Abstract
We study vectorial functions with maximal number of bent components in this paper. We first study the Walsh transform and nonlinearity of \(F(x)=x^{2^e}h(\textrm{Tr}_{2^{2m}/2^m}(x))\), where \(e\ge 0\) and h(x) is a permutation over \({\mathbb {F}}_{2^m}\). If h(x) is monomial, the nonlinearity of F(x) is shown to be at most \( 2^{2\,m-1}-2^{\lfloor \frac{3\,m}{2}\rfloor }\) and some non-plateaued and plateaued functions attaining the upper bound are found. If h(x) is linear, the exact nonlinearity of F(x) is determined. Secondly, we give a construction of vectorial functions with maximal number of bent components from known ones, thus obtain two new classes from the Niho class and the Maiorana-McFarland class. Our construction gives a quadratic vectorial function that is not equivalent to the known functions of the form xh(x), and also contains vectorial functions outside the completed Maiorana-McFarland class. Finally, we show that the vectorial function \(F: {\mathbb {F}}_{2^{2m}}\rightarrow {\mathbb {F}}_{2^{2m}}\), \(x\mapsto x^{2^m+1}+x^{2^i+1}\) has maximal number of bent components if and only if \(i=0\).
Similar content being viewed by others
References
Anbar N., Kalaycı T., Meidl W., Mérai L.: On a class of functions with the maximal number of bent components. IEEE Trans. Inf. Theory 68(9), 6174–6186 (2022).
Anbar N., Kalaycı T., Meidl W.: Analysis of \((n, n)\)-functions obtained from the Maiorana-McFarland class. IEEE Trans. Inf. Theory 67(7), 4891–4901 (2021).
Aubry Y., Katz D.J., Langevin P.: Cyclotomy of Weil sums of binomials. J. Number Theory 154, 160–1178 (2015).
Bapić A., Pasalic E.: A new method for secondary constructions of vectorial bent functions. Des. Codes Cryptogr. 89, 2463–2475 (2021).
Bapić A., Pasalic E., Polujan A., Pott A.: Vectorial Boolean functions with the maximum number of bent components beyond the Nyberg’s bound. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-022-01180-7.
Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998).
Carlet C., Mesnager S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016).
Carlet C.: On bent and highly nonlinear balanced/resilient functions and their algebraic immunities. In: Fossorier M.P.C., Imai H., Lin S., Poli A. (eds.) AAECC, vol. 3857, pp. 1–28. Lecture Notes in Computer Science. Springer, New York (2006).
Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).
Canteaut A., Charpin P., Dobbertin H.: Binary \(m\)-sequences with three-valued crosscorrelation: a proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1), 4–8 (2000).
Coulter R.: Explicit evaluations of some Weil sums. Acta Arith. 83(3), 241–251 (1998).
Charpin P.: Cyclic codes with few weights and Niho exponents. J. Comb. Theory Ser. A 108, 247–259 (2004).
Dobbertin H.: One-to-one highly nonlinear power functions on \(\mathbb{F} _{2^n}\). AAECC 9, 139–152 (1998).
Gold R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.). IEEE Trans. Inf. Theory 14(1), 154–156 (1968).
Hu H., Feng D.: On quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 53(7), 2610–2615 (2007).
Hollmann H.D., Xiang Q.: A proof of the Welch and Niho conjectures on cross-correlations of binary \(m\)-sequences. Finite Fields Appl. 7(2), 253–286 (2001).
Hu H., Wang B., Xie X., Luo Y.: An open problem about monomial bent functions. IEEE Trans. Inf. Theory 69(12), 8111–8115 (2023).
Helleseth T.: Some results about the crosscorrelation function between two maximal linear sequences. Discret Math. 16, 209–232 (1976).
Leander G.: Monomial bent functions. IEEE Trans. Inf. Theory 52(2), 738–743 (2006).
Leander G., Kholosha A.: Bent functions with \(2^r\) Niho exponents. IEEE Trans. Inf. Theory 52(12), 5529–5532 (2006).
Li N., Helleseth T., Tang X., Kholosha A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory 59(3), 1818–1831 (2013).
Li Y., Kan H., Mesnager S., Peng J., Tan C., Zheng L.: Generic constructions of (Boolean and vectorial) bent functions and their consequences. IEEE Trans. Inf. Theory 68(4), 2735–2751 (2022).
Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1984).
Mesnager S.: Bent Functions: Fundamentals and Results. Springer, Cham (2016).
Mesnager S.: Bent functions from spreads. J. Amer. Math. Soc. 632, 295–316 (2015).
Mesnager S., Zhang F., Tang C., Zhou Y.: Further study on the maximum number of bent components of vectorial functions. Des. Codes Cryptogr. 87, 2597–2610 (2019).
Mesnager S., Ongan P., Özbudak P.: New bent functions from permutations and linear translators. In: LNCS, vol. 10194. Springer, Cham (2017).
Nyberg K.: Perfect nonlinear \(S\)-boxs. In: Ann R. (ed.) Advance in Cryptology-EUROCRYPT, vol. 547, pp. 378–385. Springer, Berlin (1991).
Nyberg K.: Differentially uniform mappings for cryptography. In: Ann R. (ed.) Advance in Cryptology-EUROCRYPT, vol. 765, pp. 55–64. Springer, Berlin (1993).
Pott A., Pasalic E., Muratovic A., Bajric S.: On the maximum number of bent components of vectorial functions. IEEE Trans. Inf. Theory 64(1), 403–411 (2018).
Rothaus O.: On ’bent’ functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).
Tang C., Zhou Z., Qi Y., Zhang X., Fan C., Helleseth T.: Generic construction of bent functions and bent idempotents with any possible algebraic degrees. IEEE Trans. Inf. Theory 63(10), 6149–6157 (2017).
Xie X., Ouyang Y., Mao M.: Vectorial bent functions and linear codes from quadratic forms. Cryptogr. Commun. 15(5), 1011–1029 (2023).
Zheng L., Peng J., Kan H., Li Y., Luo J.: On constructions and properties of \((n, m)\)-functions with maximal number of bent components. Des. Codes Cryptogr. 88(9), 2171–2186 (2020).
Zheng L., Peng J., Kan H., Li Y.: Several new infinite families of bent functions via second order derivatives. Cryptogr. Commun. 12(1), 1143–1160 (2020).
Zheng L., Kan H., Peng J., Tang D.: Constructing vectorial bent functions via second-order derivatives. Discret Math. 344(8), 112473 (2021).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there no exist conflict of interest or Conflict of interest that could potentially influence or bias the submitted work.
Additional information
Communicated by A. Pott.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Partially supported by Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302902), Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200) and National Natural Science Foundation of China (Grant No. 62402004).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xie, X., Ouyang, Y. & Hu, H. On vectorial functions with maximal number of bent components. Des. Codes Cryptogr. 93, 1889–1910 (2025). https://doi.org/10.1007/s10623-025-01569-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-025-01569-0
Keywords
- Vectorial functions
- Bent components
- Monomial permutation
- Niho quadratic function
- Maiorana-McFarland class.