Skip to main content
Log in

Systematic literature review of STEM self-study related ITSs

  • Published:
Education and Information Technologies Aims and scope Submit manuscript

Abstract

A simulator-based Intelligent Tutoring System (ITS) is a computer system that is made to provide students with a learning experience that is both customizable to a student’s needs (e.g., level of expertise, pace) and includes simulation, e.g., demonstrate certain domain concepts or allow problem-solving while replicating a real-life situation. ITSs offers convenient and low-cost studying. We aim to explore the recent trends and identify limitations and opportunities in recent work on STEM (Science, Technology, Engineering, and Mathematics) self-study simulator based ITSs, we conducted a systematic literature review investigating 47 papers from four different databases. The research encloses ITSs from various educational sectors, ranging from elementary, middle, secondary, tertiary, and after school training. The majority of the systems targeted tertiary education. As a result, there are many research opportunities in introducing a more generalizable approach to simulator-based ITSs which will make it easier to address many STEM-related subjects. There are also opportunities in utilizing help methods that emphasize encouragement and self-reflection. We noticed that the number of STEM-related simulator-based ITSs is relatively low. Another finding was that most simulator-based ITSs are domain-dependent, and therefore they are not reusable for other subjects. Finally, we found that the traits of feedback in simulator-based systems that result in positive learning outcomes are ones that combined immediate and delayed feedback, used procedural information in their feedback, of formative feedback type, and detailed feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alepis, E., & Virvou, M. (2011). Automatic generation of emotions in tutoring agents for affective e-learning in medical education. Expert Systems with Applications, 38(8), 9840–9847. https://doi.org/10.1016/j.eswa.2011.02.021.

    Article  Google Scholar 

  • Arnau, D., Arevalillo-Herráez, M., Puig, L., & González-Calero, J. A. (2013). Fundamentals of the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Computers and Education, 63, 119–130. https://doi.org/10.1016/j.compedu.2012.11.020.

    Article  Google Scholar 

  • Bimba, A. T., Idris, N., Al-Hunaiyyan, A., Mahmud, R. B., & Shuib, N. L. B. M. (2017). Adaptive feedback in computer-based learning environments: A review. Adaptive Behavior, 25(5), 217–234. https://doi.org/10.1177/1059712317727590.

    Article  Google Scholar 

  • Boulay, B. (2016). Artificial intelligence as an effective classroom assistant, 16–21.

  • Bringula, R. P., Basa, R. S., Dela Cruz, C., & Rodrigo, M. M. T. (2015). Effects of prior knowledge in mathematics on learner-interface interactions in a learning-by-teaching intelligent tutoring system. Journal of Educational Computing Research, 54(4), 462–482. https://doi.org/10.1177/0735633115622213.

    Article  Google Scholar 

  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington: NSTA press.

  • Castro-Schez, J. J., Gallardo, J., Miguel, R., & Vallejo, D. (2017). Knowledge-based systems to enhance learning: A case study on formal languages and automata theory. Knowledge-Based Systems, 122, 180–198. https://doi.org/10.1016/j.knosys.2017.02.007.

    Article  Google Scholar 

  • Chou, C., Huang, B., & Lin, C. (2011). Complementary machine intelligence and human intelligence in virtual teaching assistant for tutoring program tracing. Computers & Education, 57(4), 2303–2312. https://doi.org/10.1016/j.compedu.2011.06.005.

    Article  Google Scholar 

  • Chrysafiadi, K., & Virvou, M. (2015). Fuzzy logic for adaptive instruction in an e-learning environment for computer programming. IEEE Transactions on Fuzzy Systems, 23(1), 164–177. https://doi.org/10.1109/TFUZZ.2014.2310242.

    Article  Google Scholar 

  • Corbett, A., Kauffman, L., Maclaren, B., Wagner, A., & Jones, E. (2010). A cognitive tutor for genetics problem solving: Learning gains and student modeling. Journal of Educational Computing Research, 42(2), 219–239. https://doi.org/10.2190/EC.42.2.e.

    Article  Google Scholar 

  • Crockett, K., Latham, A., & Whitton, N. (2017). On predicting learning styles in conversational intelligent tutoring systems using fuzzy decision trees. Journal of Human Computer Studies, 97, 98–115. https://doi.org/10.1016/j.ijhcs.2016.08.005.

  • Cunha-pérez, C., Arevalillo-herráez, M., Marco-giménez, L., & Arnau, D. (2018). On incorporating affective support to an intelligent tutoring system. An empirical study, 13(2), 63–69.

    Google Scholar 

  • Dahotre, A., Krishnamoorthy, V., Corley, M., Scaffidi, C. (2011). Using intelligent tutors to enhance student learning of application programming interfaces*, 195–201.

  • Ding, Q., & Cao, S. (2017). RECT: A cloud-based learning tool for graduate software engineering practice courses with remote tutor support, 5.

  • Dolenc, K., & Aber, B. (2015). TECH8 intelligent and adaptive e-learning system: Integration into technology and science classrooms in lower secondary schools, 82, 354–365. https://doi.org/10.1016/j.compedu.2014.12.010

  • De Bra, P. (2017). Challenges in user modeling and personalization. IEEE Intelligent Systems, 32(5), 76–80. https://doi.org/10.1109/MIS.2017.3711638.

    Article  Google Scholar 

  • Fournier-Viger, P., Nkambou, R., Nguifo, E. M., Mayers, A., & Faghihi, U. (2013). A multiparadigm intelligent tutoring system for robotic arm training. IEEE Transactions on Learning Technologies, 6(4), 364–377. https://doi.org/10.1109/TLT.2013.27.

  • Gálvez, J., Guzmán, E., Conejo, R., Mitrovic, A., Mathews, M. (2016). Data calibration for statistical-based assessment in constraint-based tutors. 97, 11–23. https://doi.org/10.1016/j.knosys.2016.01.024.

  • González, J. A., Jover, L., Cobo, E., Muñoz, P. (2010). A web-based learning tool improves student performance in statistics: A randomized masked trial, 55, 704–713. https://doi.org/10.1016/j.compedu.2010.03.003.

  • Greer, J., & Mark, M. (2016). Evaluation methods for intelligent tutoring systems revisited. International Journal of Artificial Intelligence in Education, 26(1), 387–392. https://doi.org/10.1007/s40593-015-0043-2.

    Article  Google Scholar 

  • Hatzilygeroudis, I., & Prentzas, J. (2004). Knowledge representation requirements for intelligent tutoring systems. In International Conference on Intelligent Tutoring Systems (pp. 87–97). Berlin: Springer.

    Chapter  Google Scholar 

  • Hooshyar, D., Binti Ahmad, R., Wang, M., Yousefi, M., Fathi, M., & Lim, H. (2017). Development and evaluation of a game-based bayesian intelligent tutoring system for teaching programming. Journal of Educational Computing Research, 56(6), 775–801. https://doi.org/10.1177/0735633117731872.

    Article  Google Scholar 

  • Hooshyar, D., Binti, R., Youse, M., Fathi, M., Horng, S., Lim, H. (2016). Applying an online game-based formative assessment in a flowchart-based intelligent tutoring system for improving problem-solving skills. 94, 36. https://doi.org/10.1016/j.compedu.2015.10.013.

  • Iqbal, A., Oppermann, R., Patel, A. (1999). A classification of evaluation methods for intelligent tutoring systems.

  • Jang, E. E., Lajoie, S. P., Wagner, M., Xu, Z., Poitras, E. (2017). Person-oriented approaches to profiling learners in technology-rich learning environments for ecological learner modeling. https://doi.org/10.1177/0735633116678995.

  • Jaques, P. A., Seffrin, H., Rubi, G., De Morais, F., Ghilardi, C., Bittencourt, I. I., & Isotani, S. (2013). Rule-based expert systems to support step-by-step guidance in algebraic problem solving: The case of the tutor PAT2Math. Expert Systems with Applications, 40(14), 5456–5465. https://doi.org/10.1016/j.eswa.2013.04.004.

    Article  Google Scholar 

  • Jeremić, Z., Jovanović, J., & Gašević, D. (2012). Student modeling and assessment in intelligent tutoring of software patterns. Expert Systems with Applications, 39(1), 210–222. https://doi.org/10.1016/j.eswa.2011.07.010.

  • Jovanovic, D., & Jovanovic, S. (2015). An adaptive e-learning system for Java programming course, based on Dokeos le. Computer Applications in Engineering Education, 23(3), 337–343. https://doi.org/10.1002/cae.21603.

    Article  Google Scholar 

  • Karakostas, B. (2013). A model and content-driven e-learning platform. 2013 2nd international conference on E-learning and E-Technologies in Education, ICEEE 2013, 127–130. https://doi.org/10.1109/ICeLeTE.2013.6644360.

  • Klašnja-Milićević, A., Vesin, B., Ivanović, M., & Budimac, Z. (2011). E-learning personalization based on hybrid recommendation strategy and learning style identification. Computers and Education, 56(3), 885–899. https://doi.org/10.1016/j.compedu.2010.11.001.

    Article  Google Scholar 

  • Koedinger, K. R., McLaughlin, E. A., & Heffernan, N. T. (2010). A quasi-experimental evaluation of an on-line formative assessment and tutoring system. Journal of Educational Computing Research, 43(4), 489–510. https://doi.org/10.2190/EC.43.4.d.

    Article  Google Scholar 

  • Kopp, K. J., Britt, M. A., Millis, K., & Graesser, A. C. (2012). Improving the efficiency of dialogue in tutoring. Learning and Instruction, 22, 320–330. https://doi.org/10.1016/j.learninstruc.2011.12.002.

    Article  Google Scholar 

  • Latham, A., Crockett, K., Mclean, D., & Edmonds, B. (2012). A conversational intelligent tutoring system to automatically predict learning styles. Computers & Education, 59(1), 95–109. https://doi.org/10.1016/j.compedu.2011.11.001.

    Article  Google Scholar 

  • Lazar, T., Sadikov, A., & Bratko, I. (2017). Rewrite rules for debugging student programs in programming tutors. IEEE Transactions on Learning Technologies, 11(4), 429–440. https://doi.org/10.1109/TLT.2017.2743701.

    Article  Google Scholar 

  • Lee, Y. (2010). Effects of instructional preparation strategies on problem solving in a web-based learning environment*. 42(4), 385–406. https://doi.org/10.2190/EC.42.4.b.

  • Lee, Y.-J. (2011). Utilizing formative assessments to guide student learning in an interactive physics learning environment. Journal of Educational Technology Systems, 39(3), 245–260. https://doi.org/10.2190/ET.39.3.c.

    Article  Google Scholar 

  • Mark, M. A., & Greer, J. E. (1993). Evaluation methodologies for intelligent tutoring systems. Journal of Artificial Intelligence in Education, 4, 129–129.

    Google Scholar 

  • Martens, A. (2008). Simulation in teaching and training. Encyclopedia of Information Technology Curriculum Integration, 764–770.

  • Martens, A., & Himmelspach, J. (2005). Combining intelligent tutoring and simulation systems. Proc. of the Internat. Conference on Simulation in Human Computer Interfaces, 5, 65–70.

    Google Scholar 

  • Mclaren, B. M., Deleeuw, K. E., & Mayer, R. E. (2011). Polite web-based intelligent tutors : Can they improve learning in classrooms ? Computers & Education, 56(3), 574–584. https://doi.org/10.1016/j.compedu.2010.09.019.

    Article  Google Scholar 

  • Mitrovic, A., Ohlsson, S., & Barrow, D. K. (2013). The effect of positive feedback in a constraint-based intelligent tutoring system. Computers & Education, 60(1), 264–272. https://doi.org/10.1016/j.compedu.2012.07.002.

    Article  Google Scholar 

  • Monterrat, B., & Lavoué, É. (2017). Adaptation of gaming features for motivating learners. https://doi.org/10.1177/1046878117712632.

  • Myneni, L. S., Narayanan, N. H., Rebello, S., Rouinfar, A., & Pumtambekar, S. (2013). An interactive and intelligent learning system for physics education. IEEE Transactions on Learning Technologies, 6(3), 228–239.

    Article  Google Scholar 

  • Narciss, S., Sosnovsky, S., Schnaubert, L., Andrès, E., Eichelmann, A., Goguadze, G., & Melis, E. (2014). Exploring feedback and student characteristics relevant for personalizing feedback strategies. Computers & Education, 71, 56–76. https://doi.org/10.1016/j.compedu.2013.09.011.

    Article  Google Scholar 

  • Özyurt, Ö., Özyurt, H., & Baki, A. (2013). Design and development of an innovative individualized adaptive and intelligent e-learning system for teaching–learning of probability unit: Details of UZWEBMAT. Expert Systems with Applications, 40(8), 2914–2940. https://doi.org/10.1016/j.eswa.2012.12.008.

    Article  Google Scholar 

  • Paiva, R. C., Ferreira, M. S., Mendes, A. G., Euse, A. M. J. (2015). Interactive and multimedia contents associated with a system for computer-aided assessment. https://doi.org/10.1177/0735633115571305.

  • Paravati, G., Member, S., Lamberti, F., Member, S. (2017). Point cloud-based automatic assessment of 3D computer animation courseworks. 10(4), 532–543.

  • Rajendran, R., Iyer, S., & Murthy, S. (2018). Personalized affective feedback to address students’ frustration in ITS. IEEE Transactions on Learning Technologies, 12(1), 87–97. https://doi.org/10.1109/TLT.2018.2807447.

    Article  Google Scholar 

  • Ramírez, J., Rico, M., Riofrío-Luzcando, D., Berrocal-Lobo, M., & de Antonio, A. (2018). Students’ evaluation of a virtual world for procedural training in a tertiary-education course. Journal of Educational Computing Research, 56(1), 23–47. https://doi.org/10.1177/0735633117706047.

    Article  Google Scholar 

  • Rau, M. A., Michaelis, J. E., & Fay, N. (2015). Connection making between multiple graphical representations: A multi-methods approach for domain-specific grounding of an intelligent tutoring system for chemistry. Computers and Education, 82, 460–485. https://doi.org/10.1016/j.compedu.2014.12.009.

    Article  Google Scholar 

  • Riofrío-Luzcando, D., Ramirez, J., & Berrocal-Lobo, M. (2017). Predicting student actions in a procedural training environment. IEEE Transactions on Learning Technologies, 10(4), 463–474.

    Article  Google Scholar 

  • Rodrigo, M. M. T., Baker, R. S. J. D., Agapito, J., Nabos, J., Concepcion Repalam, M., Reyes Jr., S. S., & San Pedro, M. O. C. Z. (2012). The effects of an interactive software agent on student affective dynamics while using an intelligent tutoring system. IEEE Transactions on Affective Computing, 3(2), 224–236. https://doi.org/10.1109/T-AFFC.2011.41.

    Article  Google Scholar 

  • Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students’ help-seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21(2), 267–280. https://doi.org/10.1016/j.learninstruc.2010.07.004.

    Article  Google Scholar 

  • Sehrawat, A., Keelan, R., Shimada, K., Wilfong, D. M., McCormick, J. T., & Rabin, Y. (2016). Simulation-based cryosurgery intelligent tutoring system prototype. Technology in Cancer Research and Treatment, 15(2), 396–407. https://doi.org/10.1177/1533034615583187.

    Article  Google Scholar 

  • Van Seters, J. R., Ossevoort, M. A., Tramper, J., & Goedhart, M. J. (2012). The influence of student characteristics on the use of adaptive e-learning material. Computers & Education, 58(3), 942–952. https://doi.org/10.1016/j.compedu.2011.11.002.

    Article  Google Scholar 

  • Trenas, M. A., Ramos, J., Gutierrez, E. D., Romero, S., & Corbera, F. (2011). Use of a new moodle module for improving the teaching of a basic course on computer architecture. IEEE Transactions on Education, 54(2), 222–228.

    Article  Google Scholar 

  • Vaessen, B. E., Prins, F. J., & Jeuring, J. (2014). University students ’ achievement goals and help-seeking strategies in an intelligent tutoring system. Computers & Education, 72, 196–208. https://doi.org/10.1016/j.compedu.2013.11.001.

    Article  Google Scholar 

  • VanLehn, K., Wetzel, J., Grover, S., & Van De Sande, B. (2017). Learning how to construct models of dynamic systems: An initial evaluation of the dragoon intelligent tutoring system. IEEE Transactions on Learning Technologies, 10(2), 154–167.

    Article  Google Scholar 

  • Wang, D., Han, H., Zhan, Z., Xu, J., Liu, Q., & Ren, G. (2015). A problem solving oriented intelligent tutoring system to improve students’ acquisition of basic computer skills. Computers and Education, 81, 102–112. https://doi.org/10.1016/j.compedu.2014.10.003.

    Article  Google Scholar 

  • Zhang, L., Vanlehn, K., Girard, S., Burleson, W., Chavez-echeagaray, M. E., Gonzalez-sanchez, J., & Hidalgo-pontet, Y. (2014). Evaluation of a meta-tutor for constructing models of dynamic systems. Computers & Education, 75, 196–217. https://doi.org/10.1016/j.compedu.2014.02.015.

    Article  Google Scholar 

Download references

Acknowledgments

All electronic versions of the articles were supplied by Kuwait University library, by searching the databases they provided on their website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa Alabdulhadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 14 A list of included papers in our review and their assigned name and number IDS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alabdulhadi, A., Faisal, M. Systematic literature review of STEM self-study related ITSs. Educ Inf Technol 26, 1549–1588 (2021). https://doi.org/10.1007/s10639-020-10315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10639-020-10315-z

Keywords