Skip to main content
Log in

Decentralized diagnosis of discrete event systems subject to permanent sensor failures

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider a decentralized failure diagnosis problem for discrete event systems. Each local diagnoser makes a diagnosis decision based on local event observations. A sensor that detects the occurrence of an event may possibly fail due to, for example, aging degradation. It is desirable that the occurrence of any failure string should be correctly detected in the presence of sensor failures. We introduce a new notion of codiagnosability subject to permanent sensor failures, which is defined with respect to not only the set of nondeterministic local observation masks but also the global nondeterministic observation mask. Although the global observation mask is necessary to define codiagnosability, it is not used for performing decentralized diagnosis. The introduced notion of codiagnosability guarantees that the occurrence of any failure string can be correctly detected by a decentralized diagnoser within a bounded number of steps even if permanent sensor failures occur. We develop a method for verifying the codiagnosability property subject to permanent sensor failures. In addition, we compute the delay bound within which the occurrence of any failure string can be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. For a finite set A, |A| denotes the number of it’s elements.

References

  • Carvalho LK, Basilio JC, Moreira MV (2012) Robust diagnosis of discrete-event systems against intermittent loss of observations. Automatica 48 (9):2068–2078

    Article  MathSciNet  Google Scholar 

  • Carvalho LK, Moreira MV, Basilio JC (2017) Diagnosability of intermittent sensor faults in discrete event systems. Automatica 79:315–325

    Article  MathSciNet  Google Scholar 

  • Carvalho LK, Moreira MV, Basilio JC, Lafortune S (2013) Robust diagnosis of discrete-event systems against permanent loss of observations. Automatica 49(1):223–231

    Article  MathSciNet  Google Scholar 

  • Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Cassez F (2012) The complexity of codiagnosability for discrete event and timed systems. IEEE Trans Autom Control 57(7):1752–1764

    Article  MathSciNet  Google Scholar 

  • Chakib H, Khoumsi A (2012) Multi-decision diagnosis: decentralized architectures cooperating for diagnosing the presence of faults in discrete event systems. Discrete Event Dyn Syst 22(3):333–380

    Article  MathSciNet  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  • Debouk R, Lafortune S, Teneketzis D (2000) Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discrete Event Dyn Syst 10(1&2):33–86

    Article  MathSciNet  Google Scholar 

  • Jiang S, Huang Z, Chandra V, Kumar R (2001) A polynomial algorithm for testing diagnosability of discrete-event systems. IEEE Trans Autom Control 46(8):1318–1321

    Article  MathSciNet  Google Scholar 

  • Kanagawa N, Takai S (2015) Diagnosability of discrete event systems subject to permanent sensor failures. Int J Control 88(12):2598–2610

    Article  MathSciNet  Google Scholar 

  • Kumar R, Takai S (2009) Inference-based ambiguity management in decentralized decision-making: decentralized diagnosis of discrete-event systems. IEEE Trans Autom Sci Eng 6(3):479–491

    Article  Google Scholar 

  • Nunes CEV, Moreira MV, Alves MVS, Carvalho LK, Basilio JC (2018) Codiagnosability of networked discrete event systems subject to communication delays and intermittent loss of observation. Discrete Event Dyn Syst 28(2):215–246

    Article  MathSciNet  Google Scholar 

  • Qiu W, Kumar R (2006) Decentralized failure diagnosis of discrete event systems. IEEE Trans Syst Man Cybern Part A: Syst Human 36(2):384–395

    Article  Google Scholar 

  • Qiu W, Kumar R (2008) Distributed diagnosis under bounded-delay communication of immediately forwarded local observations. IEEE Trans Syst Man Cybern Part A: Syst Humans 38(3):628–643

    Article  Google Scholar 

  • Rohloff KR (2005) Sensor failure tolerant supervisory control. In: Proceedings of the 44th IEEE conference on decision and control and the 2005 European control conference. Sevilla, Spain, pp 3493–3498

  • Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1995) Diagnosability of discrete-event systems. IEEE Trans Autom Control 40(9):1555–1575

    Article  MathSciNet  Google Scholar 

  • Su R, Wonham WM (2005) Global and local consistencies in distributed fault diagnosis for discrete-event systems. IEEE Trans Autom Control 50 (12):1923–1935

    Article  MathSciNet  Google Scholar 

  • Takai S, Kumar R (2017) A generalized framework for inference-based diagnosis of discrete event systems capturing both disjunctive and conjunctive decision-making. IEEE Trans Autom Control 62(6):2778–2793

    Article  MathSciNet  Google Scholar 

  • Takai S, Kumar R (2018) Implementation of inference-based diagnosis: computing delay bound and ambiguity levels. Discrete Event Dyn Syst 28(2):315–348

    Article  MathSciNet  Google Scholar 

  • Takai S, Ushio T (2012) Verification of codiagnosability for discrete event systems modeled by Mealy automata with nondeterministic output functions. IEEE Trans Autom Control 57(3):798–804

    Article  MathSciNet  Google Scholar 

  • Thorsley D, Yoo T -S, Garcia HE (2008) Diagnosability of stochastic discrete-event systems under unreliable observations. In: Proceedings of the 2008 American control conference. Seattle, WA, USA, pp 1158–1165

  • Tomola JHA, Cabral FG, Carvalho LK, Moreira MV (2017) Robust disjunctive-codiagnosability of discrete-event systems against permanent loss of observations. IEEE Trans Autom Control 62(11):5808–5815

    Article  Google Scholar 

  • Viana GS, Basilio JC (2019) Codiagnosability of discrete event systems revisited: a new necessary and sufficient condition and its applications. Automatica 101:354–364

    Article  MathSciNet  Google Scholar 

  • Wada A, Takai S (2019) Verification of codiagnosability for decentralized diagnosis of discrete event systems subject to permanent sensor failures. In: Proceedings of the 2019 European control conference. Naples, Italy, pp 1726–1731

  • Wada A, Chawalarat N, Takai S (2018) Codiagnosability for decentralized diagnosis of discrete event systems subject to permanent sensor failures. In: Proceedings of the SICE annual conference 2018. Nara, Japan, pp 1069–1072

  • Wang W, Girard AR, Lafortune S, Lin F (2011) On codiagnosability and coobservability with dynamic observations. IEEE Trans Autom Control 56(7):1551–1566

    Article  MathSciNet  Google Scholar 

  • Wang W, Lafortune S, Girard AR, Lin F (2010) Optimal sensor activation for diagnosing discrete event systems. Automatica 46(7):1165–1175

    Article  MathSciNet  Google Scholar 

  • Wang Y, Yoo T -S, Lafortune S (2007) Diagnosis of discrete event systems using decentralized architectures. Discrete Event Dyn Syst 17(2):233–263

    Article  MathSciNet  Google Scholar 

  • Yin X, Lafortune S (2015) Codiagnosability and coobservability under dynamic observations: transformation and verification. Automatica 61:241–252

    Article  MathSciNet  Google Scholar 

  • Yokota S, Yamamoto T, Takai S (2017) Computation of the delay bounds and synthesis of diagnosers for decentralized diagnosis with conditional decisions. Discrete Event Dyn Syst 27(1):45–84

    Article  MathSciNet  Google Scholar 

  • Yoo T -S, Garcia HE (2008) Diagnosis of behaviors of interest in partially-observed discrete-event systems. Syst Control Lett 57(12):1023–1029

    Article  MathSciNet  Google Scholar 

  • Yoo T-S, Lafortune S (2002) Polynomial-time verification of diagnosability of partially observed discrete-event systems. IEEE Trans Autom Control 47 (9):1491–1495

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigemasa Takai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part and by JSPS KAKENHI Grant Number JP18K04201.

Appendices

Appendix : A: Proof of Proposition 1

(⇐) We consider the decentralized diagnoser \(\{D_{i}\}_{i \in I}: {\mathscr{M}}^{f}(L(G)) \to \{0,1\}\) that consists of the local diagnosers \(D_{i}: {\mathscr{M}}_{i}^{f}(L(G)) \to \{0,1\}\) (\(i=1,2,\dots ,n\)) given by Eq. 5. We first show that the decentralized diagnoser {Di}iI satisfies C1). Since G is \(\{{\mathscr{M}}_{i}^{f}\}_{i \in I}\)-codiagnosable with respect to K, there exists \(m \in \mathbb {N}\) such that

$$ \begin{array}{@{}rcl@{}} \lefteqn{\forall s \in L(G)-K, \forall t \in L(G)/s:}\\ & & [|t|\geq m \vee st \in L_{d}(G)] \\ & & \ \Rightarrow [\forall (\tau_{1},\tau_{2}, \dots, \tau_{n}) \in \mathcal{M}^{f} (st), \exists i \in I, \forall u \in L(G) : \tau_{i} \in \mathcal{M}_{i}^{f}(u) \Rightarrow u\notin K]. \end{array} $$

We consider any sL(G) − K and any tL(G)/s such that |t|≥ m or stLd(G). For any \((\tau _{1},\tau _{2}, \dots , \tau _{n}) \in {\mathscr{M}}^{f} (st)\), there exists iI such that, for any uL(G), if \(\tau _{i} \in {\mathscr{M}}_{i}^{f}(u)\), then uK. By Eq. 5, we have Di(τi) = 1, which implies together with Eq. 3 that \(\{D_{i}\}_{i \in I}(\tau _{1},\tau _{2}, \dots , \tau _{n})=1\).

We next show that {Di}iI satisfies C2). We consider any sK and any \((\tau _{1},\tau _{2}, \dots ,\) \(\tau _{n}) \in {\mathscr{M}}^{f} (s)\). We have \(\tau _{i} \in {\mathscr{M}}_{i}^{f} (s)\) for each iI. By Eq. 5, we have Di(τi) = 0 for each iI. It follows from Eq. 3 that \(\{D_{i}\}_{i \in I}(\tau _{1},\tau _{2}, \dots , \tau _{n})=0\).

(⇒) We consider any decentralized diagnoser \(\{D_{i}\}_{i \in I}: {\mathscr{M}}^{f}(L(G)) \to \{0,1\}\) that satisfies C1) and C2). By C1), there exists \(m \in \mathbb {N}\) such that

$$ \begin{array}{@{}rcl@{}} \lefteqn{\forall s\in L(G)-K,\forall t\in L(G)/s:}\\ & & [|t|\geq m \vee st \in L_{d}(G)]\\ & & \ \Rightarrow [\forall (\tau_{1},\tau_{2}, \dots, \tau_{n}) \in \mathcal{M}^{f} (st): \{D_{i}\}_{i \in I}(\tau_{1},\tau_{2}, \dots, \tau_{n})=1 ]. \end{array} $$

To prove \(\{{\mathscr{M}}_{i}^{f}\}_{i \in I}\)-codiagnosability with respect to K, we consider any sL(G) − K and any tL(G)/s such that |t|≥ m or stLd(G). For any \((\tau _{1},\tau _{2}, \dots , \tau _{n}) \in {\mathscr{M}}^{f} (st)\), we have \(\{D_{i}\}_{i \in I}(\tau _{1},\tau _{2}, \dots , \tau _{n})=1\), which implies together with Eq. 3 that there exists iI such that Di(τi) = 1. For any uL(G) such that \(\tau _{i} \in {\mathscr{M}}_{i}^{f}(u)\), there exists \(\tau \in {\mathscr{M}}^{f}(u)\) with πi(τ) = τi. Letting \(\tau =(\tau _{1}^{\prime }, \dots , \tau _{i}, {\dots } \tau _{n}^{\prime })\), it follows from Eq. 3 that \(\{D_{i}\}_{i \in I}(\tau _{1}^{\prime }, \dots , \tau _{i}, {\dots } \tau _{n}^{\prime })=1\). By C2), we have uK. Thus, G is \(\{{\mathscr{M}}_{i}^{f}\}_{i \in I}\)-codiagnosable with respect to K.

Appendix : B: Proof of Lemma 5

We prove that, for any sTL(T), the three conditions of the lemma hold by the induction on the length of sT.

As the base step, we consider the case where |sT| = 0, that is, sT = ε. Then, we have

  • \(P(s_{T})=\varepsilon \in L(\tilde {G})\) and \(P_{i}(s_{T}) =\varepsilon \in \tilde {K}\) for any iI,

  • \(\tilde {M}_{i}(P(s_{T}))=\varepsilon =\tilde {M}_{i}(P_{i}(s_{T}))\) for any iI, and

  • \(\alpha (z_{0},s_{T})=((q_{0} ,q_{R0}),q_{R0},q_{R0},\dots ,q_{R0})\), \(q_{0}=\tilde {\delta }(q_{0},P(s_{T}))\), \(q_{R0}=\delta _{R_{d}}(q_{R0},{\varTheta }(P(s_{T})))\), and \(q_{R0}=\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}))\) for any iI.

For the induction step, we suppose that, for any sTL(T) with |sT| = l ≥ 0, the three conditions of the lemma hold. We consider any sTL(T) with |sT| = l + 1. Then, sT can be written as \(s_{T}=s_{T}^{\prime }\sigma _{T}\), where \(|s_{T}^{\prime }|=l\) and σTΣT.

By the inductive assumption, we have

  • \(P(s_{T}^{\prime }) \in L(\tilde {G})\) and \(P_{i}(s_{T}^{\prime }) \in \tilde {K}\) for any iI,

  • \(\tilde {M}_{i}(P(s_{T}^{\prime }))=\tilde {M}_{i}(P_{i}(s_{T}^{\prime }))\) for any iI, and

  • \(\alpha (z_{0},s_{T}^{\prime })=((\tilde {q}^{\prime },q_{R_{d}}^{\prime }),\tilde {q}_{R_{1}}^{\prime },\tilde {q}_{R_{2}}^{\prime }, \dots ,\tilde {q}_{R_{n}}^{\prime })\), where \(\tilde {q}^{\prime }=\tilde {\delta }(q_{0},P(s_{T}^{\prime }))\), \(q_{R_{d}}^{\prime }=\delta _{R_{d}}(q_{R0},{\varTheta }(P(s_{T}^{\prime })))\), and \(\tilde {q}_{R_{i}}^{\prime }=\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}^{\prime }))\) for any iI.

Let \(z^{\prime }=\alpha (z_{0},s_{T}^{\prime })\) and \(\sigma _{T}=(\tilde {\sigma }, \tilde {\sigma }_{1},\tilde {\sigma }_{2}, \dots , \tilde {\sigma }_{n})\). It follows from \(s_{T}^{\prime }\sigma _{T} \in L(T)\) that \(\alpha (z^{\prime },\sigma _{T})!\), which implies

  • \(\tilde {\sigma } \neq \varepsilon \Rightarrow \tilde {\delta } (\tilde {q}^{\prime },\tilde {\sigma } )!\),

  • \(\forall i \in I: \tilde {\sigma }_{i} \neq \varepsilon \Rightarrow \tilde {\delta }_{R} (\tilde {q}_{R_{i}}^{\prime },\tilde {\sigma }_{i} )!\),

  • \(\forall i \in I: \tilde {\lambda }_{i} (\tilde {q}^{\prime },\tilde {\sigma } )= \tilde {\lambda }_{R_{i}} (\tilde {q}_{R_{i}}^{\prime },\tilde {\sigma }_{i} )\).

Since \(\tilde {q}^{\prime }=\tilde {\delta }(q_{0},P(s_{T}^{\prime }))\) and \(\tilde {\delta } (\tilde {q}^{\prime },\tilde {\sigma })!\) if \(\tilde {\sigma } \neq \varepsilon \), we have \(P(s_{T}^{\prime }\sigma _{T})=P(s_{T}^{\prime })\tilde {\sigma } \in L(\tilde {G})\). Similarly, for any iI, since \(\tilde {q}_{R_{i}}^{\prime }=\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}^{\prime }))\) and \(\tilde {\delta }_{R} (\tilde {q}_{R_{i}}^{\prime },\tilde {\sigma }_{i} )!\) if \(\tilde {\sigma }_{i} \neq \varepsilon \), we have \(P_{i}(s_{T}^{\prime }\sigma _{T})=P_{i}(s_{T}^{\prime })\tilde {\sigma }_{i} \in \tilde {K}\).

For any iI, since \(\tilde {M}_{i}(P(s_{T}^{\prime }))=\tilde {M}_{i}(P_{i}(s_{T}^{\prime }))\), \(\tilde {q}^{\prime }=\tilde {\delta }(q_{0},P(s_{T}^{\prime }))\), \(\tilde {q}_{R_{i}}^{\prime }=\tilde {\delta }_{R}(q_{R0},P_{i}\) \((s_{T}^{\prime }))\), and \(\tilde {\lambda }_{i} (\tilde {q}^{\prime },\tilde {\sigma } )= \tilde {\lambda }_{R_{i}} (\tilde {q}_{R_{i}}^{\prime },\tilde {\sigma }_{i} )\), we have \(\tilde {M}_{i}(P(s_{T}^{\prime }\sigma _{T})) =\tilde {M}_{i}(P(s_{T}^{\prime })\tilde {\sigma }) =\tilde {M}_{i}(P_{i}\) \((s_{T}^{\prime })\tilde {\sigma }_{i}) =\tilde {M}_{i}(P_{i}(s_{T}^{\prime }\sigma _{T}))\).

Finally, letting \(\alpha (z^{\prime },\sigma _{T}) =((\tilde {q},q_{R_{d}}),\tilde {q}_{R_{1}},\tilde {q}_{R_{2}},\dots , \tilde {q}_{R_{n}})\), it holds that \(\alpha (z_{0},s_{T}^{\prime }\sigma _{T}) =((\tilde {q},q_{R_{d}}),\tilde {q}_{R_{1}},\tilde {q}_{R_{2}},\dots , \tilde {q}_{R_{n}})\). Since

$$ \tilde{q} = \left\{ \begin{array}{l l } \tilde{\delta} (\tilde{q}^{\prime}, \tilde{\sigma}), & \text{if} \ \tilde{\sigma} \neq \varepsilon \\ \tilde{q}^{\prime}, & \text{otherwise}, \end{array} \right. $$
$$ q_{R_{d}} = \left\{ \begin{array}{l l } \delta_{R_{d}} (q_{R_{d}}^{\prime}, \tilde{\sigma} ), & \text{if} \ \tilde{\sigma} \notin \{\varepsilon\} \cup F\\ q_{R_{d}}^{\prime}, & \text{otherwise}, \end{array} \right. $$

and

$$ \tilde{q}_{R_{i}} = \left\{ \begin{array}{l l } \tilde{\delta}_{R} (\tilde{q}_{R_{i}}^{\prime}, \tilde{\sigma}_{i} ), & \text{if} \ \tilde{\sigma}_{i} \neq \varepsilon \\ \tilde{q}_{R_{i}}^{\prime}, & \text{otherwise} \end{array} \right. (i \in I), $$

we have \(\tilde {q}=\tilde {\delta }(q_{0},P(s_{T}^{\prime })\tilde {\sigma })=\tilde {\delta }(q_{0},P(s_{T}^{\prime }\sigma _{T}))\), \(q_{R_{d}}=\delta _{R_{d}}(q_{R0},{\varTheta }(P(s_{T}^{\prime })){\varTheta }(\tilde {\sigma })) =\delta _{R_{d}}\) \((q_{R0},{\varTheta }(P(s_{T}^{\prime }\sigma _{T})))\), and \(\tilde {q}_{R_{i}}=\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}^{\prime })\tilde {\sigma }_{i}) =\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}^{\prime }\sigma _{T}))\) for any iI.

Appendix : C: Proof of Lemma 6

For any \(\tilde {s} \in L(\tilde {G})\) and any \(\tilde {s}_{1}, \tilde {s}_{2}, \dots , \tilde {s}_{n} \in \tilde {K}\) such that \(\tilde {M}_{i}(\tilde {s})=\tilde {M}_{i}(\tilde {s}_{i})\) for any iI, we show that there exists sTL(T) such that \(P(s_{T})=\tilde {s}\) and \(P_{i}(s_{T})=\tilde {s}_{i}\) for any iI, by the induction on the length of \(\tilde {s}\).

As the base step, we consider the case where \(|\tilde {s}|=0\), that is, \(\tilde {s}=\varepsilon \). Then, for any iI, we have \(\tilde {M}_{i}(\tilde {s})=\varepsilon \). It follows from \(\tilde {M}_{i}(\tilde {s})=\tilde {M}_{i}(\tilde {s}_{i})\) that \(\tilde {M}_{i}(\tilde {s}_{i})=\varepsilon \). If \(\tilde {s}_{i}=\varepsilon \) for any iI, then, for εL(T), we have \(P(\varepsilon )=\varepsilon =\tilde {s}\) and \(P_{i}(\varepsilon )=\varepsilon =\tilde {s}_{i}\) for any iI. We consider the case where there exists iI such that \(\tilde {s}_{i} \neq \varepsilon \). For any iI with \(\tilde {s}_{i} \neq \varepsilon \), we let \(\tilde {s}_{i}=\tilde {\sigma }_{i}^{(1)} \tilde {\sigma }_{i}^{(2)} \cdots \tilde {\sigma }_{i}^{(|\tilde {s}_{i}|)}\). Since \(\tilde {M}_{i}(\tilde {s}_{i})=\varepsilon \), we have \(\tilde {\lambda }_{R_{i}}(q_{R0},\tilde {\sigma }_{i}^{(1)})=\varepsilon \) and \(\tilde {\lambda }_{R_{i}}(\tilde {\delta }_{R}(q_{R0}, \tilde {\sigma }_{i}^{(1)} \tilde {\sigma }_{i}^{(2)} {\cdots } \tilde {\sigma }_{i}^{(h)}), \tilde {\sigma }_{i}^{(h+1)})=\varepsilon \) (\(h=1,2, \dots , |\tilde {s}_{i}|-1\)). We let \(l={\max \limits } \{|\tilde {s}_{i}| \in \mathbb {N} \mid i \in I\}\) and \(s_{T}=\sigma _{T}^{(1)} \sigma _{T}^{(2)} {\cdots } \sigma _{T}^{(l)} \in {\varSigma }_{T}^{*}\), where \(\sigma _{T}^{(h)}=(\varepsilon ,\bar {\sigma }_{1}^{(h)}, \bar {\sigma }_{2}^{(h)}, \dots , \bar {\sigma }_{n}^{(h)})\) (\(h=1,2, \dots , l\)) and

$$ \bar{\sigma}_{i}^{(h)}=\left\{ \begin{array}{ll} \tilde{\sigma}_{i}^{(h)}, & \text{if} \tilde{s}_{i} \neq \varepsilon \wedge h \leq |\tilde{s}_{i}| \\ \varepsilon, & \text{otherwise} \end{array}\right. $$

for each iI. By the definition of α, we have sTL(T), \(P(s_{T})=\varepsilon =\tilde {s}\) and \(P_{i}(s_{T})=\tilde {s}_{i}\) for any iI.

For the induction step, we suppose that, for any \(\tilde {s} \in L(\tilde {G})\) with \(|\tilde {s}|=j>0\) and any \(\tilde {s}_{1}, \tilde {s}_{2}, \dots , \tilde {s}_{n} \in \tilde {K}\) such that \(\tilde {M}_{i}(\tilde {s})=\tilde {M}_{i}(\tilde {s}_{i})\) for any iI, there exists sTL(T) such that \(P(s_{T})=\tilde {s}\) and \(P_{i}(s_{T})=\tilde {s}_{i}\) for any iI. We consider any \(\tilde {s} \in L(\tilde {G})\) with \(|\tilde {s}|=j+1\) and any \(\tilde {s}_{1}, \tilde {s}_{2}, \dots , \tilde {s}_{n} \in \tilde {K}\) such that \(\tilde {M}_{i}(\tilde {s})=\tilde {M}_{i}(\tilde {s}_{i})\) for any iI. Then, \(\tilde {s}\) can be written as \(\tilde {s}=\tilde {s}^{\prime }\tilde {\sigma }\), where \(|\tilde {s}^{\prime }|=j\) and \(\tilde {\sigma } \in \tilde {{\varSigma }}\). We consider any iI such that \(\tilde {M}_{i}(\tilde {s}^{\prime }) \neq \tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })\). Then, we have \(\tilde {\lambda }_{i}(\tilde {\delta }(q_{0},\tilde {s}^{\prime }),\tilde {\sigma }) \neq \varepsilon \), which implies \(\tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma }) \neq \varepsilon \). Since \(\tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })=\tilde {M}_{i}(\tilde {s}_{i})\), \(\tilde {s}_{i}\) can be written as \(\tilde {s}_{i}=\tilde {s}_{i}^{\prime }\tilde {\sigma }_{i}\tilde {s}_{i}^{\prime \prime }\), where \(\tilde {M}_{i}(\tilde {s}^{\prime }) = \tilde {M}_{i}(\tilde {s}_{i}^{\prime })\), \(\tilde {\lambda }_{i}(\tilde {\delta }(q_{0},\tilde {s}^{\prime }),\tilde {\sigma }) =\tilde {\lambda }_{R_{i}}(\tilde {\delta }_{R}(q_{R0},\tilde {s}_{i}^{\prime }),\tilde {\sigma }_{i})\), and \(\tilde {M}_{i}(\tilde {s}_{i}^{\prime }\tilde {\sigma }_{i}) =\tilde {M}_{i}(\tilde {s}_{i}^{\prime }\tilde {\sigma }_{i}\tilde {s}_{i}^{\prime \prime })\). To apply the induction hypothesis for \(\tilde {s}^{\prime } \in L(\tilde {G})\), we let

$$ \bar{s}_{i}^{\prime}=\left\{ \begin{array}{ll} \tilde{s}_{i}^{\prime}, & \text{if} \tilde{M}_{i}(\tilde{s}^{\prime}) \neq \tilde{M}_{i}(\tilde{s}^{\prime}\tilde{\sigma}) \\ \tilde{s}_{i}, & \text{otherwise} \end{array} \right. $$

and

$$ \breve{\sigma}_{i}=\left\{ \begin{array}{ll} \tilde{\sigma}_{i}, & \text{if} \tilde{M}_{i}(\tilde{s}^{\prime}) \neq \tilde{M}_{i}(\tilde{s}^{\prime}\tilde{\sigma}) \\ \varepsilon, & \text{otherwise} \end{array}\right. $$

for each iI. Then, we have \(\tilde {M}_{i}(\tilde {s}^{\prime }) = \tilde {M}_{i}(\bar {s}_{i}^{\prime })\) for each iI. For \(\tilde {s}^{\prime } \in L(\tilde {G})\) and \(\bar {s}_{1}^{\prime }, \bar {s}_{2}^{\prime }, \dots , \bar {s}_{n}^{\prime } \in K\), by the induction hypothesis, there exists \(s_{T}^{\prime } \in L(T)\) such that \(P(s_{T}^{\prime })=\tilde {s}^{\prime }\) and \(P_{i}(s_{T}^{\prime })=\bar {s}_{i}^{\prime }\) for each iI. Letting \(\alpha (z_{0},s_{T}^{\prime })=((\tilde {q}^{\prime } ,q_{R_{d}}^{\prime }),\tilde {q}_{R_{1}}^{\prime },\tilde {q}_{R_{2}}^{\prime }, \dots ,\tilde {q}_{R_{n}}^{\prime })\), by Lemma 5, we have \(\tilde {q}^{\prime }=\tilde {\delta }(q_{0},P(s_{T}^{\prime }))\) and \(\tilde {q}_{R_{i}}^{\prime }=\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}^{\prime }))\) for any iI.

We show that \(\alpha (\alpha (z_{0},s_{T}^{\prime }),\sigma _{T})!\), where \(\sigma _{T}=(\tilde {\sigma },\breve {\sigma }_{1},\breve {\sigma }_{2},\dots , \breve {\sigma }_{n})\). Since \(\tilde {s}^{\prime }\tilde {\sigma } \in L(\tilde {G})\), \(P(s_{T}^{\prime })=\tilde {s}^{\prime }\), and \(\tilde {q}^{\prime }=\tilde {\delta }(q_{0},P(s_{T}^{\prime }))\), we have \(\tilde {\delta }(\tilde {q}^{\prime },\tilde {\sigma })!\). For each iI with \(\tilde {M}_{i}(\tilde {s}^{\prime }) \neq \tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })\), we have \(\breve {\sigma }_{i}=\tilde {\sigma }_{i}\). Since \(\tilde {s}_{i}^{\prime }\tilde {\sigma }_{i} \in \tilde {K}\), \(P_{i}(s_{T}^{\prime })=\tilde {s}_{i}^{\prime }\), and \(\tilde {q}_{R_{i}}^{\prime }=\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}^{\prime }))\), we have \(\tilde {\delta }_{R}(\tilde {q}_{R_{i}}^{\prime },\breve {\sigma }_{i})!\). In addition, since \(\tilde {\lambda }_{i}(\tilde {\delta }(q_{0},\tilde {s}^{\prime }),\tilde {\sigma }) =\tilde {\lambda }_{R_{i}}(\tilde {\delta }_{R}(q_{R0},\tilde {s}_{i}^{\prime }),\tilde {\sigma }_{i})\), we have \(\tilde {\lambda }_{i}(\tilde {q}^{\prime },\tilde {\sigma })= \tilde {\lambda }_{R_{i}}(\tilde {q}_{R_{i}}^{\prime },\breve {\sigma }_{i})\). For each iI with \(\tilde {M}_{i}(\tilde {s}^{\prime }) =\tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })\), we have \(\tilde {\lambda }_{i}(\tilde {\delta }(q_{0},\tilde {s}^{\prime }),\tilde {\sigma })=\varepsilon \) and \(\breve {\sigma }_{i}=\varepsilon \). It follows that \(\tilde {\lambda }_{i}(\tilde {q}^{\prime },\tilde {\sigma })= \tilde {\lambda }_{R_{i}}(\tilde {q}_{R_{i}}^{\prime },\breve {\sigma }_{i})\). By the definition of α, we have \(\alpha (\alpha (z_{0},s_{T}^{\prime }),\sigma _{T})!\). Then, it holds that \(s_{T}^{\prime }\sigma _{T} \in L(\tilde {G})\), \(P(s_{T}^{\prime }\sigma _{T})=\tilde {s}^{\prime }\tilde {\sigma }\), and

$$ P_{i}(s_{T}^{\prime}\sigma_{T}) =\left\{ \begin{array}{ll} \tilde{s}_{i}^{\prime}\tilde{\sigma}_{i}, & \text{if} \tilde{M}_{i}(\tilde{s}^{\prime}) \neq \tilde{M}_{i}(\tilde{s}^{\prime}\tilde{\sigma}) \\ \tilde{s}_{i}, & \text{otherwise} \end{array}\right. $$

for each iI. If \(\tilde {s}_{i}^{\prime \prime }=\varepsilon \) for any iI with \(\tilde {M}_{i}(\tilde {s}^{\prime }) \neq \tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })\), the proof is completed. We consider the case where there exists iI such that \(\tilde {M}_{i}(\tilde {s}^{\prime }) \neq \tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })\) and \(\tilde {s}_{i}^{\prime \prime } \neq \varepsilon \). For each iI with \(\tilde {M}_{i}(\tilde {s}^{\prime }) \neq \tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })\) and \(\tilde {s}_{i}^{\prime \prime } \neq \varepsilon \), we let \(\tilde {s}_{i}^{\prime \prime }=\hat {\sigma }_{i}^{(1)} \hat {\sigma }_{i}^{(2)} \cdots \hat {\sigma }_{i}^{(|\tilde {s}_{i}^{\prime \prime }|)}\). In addition, we let

$$ l^{\prime}=\max \{|\tilde{s}_{i}^{\prime\prime}| \in \mathbb{N}\mid i^{\prime} \in I \wedge \tilde{M}_{i^{\prime}}(\tilde{s}^{\prime}) \neq \tilde{M}_{i^{\prime}}(\tilde{s}^{\prime}\tilde{\sigma})\} $$

and \(\breve {s}_{T}=\breve {\sigma }_{T}^{(1)} \breve {\sigma }_{T}^{(2)} {\cdots } \breve {\sigma }_{T}^{(l^{\prime })} \in {\varSigma }_{T}^{*}\), where \(\breve {\sigma }_{T}^{(h)}= (\varepsilon ,\breve {\sigma }_{1}^{(h)}, \breve {\sigma }_{2}^{(h)} \dots , \breve {\sigma }_{n}^{(h)})\) (\(h=1,2, \dots , l^{\prime }\)) and

$$ \breve{\sigma}_{i}^{(h)} = \left\{ \begin{array}{ll} \hat{\sigma}_{i}^{(h)}, & \text{if} \tilde{M}_{i}(\tilde{s}^{\prime}) \neq \tilde{M}_{i}(\tilde{s}^{\prime}\tilde{\sigma}) \wedge s_{i}^{\prime\prime} \neq \varepsilon \wedge h \leq |\tilde{s}_{i}^{\prime\prime}| \\ \varepsilon, & \text{otherwise} \end{array}\right. $$

for each iI. By the construction of \(s_{T}^{\prime }\), σT, and \(\breve {s}_{T}\), we have \(P(s_{T}^{\prime }\sigma _{T}\breve {s}_{T})=\tilde {s}^{\prime }\tilde {\sigma }\) and \(P_{i}(s_{T}^{\prime }\sigma _{T}\breve {s}_{T})=\tilde {s}_{i}\) for any iI. It remains to show that \(s_{T}^{\prime }\sigma _{T}\breve {s}_{T} \in L(T)\).

Letting \(\alpha (z_{0},s_{T}^{\prime }\sigma _{T})=((\tilde {q} ,q_{R_{d}}),\tilde {q}_{R_{1}},\tilde {q}_{R_{2}}, \dots ,\tilde {q}_{R_{n}})\), by Lemma 5, we have \(\tilde {q}=\tilde {\delta }(q_{0},P(s_{T}^{\prime }\sigma _{T}))\) and \(\tilde {q}_{R_{i}}=\tilde {\delta }_{R}(q_{R0},P_{i}(s_{T}^{\prime }\sigma _{T}))\) for any iI. For each iI with \(\tilde {M}_{i}(\tilde {s}^{\prime }) \neq \tilde {M}_{i}(\tilde {s}^{\prime }\tilde {\sigma })\) and \(\tilde {s}_{i}^{\prime \prime } \neq \varepsilon \), since \(P_{i}(s_{T}^{\prime }\sigma _{T})=\tilde {s}_{i}^{\prime }\tilde {\sigma }_{i}\) and \(\tilde {M}_{i}(\tilde {s}_{i}^{\prime }\tilde {\sigma }_{i}) =\tilde {M}_{i}(\tilde {s}_{i}^{\prime }\tilde {\sigma }_{i}\tilde {s}_{i}^{\prime \prime })\), we have \(\tilde {\lambda }_{R_{i}}(\tilde {q}_{R_{i}},\hat {\sigma }_{i}^{(1)})=\varepsilon \) and \(\tilde {\lambda }_{R_{i}}(\tilde {\delta }_{R}(\tilde {q}_{R_{i}}, \hat {\sigma }_{i}^{(1)} \hat {\sigma }_{i}^{(2)} {\cdots } \hat {\sigma }_{i}^{(h)}), \hat {\sigma }_{i}^{(h+1)})=\varepsilon \) (\(h=1,2, \dots , |\tilde {s}_{i}^{\prime \prime }|-1\)). By the definition of α, we have \(\alpha (\alpha (z_{0},s_{T}^{\prime }\sigma _{T}),\breve {s}_{T})!\), which implies \(s_{T}^{\prime }\sigma _{T}\breve {s}_{T} \in L(T)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, A., Takai, S. Decentralized diagnosis of discrete event systems subject to permanent sensor failures. Discrete Event Dyn Syst 32, 159–193 (2022). https://doi.org/10.1007/s10626-021-00353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-021-00353-1

Keywords

Navigation