Skip to main content
Log in

Energy-efficient thermal-aware multiprocessor scheduling for real-time tasks using TCPN

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

We present an energy-efficient thermal-aware real-time global scheduler for a set of hard real-time (HRT) tasks running on a multiprocessor system. This global scheduler fulfills the thermal and temporal constraints by handling two independent variables, the task allocation time and the selection of clock frequency. To achieve its goal, the proposed scheduler is split into two stages. An off-line stage, based on a deadline partitioning scheme, computes the cycles that the HRT tasks must run per deadline interval at the minimum clock frequency to save energy while honoring the temporal and thermal constraints, and computes the maximum frequency at which the system can run below the maximum temperature. Then, an on-line, event-driven stage performs global task allocation applying a Fixed-Priority Zero-Laxity policy, reducing the overhead of quantum-based or interval-based global schedulers. The on-line stage embodies an adaptive scheduler that accepts or rejects soft RT aperiodic tasks throttling CPU frequency to the upper lowest available one to minimize power consumption while meeting time and thermal constraints. This approach leverages the best of two worlds: the off-line stage computes an ideal discrete HRT multiprocessor schedule, while the on-line stage manage soft real-time aperiodic tasks with minimum power consumption and maximum CPU utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed R, Ramanathan P, Saluja KK (2016) Necessary and sufficient conditions for thermal schedulability of periodic real-time tasks under fluid scheduling model. ACM Transactions on Embedded Computing Systems (TECS) 15(3):49

    Article  Google Scholar 

  • Anderson JH, Srinivasan A (2001) Mixed pfair/erfair scheduling of asynchronous periodic tasks. In: Real-time systems, 13th euromicro conference on, 2001. IEEE, pp 76–85

  • ARINC (1997) Specification 651: Design guide for integrated modular avionics

  • AUTOSAR (2017) Specification of rte software

  • Baker TP (2005) A comparison of global and partitioned edf schedulability tests for multiprocessors. In: International conf. on real-time and network systems. Citeseer

  • Baruah S, Bertogna M, Butazzo G (2015) Multiprocessor Scheduling for Real-Time Systems. Springer, New York. ISBN 978-3-319-08695-8

    Book  Google Scholar 

  • Baruah SK, Cohen NK, Plaxton CG, Varvel DA (1996) Proportionate progress: a notion of fairness in resource allocation. Algorithmica 15(6):600–625

    Article  MathSciNet  Google Scholar 

  • Baruah SK, Gehrke JE, Plaxton CG (1995) Fast scheduling of periodic tasks on multiple resources. In: Ipps. IEEE, p 280

  • Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled symmetric multiprocessor platforms. In: 28th IEEE international real-time systems symposium, 2007. RTSS 2007. IEEE, pp 149–160

  • Bertogna M, Cirinei M, Lipari G (2005) Improved schedulability analysis of edf on multiprocessor platforms. In: Proceedings of the 17th Euromicro Conference on Real-Time Systems, ECRTS ’05. ISBN 0-7695-2400-1. IEEE Computer Society, Washington, pp 209–218

  • Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Systems 30(1-2):129–154

    Article  Google Scholar 

  • Brandenburg BB, Mahircan G (2016) Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned reservation. In: IEEE real-time systems symposium (RTSS 2016), pp 99–110

  • Calandrino JM, Anderson JH, Baumberger DP (2007) A hybrid real-time scheduling approach for large-scale multicore platforms. In: Proceedings of the 19th Euromicro conference on real-time systems, ECRTS ’07. IEEE Computer Society, Washington, pp 247–258

  • Cardona J, Hernandez C, Mezzetti E, Abella J, Cazorla FJ (2018) Noco: Ilp-based worst-case contention estimation for mesh real-time manycores. In: 2018 IEEE Real-time systems symposium (RTSS), pp 265–276

  • Casini D, Biondi A, Giorgio B (2017) Semi-partitioned scheduling of dynamic real-time workload: A practical approach based on analysis-driven load balancing. In: Bertogna M (ed) 29th Euromicro Conference on Real-Time Systems (ECRTS 2017), volume 76 of Leibniz International Proceedings in Informatics (LIPIcs), pp 13:1–13:23

  • Chantem T, Hu XS, Dick RP (2011) Temperature-aware scheduling and assignment for hard real-time applications on MPSoCs. IEEE Trans Very Large Scale Integr VLSI Syst 19(10):1884–1897. ISSN 1063-8210

    Article  Google Scholar 

  • Chen J-J, Hung C-M, Kuo T-W (2007) On the minimization fo the instantaneous temperature for periodic real-time tasks. In: 13Th IEEE real time and embedded technology and applications symposium (RTAS’07). IEEE, pp 236–248

  • Chen J-J, Kuo T-W (2007) Procrastination determination for periodic real-time tasks in leakage-aware dynamic voltage scaling systems. In: IEEE/ACM international conference on computer-aided design, 2007. ICCAD 2007, pp 289–294

  • Davis RI, Burns A (2011a) Fpzl schedulability analysis. In: Proceedings of the 2011 17th IEEE real-time and embedded technology and applications symposium, RTAS ’11. ISBN 978-0-7695-4344-4. IEEE Computer Society, Washington, pp 245–256

  • Davis RI, Burns A (2011b) A survey of hard real-time scheduling for multiprocessor systems. ACM computing surveys (CSUR) 43(4):35

    Article  Google Scholar 

  • Desel J, Esparza J (1995) Free choice petri nets. Cambridge Tracts in Theoretical Computer Science, 40

  • Desirena G, Rubio L, Ramirez A, Briz JL (2019) Thermal-aware hrt scheduling simulation framework. https://www.gdl.cinvestav.mx/art/uploads/TCPN-Thermal-Aware_Real-Time_Scheduling.zip

  • Desirena-Lopez G, Briz JL, Vázquez CR, Ramírez-Treviño A, Gómez-Gutiérrez D (2016) On-line scheduling in multiprocessor systems based on continuous control using timed continuous petri nets. In: 13Th international workshop on discrete event systems, pp 278–283

  • Desirena-Lopez G, Ramírez-Treviño A, Briz JL, Vázquez CR, Gómez-Gutiérrez D (2019) Thermal-aware real-time scheduling using timed continuous petri nets. ACM Transactions on embedded computing systems. To appear, accepted Apr. 2019)

  • Desirena-Lopez G, Vázquez CR, Ramírez-Treviño A, Gómez-Gutiérrez D (2014) Thermal modelling for temperature control in MPSoc’s using fluid Petri nets. In: IEEE conference on control applications part of multi-conference on systems and control

  • Diniz N, Rufino J (2005) Arinc 653 in space

  • Donald J, Martonosi M (2006) Techniques for multicore thermal management: Classification and new exploration. In: ACM SIGARCH computer architecture news, vol 34. IEEE Computer Society, pp 78–88

  • Fernandez G, Jalle J, Abella J, Quiñones E, Vardanega T, Cazorla FJ (2017) Computing safe contention bounds for multicore resources with round-robin and fifo arbitration. IEEE Trans Comput 66(4):586–600

    Article  MathSciNet  Google Scholar 

  • Fisher N, Goossens J, Baruah S (2010) Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible. Real-Time Syst 45(1-2):26–71

    Article  Google Scholar 

  • Fu X, Wang X, Puster E (2009) Dynamic thermal and timeliness guarantees for distributed real-time embedded systems. In: 2009 15th IEEE international conference on embedded and real-time computing systems and applications. IEEE, pp 403–412

  • Fu Y, Kottenstette N, Chen Y, Lu C, Koutsoukos XD, Wang H (2010) Feedback thermal control for real-time systems. In: 2010 16Th IEEE real-time and embedded technology and applications symposium. IEEE, pp 111–120

  • Fu Y, Kottenstette N, Lu C, Koutsoukos XD (2012) Feedback thermal control of real-time systems on multicore processors. In: Proceedings of the tenth ACM international conference on embedded software. ACM, pp 113–122

  • Funk S, Levin G, Sadowski C, Pye I, Brandt S (2011) Dp-fair: a unifying theory for optimal hard real-time multiprocessor scheduling. Real-Time Systems 47 (5):389–429

    Article  Google Scholar 

  • Gerard S (2001) Linear and integer programming: Theory and practice. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Goossens JL, Funk S (2003) Priority-driven scheduling of periodic task systems on multiprocessors. Real-Time Systems, pp 2–3

  • Hettiarachchi PM, Fisher N, Ahmed M, Wang LY, Wang S, Shi W (2014) A design and analysis framework for thermalresilent hard real-time systems. ACM Trans Embed Comput Syst 13(5s):146:1–146:25

    Article  Google Scholar 

  • Kong J, Chung SW, Skadron K (2014) Recent thermal management techniques for microprocessors. ACM Computing Surveys 44(3):13:1–13:42

    Google Scholar 

  • Mahulea C, Ramirez-Trevino A, Recalde L, Silva M (2008) Steady-state control reference and token conservation laws in continuous Petri net systems. IEEE Trans Autom Sci Eng 5(2):307–320. ISSN 1545-5955

    Article  Google Scholar 

  • MATLAB (2018) version 9.4 (R2018a) . The MathWorks Inc., Natick

    Google Scholar 

  • Moulik S, Devaraj R, Sarkar A, Shaw A (2017) A deadline-partition oriented heterogeneous multi-core scheduler for periodic tasks. In: 2017 18Th international conference on parallel and distributed computing, applications and technologies (PDCAT), pp 204–210

  • Oh D-I, Bakker TP (1998) Utilization bounds for n-processor rate monotone scheduling with static processor assignments. Real-Time Systems 15(2):183–192

    Article  Google Scholar 

  • Rubio-Anguiano L, Desirena-López G, Ramírez-Treviño A, Briz JL (2018) Energy-efficient thermal-aware scheduling for rt tasks using tcpn. IFAC-PapersOnLine 51(7):236–242. https://doi.org/10.1016/j.ifacol.2018.06.307. 14th IFAC Workshop on Discrete Event Systems WODES 2018

    Article  Google Scholar 

  • Schor L, Bacivarov I, Yang H, Thiele L (2012) Worst-case temperature guarantees for real-time applications on multi-core systems. In: 2012 IEEE 18Th real time and embedded technology and applications symposium. IEEE, pp 87–96

  • Silva M, Júlvez J, Mahulea C, Renato Vázquez C (2011) On fluidization of discrete event models: observation and control of continuous Petri nets. Discrete Event Dynamic Systems 21(4)(3):427–497

    Article  MathSciNet  Google Scholar 

  • Silva M, Recalde L (2007) Redes de Petri continuas: Expresividad, análisis y control de una clase de sistemas lineales conmutados. Revista Iberoamericana de Automática e informática Industrial 4(3):5–33. ISSN 1697-7912

    Article  Google Scholar 

  • Zanini F, Atienza D, De Micheli G (2009) A control theory approach for thermal balancing of mpsoc. In: 2009 Asia and south pacific design automation conference. IEEE, pp 37–42

Download references

Acknowledgments

This work has been supported by the Ministerio de Ciencia, Innovación y Universidades and the European ERDF under Grant TIN2016-76635-C2-1-R (AEI/ERDF, EU), and by the Aragon Government (T58_17R research group) and ERDF 2014-2020 Construyendo Europa desde Aragón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rubio-Anguiano.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Theory-2020

Guest Editors: Francesco Basile, Jan Komenda, and Christoforos Hadjicostis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Anguiano, L., Desirena-López, G., Ramírez-Treviño, A. et al. Energy-efficient thermal-aware multiprocessor scheduling for real-time tasks using TCPN. Discrete Event Dyn Syst 29, 237–264 (2019). https://doi.org/10.1007/s10626-019-00285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-019-00285-x

Keywords

Navigation