Skip to main content

Advertisement

Log in

An improved hybrid particle swarm optimization algorithm applied to economic modeling of radio resource allocation

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

An operational economic model for radio resource allocation in the downlink of a multi-cell WCDMA (acronym for wideband code division multiple access). system is developed in this paper, and a particle swarm optimization (PSO) based approach is proposed for its solution. Firstly, we develop an economic model for resource allocation that considers the utility of the provided service, the acceptance probability of the service by the users and the revenue generated for the network operator. Then, we introduce a constrained hybrid PSO algorithm, called improved hybrid particle swarm optimization (I-HPSO), in order to find feasible solutions to the problem. We compare the performance of the I-HPSO algorithm with those achieved by the original HPSO algorithm and by standard metaheuristic optimization techniques, such as hill climbing, simulated annealing, standard PSO and genetic algorithms. The obtained results indicate that the proposed approach achieves superior performance than the conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Acronim for global system for mobile communications.

References

  1. Badia, L., & Zorzi, M. (2004). On utility-based radio resource management with and without service guarantees. In Proceedings of the 7th ACM international symposium on modeling, analysis and simulation of wireless and mobile systems (MSWiM’04) (pp. 244–251).

    Google Scholar 

  2. Badia, L., Lindström, M., Zander, J., & Zorzi, M. (2003). Demand and pricing effects on the radio resource allocation of multimedia communication systems. In Proceedings of the IEEE Globecom’2003 (Vol. 7, pp. 4116–4121).

    Google Scholar 

  3. Badia, L., Lindström, M., Zander, J., & Zorzi, M. (2004). An economic model for the radio resource management in multimedia wireless systems. Computer Communications, 27(11), 1056–1064.

    Article  Google Scholar 

  4. Badia, L., Saturni, C., Brunetta, L., & Zorzi, M. (2005). An optimization framework for radio resource management based on utility vs. price tradeoff in WCDMA systems. In Proceedings of the 3rd international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (pp. 404–412). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  5. Barkat Ullah, A., Sarker, R., & Lokan, C. (2011). Handling equality constraints with agent-based memetic algorithms. Memetic Computing, 1–22.

  6. Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm optimization. In Proceedings of the IEEE swarm intelligence symposium, Honolulu, Hawaii (pp. 120–127).

    Google Scholar 

  7. Chen, L., & Yuan, D. (2010). Solving a minimum-power covering problem with overlap constraint for cellular network design. European Journal of Operational Research, 203(3), 714–723.

    Article  Google Scholar 

  8. Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.

    Article  Google Scholar 

  9. Del Re, E., Fantacci, R., & Giambene, G. (1999). Performance evaluation of different resource management strategies in mobile cellular networks. Telecommunications Systems, 12, 315–340.

    Article  Google Scholar 

  10. Elayoubi, S. E., Chahed, T., & Salahaldin, L. (2005). Optimization of radio resource management schemes in UMTS using pricing. Computer Communications, 28(15), 1761–1769.

    Article  Google Scholar 

  11. Elmaghraby, A. S., Kumar, A., Kantardzic, M. M., & Mostafa, M. G. (2005). A scalable pricing model for bandwidth allocation. Electronic Commerce Research, 5(2), 203–227.

    Article  Google Scholar 

  12. Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549.

    Article  Google Scholar 

  13. He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422.

    Article  Google Scholar 

  14. Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  15. Holma, H., & Toskala, A. (2010). WCDMA for UMTS: HSMA evolution LTE (5th ed.). New York: Wiley.

    Book  Google Scholar 

  16. Hung, H. L. (2012). Interference cancellation for HNNPSO multiuser detection of UWB systems over multipath fading channel. Telecommunications Systems. doi:10.1007/s11235-011-9634-x, 13 pp.

    Google Scholar 

  17. Jin, N., & Rahmat-Samii, Y. (2005). Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Transactions on Antennas and Propagation, 53(11), 3459–3468.

    Article  Google Scholar 

  18. Kastro, Y., Işıklar, G., & Bener, A. (2010). Resource allocation in cellular networks based on marketing preferences. Wireless Networks, 16(1), 27–38.

    Article  Google Scholar 

  19. Kelif, J., Altman, E., & Koukoutsidis, I. (2007). Admission and GoS control in a multiservice WCDMA system. Computer Networks, 51(3), 699–711.

    Article  Google Scholar 

  20. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks, Piscataway, NJ, USA (Vol. 4, pp. 1942–1948).

    Chapter  Google Scholar 

  21. Kirkpatrick, S., Gelatt, C. D. Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  22. Ko, C., & Wei, H. (2010). Game theoretical resource allocation for inter-BS coexistence in IEEE 802.22. IEEE Transactions on Vehicular Technology, 59(4), 1729–1744.

    Article  Google Scholar 

  23. Marchand, N., & Jacobsen, H. A. (2001). An economic model to study dependencies between independent software vendors and application service providers. Electronic Commerce Research, 1(3), 315–334.

    Article  Google Scholar 

  24. Mehta, N. B., Molisch, A. F., & Greenstein, L. J. (2005). Orthogonality factor in WCDMA downlinks in urban macrocellular environments. IEEE Transactions on Wireless Communications, 2, 621–625.

    Google Scholar 

  25. Mendes, S., Molina, G., Vega-Rodriguez, M., Gómez-Pulido, J., Sáez, Y., Miranda, G., Segura, C., Alba, E., Isasi, P., León, C., & Sánchez-Pérez, J. M. (2009). Benchmarking a wide spectrum of metaheuristic techniques for the radio network design problem. IEEE Transactions on Evolutionary Computation, 13(5), 1133–1150.

    Article  Google Scholar 

  26. Mitchell, M. (1999). Introduction to genetic algorithms (5th ed.). Cambridge: MIT Press.

    Google Scholar 

  27. Nasreddine, J., Pérez-Romero, J., Salient, O., & Agusti, R. (2008). Simulated annealing-based advanced spectrum management methodology for WCDMA systems. In Proceedings of the IEEE international conference on communications (ICC’08) (pp. 2625–2631).

    Chapter  Google Scholar 

  28. Neto, R. A. O., & Cavalcanti, F. R. P. (2007). Economic aspects of radio resource management. In Proceedings of the 25th Brazilian symposium on telecommunications (SBrT’07) (In Portuguese).

    Google Scholar 

  29. Pedersen, K. I., & Mogensen, P. E. (2002). The downlink orthogonality factors influence on WCDMA system performance. In IEEE vehicular technology conference (Vol. 4, pp. 2061–2065).

    Google Scholar 

  30. Pedersen, M. E. H., & Chipperfield, A. J. (2010). Simplifying particle swarm optimization. Applied Soft Computing, 10(2), 618–628.

    Article  Google Scholar 

  31. Pei, X., Zhu, G., Wang, Q., Qu, D., & Liu, J. (2010). Economic model-based radio resource management with QoS guarantees in the CDMA uplink. European Transactions on Telecommunications, 21(2), 178–186.

    Google Scholar 

  32. Peng, M., Wang, W., & Zhang, J. (2009). Investigation of capacity and call admission control schemes in TD-SCDMA uplink systems employing smart antenna techniques. Wireless Communications and Mobile Computing, 10(2), 241–256.

    Google Scholar 

  33. Pérez-Romero, J., Sallent, O., & Agustí, R. (2009). A novel approach to smart multi-cell radio resource management based on load gradient calculations. Wireless Networks, 15(6), 709–726.

    Article  Google Scholar 

  34. Russel, S. J., & Norvig, P. (1996). Artificial intelligence: a modern approach. New York: Prentice-Hall.

    Google Scholar 

  35. Segura, C., Miranda, G., & León, C. (2011). Parallel hyperheuristics for the frequency assignment problem. Memetic Computing, 3(1), 33–49.

    Article  Google Scholar 

  36. Stanczak, S., Kaliszan, M., Bambos, N., & Wiczanowski, M. (2009). A characterization of max-min SIR-balanced power allocation with applications. In Proceedings of the 2009 IEEE international conference on symposium on information theory (ISIT’2009) (pp. 2747–2751).

    Chapter  Google Scholar 

  37. Suman, B., & Kumar, P. (2005). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society, 57(10), 1143–1160.

    Article  Google Scholar 

  38. Varian, H. (1999). Intermediate microeconomics: a modern approach. New York: Norton.

    Google Scholar 

  39. Xiao, M., Shroff, N., & Chong, E. (2003). A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Transactions on Networking, 11(2), 210–221.

    Article  Google Scholar 

  40. Yu, F., & Krishnamurthy, V. (2005). Efficient radio resource management in integrated WLAN/CDMA mobile networks. Telecommunications Systems, 30(1), 177–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme A. Barreto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattos, C.L.C., Barreto, G.A. & Cavalcanti, F.R.P. An improved hybrid particle swarm optimization algorithm applied to economic modeling of radio resource allocation. Electron Commer Res 14, 51–70 (2014). https://doi.org/10.1007/s10660-013-9128-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-013-9128-x

Keywords

Navigation