Skip to main content

WhatsApp usefulness as a communication tool in an educational context

  • Published:
Education and Information Technologies Aims and scope Submit manuscript

Abstract

Although the negative effects of mobile instant messaging have been stressed, its exponential increment justifies studying its application in education. This paper analyses whether college’ students perception of WhatsApp usefulness influences cognitive processes important for teamwork (i.e., specialization and coordination), specifically for complex decision-making assignments. Additionally, it seeks to clarify to what extent the relationship between perception of WhatsApp usefulness and these cognitive processes could exert some influence on team efficacy, both perceived and objective (grades). For that purpose, a role-play was specifically designed in which WhatsApp played a mayor function as a communication tool. A sample of university students (N = 200) worked in teams to reach decisions. A student in each team was set apart all team members could only communicate through WhatsApp. Findings confirm the relationships between perceived WhatsApp usefulness and specialization and coordination, as well as perceived WhatsApp usefulness and perceived team efficacy. Both the role-play case designed and results obtained are relevant since show that WhatsApp could be applied as a communication tool in team activities, due to the fact that the perception of its usefulness could help to develop positive attitudes towards teamwork (i.e., team perceived efficacy). From an applied perspective WhatsApp could be used for virtual teamwork through, for example, the proposed role-play case shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T.

    Article  Google Scholar 

  • Anderson, B., Fagan, P., Woodnutt, T., & Chamorro-Premuzic, T. (2012). Facebook psychology: Popular questions answered by research. Psychology of Popular Media Culture, 1(1), 23–37. https://doi.org/10.1037/a0026452.

    Article  Google Scholar 

  • Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting collaborative learning and problem-solving in a constraint-based CSCL environment for UML class diagrams. Computer-Supported Collaborative Learning, 2, 159–190.

    Article  Google Scholar 

  • Cabero Almenara, J., & Marín Díaz, V. (2013). Percepciones de los estudiantes universitarios latinoamericanos sobre las redes sociales y el trabajo en grupo. RUSC. Universities and Knowledge Society Journal, 10(2), 219–233.

    Article  Google Scholar 

  • Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-analysis. Computers and Education, 105, 1–13. https://doi.org/10.1016/j.compedu.2016.11.003.

    Article  Google Scholar 

  • Chou, H. W., Lin, Y. H., & Chou, S. B. (2012). Team cognition, collective efficacy, and performance in strategic decision-making teams. Social Behavior and Personality: An International Journal, 40(3), 381–394.

    Article  Google Scholar 

  • Chuah, S. H.-W., Rauschnabel, P. A., Krey, N., Nguyen, B., Ramayah, T., & Lade, S. (2016). Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276–284.

    Article  Google Scholar 

  • Contractor, N. S., Wasserman, S., & Faust, K. (2006). Testing multitheoretical, multilevel hypotheses about organizational networks: An analytic framework and empirical example. Academy of Management Review, 31(3), 681–703.

  • DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). The cognitive underpinnings of effective teamwork: A meta-analysis. Journal of Applied Psychology, 95(1), 32–53.

    Article  Google Scholar 

  • Denker, K. J., Manning, J., Heuett, K. B., & Summers, M. E. (2018). Twitter in the classroom: Modeling online communication attitudes and student motivations to connect. Computers in Human Behavior, 79, 1–8.

    Article  Google Scholar 

  • Elhay, A. A., & Hershkovitz, A. (2018). Teachers’ perceptions of out-of-class communication, teacher-student relationship, and classroom environment. Education and Information Technologies, 24, 1–22. https://doi.org/10.1007/s10639-018-9782-7.

  • Engeström, Y. (2009). Wildfire activities: New patterns of mobility and learning. International Journal of Mobile and Blended Learning, I, 2, 1–18. https://doi.org/10.4018/jmbl.2009040101.

    Article  Google Scholar 

  • Esteve, F., & Gisbert, M. (2011). El Nuevo paradigma de aprendizaje y nuevas tecnologías. Revista de Docencia Universitaria, 9(3), 55–73.

    Article  Google Scholar 

  • Gao, Q., Yan, Z., Zhao, C., Pan, Y., & Mo, L. (2014). To ban or not to ban: Differences in mobile phone policies at elementary, middle, and high schools. Computers in Human Behaviour, 38, 25–32. https://doi.org/10.1016/j.chb.2014.05.011.

    Article  Google Scholar 

  • Gao, Q., Yan, Z., Wei, C., Liang, Y., & Mo, L. (2017). Three different roles, five different aspects: Differences and similarities in viewing school mobile phone policies among teachers, parents, and students. Computers and Education, 106, 13–25. https://doi.org/10.1016/j.compedu.2016.11.007.

    Article  Google Scholar 

  • García González, J. L., & García Ruíz, R. (2012). Aprender entre iguales con herramientas Web 2.0 y Twitter en la Universidad. Análisis de un caso. Revista Electrónica de Tecnología Educativa, 40, 1–14.

    Google Scholar 

  • Gewerc, A., Montero, L., & Lama, M. (2014). Collaboration and social networking in higher education. Comunicar, 21(42), 55–62.

    Article  Google Scholar 

  • Gilson, L. L., Maynard, M. T., Young, N. C. J., Vartiainen, M., & Hakonen, M. (2015). Virtual teams research 10 years, 10 themes, and 10 Opportunities. Journal of Management, 41(5), 1313–1337.

    Article  Google Scholar 

  • Gutiérrez-Porlán, I., & Román-García, M. (2018). Strategies for the communication and collaborative online work by university students. Comunicar, 26(54), 91–99.

    Article  Google Scholar 

  • Hawi, N. S., & Samaha, M. (2016). To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Computers and Education, 98, 81–89. https://doi.org/10.1016/j.compedu.2016.03.007.

    Article  Google Scholar 

  • Heflin, H., Shewmaker, J., & Nguyebm, J. (2017). Impact of mobile technology on students attitudes, engagement, and learning. Computers and Education, 107, 91–99. https://doi.org/10.1016/j.compedu.2017.01.006.

    Article  Google Scholar 

  • Holtgraves, T. (2011). Text messaging, personality, and the social context. Journal of Research in Personality, 45, 92–99.

    Article  Google Scholar 

  • Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the relationship between psychological characteristics, mobile phone addiction and use of mobile phones by Taiwanese university female students. Computers in Human Behavior, 28(6), 2152–2159.

    Article  Google Scholar 

  • Huang, H. Y. (2016). Examining the beneficial effects of individual's self-disclosure on the social network site. Computers in Human Behavior, 57, 122–132.

    Article  Google Scholar 

  • Hwang, G. J., & Tsai, C. C. (2011). Research trend in mobile and ubiquitous learning: A review of publications in selected journal from 2001-2010. British Journal of Education Technology, 42(4), E65–E70.

    Article  Google Scholar 

  • Jahnke, I., Bergström, P., Märell-Olsson, E., Häll, L., & Kumar, S. (2017). Digital didactical designs as research framework: iPad integration in Nordic schools. Computers & Education, 113, 1–15.

    Article  Google Scholar 

  • Jarvenpaa, S. L., & Majchrzak, A. (2008). Knowledge collaboration among professionals protecting national security: Role of transactive memories in ego-centered knowledge networks. Organization Science, 19(2), 260–276.

  • Johnson, D. W., & Johnson, R. T. (1996). Cooperation and the use of technology. In D. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 785–812). London: MacMillan.

    Google Scholar 

  • Kanawattanchai, P., & Yoo, Y. (2007). The impact of knowledge coordination on virtual team performance over time. MIS Quarterly, 31(4), 783–808.

    Article  Google Scholar 

  • Kienle, A. (2009). Intertwining synchronous and asynchronous communication to support collaborative learning—System design and evaluation. Education and Information Technologies, 14(1), 55–79.

    Article  Google Scholar 

  • Kim, H., Lee, M. Y., & Kim, M. (2014). Effects of Mobile instant messaging on collaborative learning processes and outcomes: The case of South Korea. Educational Technology & Society, 17(2), 31–42.

    Google Scholar 

  • Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computersupported collaborative learning environments: A review of the research. Computers in Human Behaviour, 19(3), 335–353.

    Article  Google Scholar 

  • Lancaster, S., Yen, D. C., Huang, A. H., & Hung, S. Y. (2007). The selection of instant messaging or e-mail: College students' perspective for computer communication. Information Management & Computer Security, 15(1), 5–22.

    Article  Google Scholar 

  • Lewis, K. (2003). Measuring transactive memory systems in the field: Scale development and validation. Journal of Applied Psychology, 88(4), 587–604.

    Article  Google Scholar 

  • Maynard, M. T., Mathieu, J. E., Rapp, T. L., & Gilson, L. L. (2012). Something(s) old and something(s) new: Modeling drivers of global virtual team effectiveness. Journal of Organizational Behavior, 33(3), 342–365.

    Article  Google Scholar 

  • Middelweerd, A., van der Laan, D. M., van Stralen, M. M., Mollee, J. S., Stuij, M., TeVelde, S. J., & Brug, J. (2015). What features do Dutch university students prefer in a smartphone application for promotion of physical activity? A qualitative approach. International Journal of Behavioral Nutrition and Physical Activity, 12(1).

  • Motiwalla, L. F. (2007). Mobile learning: A framework and evaluation. Computers & Education, 49(3), 581–596.

    Article  Google Scholar 

  • Myers, K. K., & Sadaghiani, K. (2010). Millennials in the workplace: A communication perspective on millennials’ organizational relationships and performance. Journal of Business and Psychology, 25(2), 225–238.

    Article  Google Scholar 

  • Neville, C. C., Petro, R., Mitchell, G. K., & Brady, S. (2013). Team decision making: Design, implementation and evaluation of an interprofessional education activity for undergraduate health science students. Journal of Interprofessional Care, 27(6), 523–525.

    Article  Google Scholar 

  • Ogara, S. O., Koh, C. E., & Prybutok, V. R. (2014). Investigating factors affecting social presence and user satisfaction with mobile instant messaging. Computers in Human Behavior, 36, 453–459.

    Article  Google Scholar 

  • Olson, B. J., Parayitam, S., & Bao, Y. (2007). Strategic decision making: The effects of cognitive diversity, conflict, and trust on decision outcomes. Journal of Management, 33(2), 196–222.

    Article  Google Scholar 

  • Ortega, S. y Gacitúa, J.C. (2008). Espacios interactivos de comunicación y aprendizaje. La construcción de identidades. Revista de Universidad y Sociedad del Conocimiento (RUSC), 5(2), 17–25.

  • Pea, R. D. (1994). Seeing what we build together: Distributed multimedia learning environments for transformative communications. The Journal of the Learning Sciences, 3(3), 219–225.

    Article  Google Scholar 

  • Peltokorpi, V. (2008). Transactive memory systems. Review of General Psychology, 12(4), 378–394.

    Article  Google Scholar 

  • Pierce, T. (2009). Social anxiety and technology: Face-to-face communication versus technological communication among teens. Computers in Human Behavior, 25, 1367–1372.

    Article  Google Scholar 

  • Pimmer, C., Brühlmann, F., Odetola, T. D., Oluwasola, D. O., Dipeolu, O., & Ajuwon, A. J. (2019). Facilitating professional mobile learning communities with instant messaging. Computers & Education, 128, 102–112.

    Article  Google Scholar 

  • Prayitam, S., & Dooley, R. S. (2009). The interplay between cognitive and affective conflict and congnition- and affect-based trust in influencing decision outcomes. Journal of Business Research, 62, 789–796.

    Article  Google Scholar 

  • Purvanova, R. K. (2014). Face-to-face versus virtual teams: What have we really learned? The Psychologist-Manager Journal, 17(1), 2–29. https://doi.org/10.1037/mgr0000009.

    Article  Google Scholar 

  • Rambe, P., & Bere, A. (2013). Using mobile instant messaging to leverage learner participation and transform pedagogy at a south African University of technology. British Journal of Educational Technology, 44(4), 544–561.

    Article  Google Scholar 

  • Ren, Y., & Argote, L. (2011). Transactive memory systems 1985–2010: An integrative framework of key dimensions, antecedents, and consequences. The Academy of Management Annals, 5(1), 189–229.

    Article  Google Scholar 

  • Rico, R., Hinsz, V. B., Burke, S., & Salas, E. (2017). A multilevel model of multiteam motivation and performance. Organizational Psychology Review, 7(3), 197–226.

    Article  Google Scholar 

  • Rubio-Romero, J., & Perlado, M. (2015). El fenómeno WhatsApp en el contexto de la comunicación personal: una aproximación a través de los jóvenes universitarios. Icono, 14(13), 73–94. https://doi.org/10.7195/ri14.v13i2.818.

    Article  Google Scholar 

  • Ryu, H., & Parsons, D. (2012). Risky business or sharing the load?–social flow in collaborative mobile learning. Computers & Education, 58(2), 707–720.

    Article  Google Scholar 

  • Salehan, M., & Negahban, A. (2013). Social networking on smartphones: When mobile phones become addictive. Computers in Human Behavior, 29, 2632–2639.

    Article  Google Scholar 

  • Santos, I. M., Bocheco, O., & Habak, C. (2018). A survey of student and instructor perceptions of personal mobile technology usage and policies for the classroom. Education and Information Technologies, 23(2), 617–632. https://doi.org/10.1007/s10639-017-9625-y.

    Article  Google Scholar 

  • Sevillano-García, M. L., González-Flores, M. P., Vázquez-Cano, E., & Rey Yedra, L. (2016). Ubicuidad y movilidad de herramientas virtuales abren nuevas expectativas formativas para el estudiantado universitario. Revista Ensayos Pedagógicos, V. XI(2), 99–131.

    Google Scholar 

  • Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. Cambridge: MIT Press.

    Book  Google Scholar 

  • Statista (2018). Global social networks. Education and Information Technologies, Retrieved from https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ (consulted on January 2019).

  • Sultan, N. (2014). Making use of cloud computing for healthcare provision: Opportunities and challenges. International Journal of Information Management, 34(2), 177–184.

    Article  Google Scholar 

  • Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education, 94, 252–275.

    Article  Google Scholar 

  • Tang, Y., & Hew, K. F. (2017). Is mobile instant messaging (MIM) useful in education? Examining its technological, pedagogical, and social affordances. Educational Research Review, 21, 85–104.

    Article  Google Scholar 

  • Urbina, S. & Salinas, J. (2014). Campus virtuales: Una perspectiva evolutiva y tendencias. Revista de Educación a Distancia (RED), 42. http://www.um.es/ead/red/42. Accessed Sep 2018.

  • Vista, A., Awwal, N., & Care, E. (2016). Sequential actions as markers of behavioural and cognitive processes: Extracting empirical pathways from data streams of complex tasks. Computers & Education, 92–93, 15–36.

  • Voyiatzaki, E., & Avouris, N. (2014). Support for the teacher in technology-enhanced collaborative classroom. Education and Information Technologies, 19(1), 129–154.

    Article  Google Scholar 

  • Wegner, D. (1987). Transactive memory: A contemporary analysis of the group mind. In B. Mullen y G. R. Goethals (Eds.). Theories of group behaviour (pp. 185–208). Nueva York: Springer-Verlag.

  • Yoon, C., Jeong, C., & Rolland, E. (2015). Understanding individual adoption of mobile instant messaging: A multiple perspectives approach. Information Technology and Management, 16(2), 139–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Urien.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urien, B., Erro-Garcés, A. & Osca, A. WhatsApp usefulness as a communication tool in an educational context. Educ Inf Technol 24, 2585–2602 (2019). https://doi.org/10.1007/s10639-019-09876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10639-019-09876-5

Keywords

Palabras clave