Skip to main content
Log in

On vectorial functions with maximal number of bent components

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study vectorial functions with maximal number of bent components in this paper. We first study the Walsh transform and nonlinearity of \(F(x)=x^{2^e}h(\textrm{Tr}_{2^{2m}/2^m}(x))\), where \(e\ge 0\) and h(x) is a permutation over \({\mathbb {F}}_{2^m}\). If h(x) is monomial, the nonlinearity of F(x) is shown to be at most \( 2^{2\,m-1}-2^{\lfloor \frac{3\,m}{2}\rfloor }\) and some non-plateaued and plateaued functions attaining the upper bound are found. If h(x) is linear, the exact nonlinearity of F(x) is determined. Secondly, we give a construction of vectorial functions with maximal number of bent components from known ones, thus obtain two new classes from the Niho class and the Maiorana-McFarland class. Our construction gives a quadratic vectorial function that is not equivalent to the known functions of the form xh(x), and also contains vectorial functions outside the completed Maiorana-McFarland class. Finally, we show that the vectorial function \(F: {\mathbb {F}}_{2^{2m}}\rightarrow {\mathbb {F}}_{2^{2m}}\), \(x\mapsto x^{2^m+1}+x^{2^i+1}\) has maximal number of bent components if and only if \(i=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anbar N., Kalaycı T., Meidl W., Mérai L.: On a class of functions with the maximal number of bent components. IEEE Trans. Inf. Theory 68(9), 6174–6186 (2022).

    Article  MathSciNet  Google Scholar 

  2. Anbar N., Kalaycı T., Meidl W.: Analysis of \((n, n)\)-functions obtained from the Maiorana-McFarland class. IEEE Trans. Inf. Theory 67(7), 4891–4901 (2021).

    Article  MathSciNet  Google Scholar 

  3. Aubry Y., Katz D.J., Langevin P.: Cyclotomy of Weil sums of binomials. J. Number Theory 154, 160–1178 (2015).

    Article  MathSciNet  Google Scholar 

  4. Bapić A., Pasalic E.: A new method for secondary constructions of vectorial bent functions. Des. Codes Cryptogr. 89, 2463–2475 (2021).

    Article  MathSciNet  Google Scholar 

  5. Bapić A., Pasalic E., Polujan A., Pott A.: Vectorial Boolean functions with the maximum number of bent components beyond the Nyberg’s bound. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-022-01180-7.

    Article  MathSciNet  Google Scholar 

  6. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998).

    Article  MathSciNet  Google Scholar 

  7. Carlet C., Mesnager S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016).

    Article  MathSciNet  Google Scholar 

  8. Carlet C.: On bent and highly nonlinear balanced/resilient functions and their algebraic immunities. In: Fossorier M.P.C., Imai H., Lin S., Poli A. (eds.) AAECC, vol. 3857, pp. 1–28. Lecture Notes in Computer Science. Springer, New York (2006).

    Google Scholar 

  9. Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).

    Google Scholar 

  10. Canteaut A., Charpin P., Dobbertin H.: Binary \(m\)-sequences with three-valued crosscorrelation: a proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1), 4–8 (2000).

    Article  MathSciNet  Google Scholar 

  11. Coulter R.: Explicit evaluations of some Weil sums. Acta Arith. 83(3), 241–251 (1998).

    Article  MathSciNet  Google Scholar 

  12. Charpin P.: Cyclic codes with few weights and Niho exponents. J. Comb. Theory Ser. A 108, 247–259 (2004).

    Article  MathSciNet  Google Scholar 

  13. Dobbertin H.: One-to-one highly nonlinear power functions on \(\mathbb{F} _{2^n}\). AAECC 9, 139–152 (1998).

    Article  MathSciNet  Google Scholar 

  14. Gold R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.). IEEE Trans. Inf. Theory 14(1), 154–156 (1968).

    Article  Google Scholar 

  15. Hu H., Feng D.: On quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 53(7), 2610–2615 (2007).

    Article  MathSciNet  Google Scholar 

  16. Hollmann H.D., Xiang Q.: A proof of the Welch and Niho conjectures on cross-correlations of binary \(m\)-sequences. Finite Fields Appl. 7(2), 253–286 (2001).

    Article  MathSciNet  Google Scholar 

  17. Hu H., Wang B., Xie X., Luo Y.: An open problem about monomial bent functions. IEEE Trans. Inf. Theory 69(12), 8111–8115 (2023).

    Article  MathSciNet  Google Scholar 

  18. Helleseth T.: Some results about the crosscorrelation function between two maximal linear sequences. Discret Math. 16, 209–232 (1976).

    Article  Google Scholar 

  19. Leander G.: Monomial bent functions. IEEE Trans. Inf. Theory 52(2), 738–743 (2006).

    Article  MathSciNet  Google Scholar 

  20. Leander G., Kholosha A.: Bent functions with \(2^r\) Niho exponents. IEEE Trans. Inf. Theory 52(12), 5529–5532 (2006).

    Article  Google Scholar 

  21. Li N., Helleseth T., Tang X., Kholosha A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory 59(3), 1818–1831 (2013).

    Article  MathSciNet  Google Scholar 

  22. Li Y., Kan H., Mesnager S., Peng J., Tan C., Zheng L.: Generic constructions of (Boolean and vectorial) bent functions and their consequences. IEEE Trans. Inf. Theory 68(4), 2735–2751 (2022).

    Article  MathSciNet  Google Scholar 

  23. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1984).

    Google Scholar 

  24. Mesnager S.: Bent Functions: Fundamentals and Results. Springer, Cham (2016).

    Book  Google Scholar 

  25. Mesnager S.: Bent functions from spreads. J. Amer. Math. Soc. 632, 295–316 (2015).

  26. Mesnager S., Zhang F., Tang C., Zhou Y.: Further study on the maximum number of bent components of vectorial functions. Des. Codes Cryptogr. 87, 2597–2610 (2019).

    Article  MathSciNet  Google Scholar 

  27. Mesnager S., Ongan P., Özbudak P.: New bent functions from permutations and linear translators. In: LNCS, vol. 10194. Springer, Cham (2017).

    Google Scholar 

  28. Nyberg K.: Perfect nonlinear \(S\)-boxs. In: Ann R. (ed.) Advance in Cryptology-EUROCRYPT, vol. 547, pp. 378–385. Springer, Berlin (1991).

    Chapter  Google Scholar 

  29. Nyberg K.: Differentially uniform mappings for cryptography. In: Ann R. (ed.) Advance in Cryptology-EUROCRYPT, vol. 765, pp. 55–64. Springer, Berlin (1993).

    Google Scholar 

  30. Pott A., Pasalic E., Muratovic A., Bajric S.: On the maximum number of bent components of vectorial functions. IEEE Trans. Inf. Theory 64(1), 403–411 (2018).

    Article  MathSciNet  Google Scholar 

  31. Rothaus O.: On ’bent’ functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).

  32. Tang C., Zhou Z., Qi Y., Zhang X., Fan C., Helleseth T.: Generic construction of bent functions and bent idempotents with any possible algebraic degrees. IEEE Trans. Inf. Theory 63(10), 6149–6157 (2017).

    Article  MathSciNet  Google Scholar 

  33. Xie X., Ouyang Y., Mao M.: Vectorial bent functions and linear codes from quadratic forms. Cryptogr. Commun. 15(5), 1011–1029 (2023).

    Article  MathSciNet  Google Scholar 

  34. Zheng L., Peng J., Kan H., Li Y., Luo J.: On constructions and properties of \((n, m)\)-functions with maximal number of bent components. Des. Codes Cryptogr. 88(9), 2171–2186 (2020).

    Article  MathSciNet  Google Scholar 

  35. Zheng L., Peng J., Kan H., Li Y.: Several new infinite families of bent functions via second order derivatives. Cryptogr. Commun. 12(1), 1143–1160 (2020).

    Article  MathSciNet  Google Scholar 

  36. Zheng L., Kan H., Peng J., Tang D.: Constructing vectorial bent functions via second-order derivatives. Discret Math. 344(8), 112473 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ouyang.

Ethics declarations

Conflict of interest

The authors declare that there no exist conflict of interest or Conflict of interest that could potentially influence or bias the submitted work.

Additional information

Communicated by A. Pott.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302902), Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200) and National Natural Science Foundation of China (Grant No. 62402004).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Ouyang, Y. & Hu, H. On vectorial functions with maximal number of bent components. Des. Codes Cryptogr. 93, 1889–1910 (2025). https://doi.org/10.1007/s10623-025-01569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-025-01569-0

Keywords

Mathematics Subject Classification

Profiles

  1. Yi Ouyang