Skip to main content
Log in

What to do and what to avoid on the use of gamified intelligent tutor system for low-income students

  • Published:
Education and Information Technologies Aims and scope Submit manuscript

Abstract

Educational indicators have revealed that a significant portion of Brazilian Basic Education students have a less than satisfactory skill level in reading and solving Mathematics problems. Despite several proven benefits, adaptive learning technologies are scarcely used with low-income students in public schools’ due unavailable resources and lack of technological infrastructure. Nonetheless, there is a great expectation that the access to new technologies will assist and improve teaching practices and contribute to enhance learning performance. This study aimed to identify good and bad pedagogical practices from teaching and learning processes using a gamified Intelligent Tutor System (ITS) in Elementary Education. In order to achieve this goal, a case study was conducted with a qualitative research approach based on observations made in classrooms in a 9 months period and the application of Framework Analysis as a data analysis technique involving 6 teachers and 112 students aged between 9 and 21 years old from public schools in Brazil. Results presented provide evidence of significant improvement in the domain of Portuguese Language and Mathematical skills. The highlights of the paper are the seven good practices and six bad pedagogical practices with the use of gamified ITS. Additionally, while gamified ITS are important to improve learning and promote more engagement, this study also sheds light on the importance of using gamified ITS aligned with the school curriculum and a clear intervention proposal instead of voluntary use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • AbuEloun, N. N., & Abu Naser, S. S. (2017). Mathematics Intelligent Tutoring System. International Journal of Advanced Scientific Research, 2(1), 11–16.

    Google Scholar 

  • Alsawaier, R. S. (2018). The effect of gamification on motivation and engagement. International Journal of Information and Learning Technology, 35(1), 56–79. https://doi.org/10.1108/IJILT-02-2017-0009

    Article  Google Scholar 

  • Amanda, N., Andersena, F., Christian, R., Warnars, H. L. H. S., Ramadhan, A., Putra, A. S., Noordin, N., Utomo, W. H. (2021). Learning Math for 1st Grade Primary School Students using Intelligent Tutoring Systems. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 2020–2030. https://doi.org/10.17762/turcomat.v12i6.4806

  • Andrade, F. R., Pedro, L. Z., Lopes, A. M. Z., Bittencourt, I. I., & Isotani, S. (2013). Desafio do Uso de Gamificação em Sistemas Tutores Inteligentes Baseados em Web Semântica. In XXXIII Congresso da Sociedade Brasileira de Computação (Vol. 1, pp. 1453–1462).

  • Azevedo, O., de Morais, F., & Jaques, P. A. (2018). Exploring gamification to prevent gaming the system and help refusal in tutoring systems. In European conference on technology enhanced learning (pp. 231–244). Springer, Cham. https://doi.org/10.1007/978-3-319-98572-5_18

  • Barbosa, A. F. (2016). Pesquisa sobre o uso das tecnologias de informação e comunicação nas escolas brasileiras: tic educação 2015. São Paulo: Comitê Gestor da Internet no Brasil.

  • Brasil. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2018). Relatório do 2º Ciclo de Monitoramento das Metas do Plano Nacional de Educação – 2018. Brasília, DF: INEP.

  • Brasil. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2020). Relatório Brasil no PISA 2018. Brasília: Inep/MEC.

  • Brusilovsky, P., Malmi, L., Hosseini, R., et al. (2018). An integrated practice system for learning programming in Python: Design and evaluation. RPTEL, 13, 18. https://doi.org/10.1186/s41039-018-0085-9

    Article  Google Scholar 

  • Cakir, R. (2019). Effect of Web-Based Intelligence Tutoring System on Students' Achievement and Motivation. Malaysian Online Journal of Educational Technology, 7(4), 45–59. https://doi.org/10.17220/mojet.2019.04.004

  • Couto, G., & Primi, R. (2011). Teoria de resposta ao item (TRI): Conceitos elementares dos modelos para itens dicotômicos. Boletim De Psicologia, 61(134), 1–15.

    Google Scholar 

  • Creswell, J. W. (2010). Projeto de Pesquisa: métodos qualitativo, quantitativo e misto. 3ª ed. – Porto Alegre: Artmed.

  • Cristea, A. I., Bittencourt, I. I., & Lima, F. (Eds.). (2018). Higher Education for All. From Challenges to Novel Technology-Enhanced Solutions: First International Workshop on Social, Semantic, Adaptive and Gamification Techniques and Technologies for Distance Learning, HEFA 2017, Maceió, Brazil, March 20–24, 2017, Revised Selected Papers (Vol. 832). Springer. https://doi.org/10.1007/978-3-319-97934-2

  • De-Marcos, L., Domínguez, A., Saenz-de-Navarrete, J., & Pagés, C. (2014). An empirical study comparing gamification and social networking on e-learning. Computers & Education, 75, 82–91. https://doi.org/10.1016/j.compedu.2014.01.012

    Article  Google Scholar 

  • Denny, P., McDonald, F., Empson, R., Kelly, P., & Petersen, A. (2018). Empirical support for a causal relationship between gamification and learning outcomes. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–13). https://doi.org/10.1145/3173574.3173885

  • Dermeval, D., & Bittencourt, I. I. (2020). Co-designing Gamified Intelligent Tutoring Systems with Teachers. Brazilian Journal of Computers in Education (Revista Brasileira de Informática na Educação - RBIE), 28, 73–91. https://doi.org/10.5753/rbie.2020.28.0.73

  • Dermeval, D., Lima, I., Castro, M., Couto, H., Gomes, D., Peixoto, A., & Bittencourt, I. I. (2019). Helping teachers design gamified intelligent tutoring systems. In 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT) (Vol. 2161, pp. 60–62). IEEE. https://doi.org/10.1109/ICALT.2019.00024

  • Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: defining gamification. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments (pp. 9–15). ACM. https://doi.org/10.1145/2181037.2181040

  • Feng M., Cui W., Wang S. (2018) Adaptive Learning Goes to China. In: Penstein Rosé C. et al. (eds) Artificial Intelligence in Education. AIED 2018. Lecture Notes in Computer Science, vol 10948. Springer, Cham. https://doi.org/10.1007/978-3-319-93846-2_17

  • Ghali, M. A., & Ayyad Abu-Naser Laban, A. A. S. S. M. A. (2018). An Intelligent Tutoring System for Teaching English Grammar. International Journal of Academic Engineering Research (IJAER), 2(2), 1–6

    Google Scholar 

  • González, C., Mora, A., & Toledo, P. (2014). Gamification in intelligent tutoring systems. In Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 221–225). ACM. https://doi.org/10.1145/2669711.2669903

  • Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance. Computers & Education, 80, 152–161. https://doi.org/10.1016/j.compedu.2014.08.019

    Article  Google Scholar 

  • Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S. B., Santos, O. C., Rodrigo, M. T., Cukurova, M., Bittencourt, I. I., Koedinger, K. R. (2021). Ethics of AI in education: towards a community-wide framework. International Journal of Artificial Intelligence in Education, 1-23.https://doi.org/10.1007/s40593-021-00239-1

  • Jagušt, T., Botički, I., & So, H. J. (2018). Examining competitive, collaborative and adaptive gamification in young learners’ math learning. Computers & Education, 125, 444–457. https://doi.org/10.1016/j.compedu.2018.06.022

    Article  Google Scholar 

  • Johnson, L., Becker, S. A., Estrada, V., & Freeman, A. (2015). NMC horizon report: 2015 K (Vol. 6101). New Media Consortium.

  • Kamunya, S., Mirirti, E., Oboko, R., & Maina, E. (2020). An Adaptive Gamification Model for E-Learning. In 2020 IST-Africa Conference (IST-Africa) (pp. 1–10). IEEE.

  • Kapp, K. M. (2012). The gamification of learning and instruction: Game-based methods and strategies for training and education. John Wiley & Sons.

    Google Scholar 

  • Karaci, A., Akyüz, H. I., Bilgici, G., & Arici, N. (2018). Effects of Web-Based Intelligent Tutoring Systems on Academic Achievement and Retention. Online Submission, 181(16), 35–41.

    Google Scholar 

  • King, C. L., Warnars, H. L., Nordin, N., & Utomo, W. H. (2021). Intelligent Tutoring System: Learning Math for 6th-Grade Primary School Students. Education Research International. https://doi.org/10.1155/2021/5590470

    Article  Google Scholar 

  • Lacey, A.; Luff, D. (2009). Qualitative Research Analysis. The NIHR RDS for the East.

  • Loja-Argudo, P., González-Arias, K., Robles-Bykbaev, V., & Suquilanda-Cuesta, P. (2020). Intelligent tutor system to provide automated support to learning pre-reading concepts for children from 5 to 7. In 2020 IEEE ANDESCON (pp. 1–6). IEEE. https://doi.org/10.1109/ANDESCON50619.2020.9272179

  • Lopes, A. M. M., de Magalhães Netto, J. F., de Souza, R. A., Mourão, A. B., Almeida, T. O., & de Lima, D. P. (2019). Improving Students Skills to Solve Elementary Equations in K-12 Programs Using an Intelligent Tutoring System. In 2019 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE. https://doi.org/10.1109/FIE43999.2019.9028363

  • Lüdke, Menga; André, Marli E. D. A. (2013). Pesquisa em educação: abordagens qualitativas. 2ª ed. – Rio de Janeiro: E.P.U.

  • Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 901. https://doi.org/10.1037/a0037123

    Article  Google Scholar 

  • Marinho, A., Bittencourt, I. I., dos Santos, W. O. & Dermeval, D. (2019). Does Gamification Improve Flow Experience in Classroom? An Analysis of Gamer Types in Collaborative and Competitive Settings. Brazilian Journal of Computers in Education (Revista Brasileira de Informática na Educação - RBIE), 27(2), 40–68. https://doi.org/10.5753/rbie.2019.27.02.40

  • Mitrović A., Holland J. (2020) Effect of Non-mandatory Use of an Intelligent Tutoring System on Students’ Learning. In: Bittencourt I., Cukurova M., Muldner K., Luckin R., Millán E. (eds) Artificial Intelligence in Education. AIED 2020. Lecture Notes in Computer Science, vol 12163. Springer, Cham. https://doi.org/10.1007/978-3-030-52237-7_31

  • Montgomery, D. C. (2013). Design and analysis of experiments. John wiley & sons.

  • Mui Lee, H., & Loo, P. A. (2021). Gamification of Learning in Early Age Education. Journal La Edusci, 2(2), 44–50. https://doi.org/10.37899/journallaedusci.v2i2.380

  • OECD. (2019). PISA 2018 Results: Excellence and Equity in Education (Vol. I). OECD Publishing.

    Book  Google Scholar 

  • Paiva, R., Bittencourt, I. I., Tenório, T., Jaques, P., & Isotani, S. (2016). What do students do on-line? Modeling students’ interactions to improve their learning experience. Computers in Human Behavior, 64, 769–781. https://doi.org/10.1016/j.chb.2016.07.048

    Article  Google Scholar 

  • Paiva R., Bittencourt I.I. (2020). Helping Teachers Help Their Students: A Human-AI Hybrid Approach. In: Bittencourt I., Cukurova M., Muldner K., Luckin R., Millán E. (eds) Artificial Intelligence in Education. AIED 2020. Lecture Notes in Computer Science, vol 12163. Springer, Cham. https://doi.org/10.1007/978-3-030-52237-7_36

  • Pascual, R. M. (2020). Effectiveness of an Automated Reading Tutor Design for Filipino Speaking Children. In 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC) (pp. 1–5). IEEE. https://doi.org/10.1109/R10-HTC49770.2020.9357059

  • QEdu. (2021). Portal QEdu. Available at: http://qedu.org.br/. Accessed 20 Apr 2021.

  • Rachels, J. R., & Rockinson-Szapkiw, A. J. (2018). The effects of a mobile gamification app on elementary students’ Spanish achievement and self-efficacy. Computer Assisted Language Learning, 31(1–2), 72–89. https://doi.org/10.1080/09588221.2017.1382536

    Article  Google Scholar 

  • Reich, J. (2021). Ed tech’s failure during the pandemic, and what comes after. Phi Delta Kappan, 102(6), 20–24. https://doi.org/10.1177/0031721721998149

    Article  Google Scholar 

  • Ritchie, J.; Spencer, L. (1994). Qualitative Data Analysis for Applied Policy Research. In A. Bryman and R. Burgess (Eds). Analyzing Qualitative Data, London: Sage.

  • Rocha Seixas, L., Gomes, A. S., & de Melo Filho, I. J. (2016). Effectiveness of gamification in the engagement of students. Computers in Human Behavior, 58, 48–63. https://doi.org/10.1016/j.chb.2015.11.021

    Article  Google Scholar 

  • Sailer, M., & Homner, L. (2020). The Gamification of Learning: A Meta-analysis. Educational Psychology Review, 32, 77–112. https://doi.org/10.1007/s10648-019-09498-w

    Article  Google Scholar 

  • Santana, S. J., Paiva, R., Bittencourt, I. I., Ospina, P. E., de Amorim Silva, R., & Isotani, S. (2016a). Evaluating the impact of Mars and Venus Effect on the use of an Adaptive Learning Technology for Portuguese and Mathematics. In Advanced Learning Technologies (ICALT), 2016 IEEE 16th International Conference on (pp. 31–35). IEEE. https://doi.org/10.1109/ICALT.2016.58

  • Santana, S. J., Souza, H. A., Florentin, V. A., Paiva, R., Bittencourt, I. I., & Isotani, S. (2016b). A quantitative analysis of the most relevant gamification elements in an online learning environment. In Proceedings of the 25th international conference companion on world wide web (pp. 911–916). https://doi.org/10.1145/2872518.2891074

  • Spencer, L., & Ritchie, J. (2002). Qualitative data analysis for applied policy research. In Analyzing qualitative data (pp. 187–208). Routledge.

  • Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. Journal of Educational Psychology, 106(2), 331. https://doi.org/10.1037/a0034752

    Article  Google Scholar 

  • Tenório, M. M., Lopes, R. P., Góis, L. A. de, & Junior, G. dos S. (2018). Influence of Gamification on Khan Academy in Brazilian High School. PUPIL: International Journal of Teaching, Education and Learning, 2(2), 51–65. https://doi.org/10.20319/pijtel.2018.22.5165

  • Tenório, K., Dermeval, D., Challco, G., Lemos, B., Nascimento, P., Santos, R., & Silva, A. (2020). An Evaluation of the GamAnalytics Tool: Is the Gamification Analytics Model Ready for Teachers?. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, (pp. 562–571). Porto Alegre: SBC. https://doi.org/10.5753/cbie.sbie.2020.562

  • United Nations Children’s Fund and International Telecommunication Union. (2020). How many children and young people have internet access at home? Estimating digital connectivity during the COVID-19 pandemic. UNICEF.

    Google Scholar 

  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369

    Article  Google Scholar 

  • Yudelson, M. V., Koedinger, K. R., & Gordon, G. J. (2013). Individualized bayesian knowledge tracing models. In International conference on artificial intelligence in education (pp. 171–180). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaldo Joaquim.

Ethics declarations

Conflict of Interest

• The authors have no relevant financial or non-financial interests to disclose.

• The authors have no conflicts of interest to declare that are relevant to the content of this article.

• All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

• The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joaquim, S., Bittencourt, I.I., de Amorim Silva, R. et al. What to do and what to avoid on the use of gamified intelligent tutor system for low-income students. Educ Inf Technol 27, 2677–2694 (2022). https://doi.org/10.1007/s10639-021-10728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10639-021-10728-4

Keyword