631 \end{aligned}$$

\(e=\)

$$\begin{aligned}{} & {} 12306595799514227604950469560934424785746654745458886525393457 \\{} & {} 58899783970499242533791938472818667104241589586924790854906048 \\{} & {} 54925263611470499944927026328816440185366245189763792436116837 \\{} & {} 57561103528778660481890339014924778781448952317743651644045890 \\{} & {} 34734358672625085976939766863203987473622112403467008193246531 \\{} & {} 18811333558134310761081974826858002018445896729330025874175254 \\{} & {} 08511656625722972253589317139568494268155847524384162663775384 \\{} & {} 56174150943940984854862543628588707580008442653426773237869939 \\{} & {} 26533039846186871551451618391840130895864570824139236237941156 \\{} & {} 12847782672209965094853232413711557861305091453331658286885 \end{aligned}$$

\(p=\)

$$\begin{aligned}{} & {} 15200857097888143612235928515088793346264155533550218885999558 \\{} & {} 43118029224237682629271323091741303390999578531540748865895441 \\{} & {} 28299767695057057649418113935154004959819709868376351089412151 \\{} & {} 66689369221389374628670381926958230967689721241987218903900245 \\{} & {} 6978031157591446602279278447377998069848764568730671548941379 \end{aligned}$$

\(q=\)

$$\begin{aligned}{} & {} 15200857097888130222480933300617571310430741971257868954229473 \\{} & {} 99010773432783299974566489666130612156702118428957004402934567 \\{} & {} 26259649410467624692928043525938992850157984384838932304533523 \\{} & {} 37960458325033282161048364788519071913365063106030773291799585 \\{} & {} 7967631386967340066303738923024637820931061972877004540650189 \end{aligned}$$

\(d=\)

$$\begin{aligned}{} & {} 95106665770280602013064006456747612094114888110214050993001292 \\{} & {} 18842148846561624186845878708855870619895801364016214375097533 \\{} & {} 53978037760812938848119029882054844495851034227001786365 \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zheng, Qx. & Qi, Wf. Practical attacks on small private exponent RSA: new records and new insights. Des. Codes Cryptogr. 91, 4107–4142 (2023). https://doi.org/10.1007/s10623-023-01295-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01295-5

Keywords

Mathematics Subject Classification

Navigation