Skip to main content
Log in

Shrinking of Time Petri nets

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

The problem of the synthesis of time bounds enforcing good properties for reactive systems has been much studied in the literature. These works mainly rely on dioid algebra theory and require important restrictions on the structure of the model (notably by restricting to timed event graphs). In this paper, we address the problems of existence and synthesis of shrinkings of the bounds of the time intervals of a time Petri net, such that a given property is verified. We show that this problem is decidable for CTL properties on bounded time Petri nets. We then propose a symbolic algorithm based on the state class graph for a fragment of CTL. If the desired property “includes” k-boundedness, the proposed algorithm terminates even if the net is unbounded. A prototype has been implemented in our tool Romeo and the method is illustrated on a small case study from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Available at http://romeo.rts-software.org/.

References

  • Achour Z, Rezg N (2007) Time floating general mutual exclusion constraints. J Stud Inf Control 16(1):57–66

    Google Scholar 

  • Alur R, Henzinger TA, Vardi MY (1993) Parametric real-time reasoning. In: ACM symposium on theory of computing, pp 592–601

  • Amari S, Demongodin I, Loiseau J (2005) Méthode formelle de commande sous contraintes de temps dans les dioides. Journal Européen des Systèmes Automatisés (Numéro spécial sur la Modélisation des Systèmes Réactifs, (MSR’05)) 39(1–3):319–334

    Article  Google Scholar 

  • André E, Chatain T, Encrenaz E, Fribourg L (2009) An inverse method for parametric timed automata. Int J Found Comput Sci 20(5):819–836

    Article  MATH  Google Scholar 

  • Atto AM, Martinez C, Amari S (2011) Control of discrete event systems with respect to strict duration: supervision of an industrial manufacturing plant. Comput Inf Syst 61(4):1149–1159. doi:10.1016/j.cie.2011.07.004

    Google Scholar 

  • Bagnara R, Hill PM, Zaffanella E (2008) The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci Comput Program 72(1–2):3–21

    Article  MathSciNet  Google Scholar 

  • Berthomieu B, Diaz M (1991) Modeling and verification of time dependent systems using time Petri nets. IEEE Trans Softw Eng 17(3):259–273

    Article  MathSciNet  Google Scholar 

  • Berthomieu B, Vernadat F (2003) State class constructions for branching analysis of time Petri nets. In: TACAS 2003. Lecture notes in computer science, vol 2619, pp 442–457

  • Berthomieu B, Lime D, Roux OH, Vernadat F (2007) Reachability problems and abstract state spaces for time Petri nets with stopwatches. Discrete Event Dyn Syst (Theory and Applications (DEDS)) 17(2):133–158

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch C, Manier MA, Baptiste P, Varnier C (2010) Hoist scheduling problem. In: ISTE, pp 193–231. doi:10.1002/9780470611050.ch8

  • Bonhomme P, Aygalinc P, Calvez S (2001) Systèmes à contraintes de temps: validation, évaluation et contrôle. In: Modélisation des systèmes réactifs, MSR 01. Toulouse, France

  • Boucheneb H, Gardey G, Roux OH (2009) TCTL model checking of time Petri nets. J Log Comput 19(6):1509–1540

    Article  MathSciNet  MATH  Google Scholar 

  • Boyer M, Roux OH (2008) On the compared expressiveness of arc, place and transition time Petri nets. Fundam Inform 88(3):225–249

    MathSciNet  MATH  Google Scholar 

  • Cassandras C, Lafortune S (1992) Introduction to discrete event systems. Kluwer Academic

  • Cook W, Hartmann M, Kannan R, McDiarmid C (1992) On integer points in polyhedra. Combinatorica 12(1):27–37

    Article  MathSciNet  MATH  Google Scholar 

  • Gardey G, Roux OF, Roux OH (2006) Safety control synthesis for time Petri nets. In: 8th international workshop on discrete event systems (WODES’06). IEEE Computer Society Press, Ann Arbor, pp 222–228

    Chapter  Google Scholar 

  • Giua A, DiCesare F, Silva M (1992) Generalized mutual exclusion constraints on nets with uncontrollable transitions. In: IEEE int. conf. on SMC

  • Holloway LE, Krogh BH, Giua A (1997) A survey of Petri net methods for controlled discrete event systems. Discrete Event Dyn Syst 7(2):151–190

    Article  MATH  Google Scholar 

  • Houssin L, Lahaye S, Boimond J (2007) Just in time control of constrained (max, +)-linear systems. Discrete Event Dyn Syst 17:159–178

    Article  MathSciNet  MATH  Google Scholar 

  • Hune T, Romijn J, Stoelinga M, Vaandrager FW (2001) Linear parametric model checking of timed automata. In: TACAS’01, LNCS, vol 2031. Springer

  • Katz RD (2007) Max-plus (a,b)-invariant spaces and control of timed discrete event systems. IEEE Trans Automat Contr 52:229–241

    Article  Google Scholar 

  • Kim J, Lee T (2003) Schedule stabilization and robust timing control for time-constrained cluster tools. In: IEEE international conference on robotics and automation. Taipei, Taiwan, pp 1039–1044

  • Larsen KG, Pettersson P, Yi W (1995) Model-checking for real-time systems. In: Fundamentals of computation theory, pp 62–88

  • Lee TE (2008) A review of scheduling theory and methods for semiconductor manufacturing cluster tools. In: Winter simulation conference, pp 2127–2135

  • Li ZW, Zhou MC (2009) Deadlock resolution in automated manufacturing systems: a novel Petri net approach, 1st edn. Springer

  • Lime D, Roux OH, Seidner C, Traonouez LM (2009) Romeo: a parametric model-checker for Petri nets with stopwatches. In: Kowalewski S, Philippou A (eds) 15th international conference on tools and algorithms for the construction and analysis of systems (TACAS 2009). Lecture notes in computer science, vol 5505. Springer, York, pp 54–57

    Chapter  Google Scholar 

  • Manier MA, Bloch C (2003) A classification for hoist scheduling problems. Int J Flex Manuf Syst 15:37–55

    Article  Google Scholar 

  • Maza S, Castagna P (2005) A performance-based structural policy for conflict-free routing of bi-directional automated guided vehicles. Comput Ind 56(7). doi:10.1016/j.compind.2005.03.003

  • Merlin PM (1974) A study of the recoverability of computing systems. PhD thesis, Dep. of Information and Computer Science, Univ. of California, Irvine, CA

  • Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Park J, Reveliotis SA, Bodner DA, McGinnis LF (2002) A distributed, event-driven control architecture for flexibly automated manufacturing systems. Int J Comput Integr Manuf 15:109–126

    Article  Google Scholar 

  • Schrijver A (1986) Theory of linear and integer programming. Wiley, New York

    MATH  Google Scholar 

  • Spacek P, Manier M, Moudni A (1999) Control of an electroplating line in the max and min algebras. Int J Syst Sci 30(7):759–778

    Article  MATH  Google Scholar 

  • Traonouez LM, Lime D, Roux OH (2009) Parametric model-checking of stopwatch Petri nets. J Univers Comput Sci 15(17):3273–3304

    MathSciNet  MATH  Google Scholar 

  • Virbitskaite I, Pokozy E (1999) Parametric behaviour analysis for Time Petri nets. In: PaCT’99. Springer, London, pp 134–140

    Google Scholar 

  • Wang F (1996) Parametric timing analysis for real-time systems. Inf Comput 130(2):131–150. doi:10.1006/inco.1996.0086

    Article  MATH  Google Scholar 

  • Wu N, Chu C, Chu F, Zhou M (2008) A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints. IEEE Trans Semicond Manuf 21(2):224–237

    Article  Google Scholar 

  • Wu N, Chu F, Chu C, Zhou M (2011) Petri net-based scheduling of single-arm cluster tools with reentrant atomic layer deposition processes. IEEE Trans Autom Sci Eng 8(1):42–55. doi:10.1109/TASE.2010.2046736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier H. Roux.

Additional information

This work has been partially supported by project ImpRo ANR-2010-BLAN-0317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lime, D., Martinez, C. & Roux, O.H. Shrinking of Time Petri nets. Discrete Event Dyn Syst 23, 419–438 (2013). https://doi.org/10.1007/s10626-013-0159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-013-0159-1

Keywords

Navigation