Skip to main content

Advertisement

Log in

Predicting repurchase intention for online clothing brands in Taiwan: quality disconfirmation, satisfaction, and corporate social responsibility

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

This study examined the antecedents influencing customer satisfaction and repurchase intention for online clothing brands from the viewpoint of expectation-disconfirmation theory. We developed an extended model to explain repurchase intention, taking into consideration disconfirmed quality expectation as well as the concept of corporate social responsibility (CSR). Our empirical results show that offline features have a significant effect on satisfaction while online features have only limited effects. Satisfaction and CSR both exert a significant effect on repurchase intention. These results have implications for researchers as well as practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Aaker, D. A. (1996). Measuring brand equity across products and markets. California Management Review, 38(3), 102–120.

    Article  Google Scholar 

  2. Adam, A. M., Aderet, A., & Sadeh, A. (2007). Do ethics matter to e-consumers? Journal of Internet Commerce, 6(2), 19–34.

    Article  Google Scholar 

  3. Ahn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405–420.

    Article  Google Scholar 

  4. Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12(2), 125–143.

    Article  Google Scholar 

  5. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588.

    Article  Google Scholar 

  6. Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351–370.

    Article  Google Scholar 

  7. Bhattacherjee, A. (2002). Individual trust in online firms: Scale development and initial test. Journal of Management Information Systems, 19(1), 211–241.

    Google Scholar 

  8. Bliemel, F., Eggert, A., Fassott, G., & Henseler, J. (2005). PLS und Kovarianzstrukturanalyse im Vergleich. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch PLS-Pfadmodellierung Methoden, Anwendungen, Praxisbeispiele (S. 916). Stuttgart: Schäffer-Poeschel Verlag.

  9. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Book  Google Scholar 

  10. Brunk, K. H. (2010). Exploring origins of ethical company/brand perceptions—A consumer perspective of corporate ethics. Journal of Business Research, 63, 255–262.

    Article  Google Scholar 

  11. Carroll, A. B. (1979). A three-dimensional conceptual model of corporate performance. The Academy of Management Review, 4(4), 497–505.

    Google Scholar 

  12. Carvalho, S., Sen, S., Oliveira Mota, M., & Lima, R. (2010). Consumer reactions to CSR: A Brazilian perspective. Journal of Business Ethics, 91, 291–310.

    Article  Google Scholar 

  13. Chavan, R. B. (2003). Manual on quality assurance for Khadi, Mahatma Gandhi Institute of Rural Industrialization a Collaborative Project of KVIC & IITD, New Delhi.

  14. Chen, C. F. (2008). Investigating structural relationships between service quality, perceived value, satisfaction, and behavioral intentions for air passengers: Evidence from Taiwan. Transportation Research Part A: Policy and Practice, 42(4), 709–717.

    Google Scholar 

  15. Dabholkar, P. A., Shepherd, C. D., & Thorpe, D. I. (2000). A comprehensive framework for service quality: An investigation of critical conceptual and measurement issues through a longitudinal study. Journal of Retailing, 76(2), 139–173.

    Article  Google Scholar 

  16. DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30.

    Google Scholar 

  17. Delone, W. H., & Mclean, E. R. (2004). Measuring e-commerce success: Applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31–47.

    Google Scholar 

  18. Deng, L., Turner, D. E., Gehling, R., & Prince, B. (2010). User experience, satisfaction, and continual usage intention of IT. European Journal of Information Systems, 19, 60–75.

    Article  Google Scholar 

  19. Dodds, W. B. (2002). The effects of perceived and objective market cues on consumers’ product evaluations. Marketing Bulletin, 13, 1–14.

    Google Scholar 

  20. Eisingerich, A. B., Rubera, G., Seifert, M., & Bhardwaj, G. (2011). Doing good and doing better despite negative information? The role of corporate social responsibility in consumer resistance to negative information. Journal of Service Research, 14(1), 60–75.

    Article  Google Scholar 

  21. Esch, F., Langner, T. B., Schmitt, H., & Geus, P. (2006). Are brands forever? How brand knowledge and relationships affect current and future purchases. The Journal of Product and Brand Management, 15(2), 98–105.

    Article  Google Scholar 

  22. Fang, Y. H., Chiu, C. M., & Wang, Eric T. G. (2011). Emerald article: Understanding customers’ satisfaction and repurchase intentions: An integration of IS success model, trust, and justice. Internet Research, 21(4), 479–503.

    Article  Google Scholar 

  23. Fliess, B., Lee, H., Dubreuil, O. L., & Agatiello, O. R. (2007). CSR and trade: Informing consumers about social and environmental conditions of globalised production. OECD Trade Policy Papers, Part 1(47). Paris: OECD.

  24. Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.

    Article  Google Scholar 

  25. Freeman, R. E., Wicks, A. C., & Parmar, B. (2004). Stakeholder theory and the corporate objective revisited. Organization Science, 15(3), 364–369.

    Article  Google Scholar 

  26. García de los Salmones, M. M., Pérez, A., & Rodríguez del Bosque, I. (2009). The social role of financial companies as a determinant of consumer behaviour. International Journal of Bank Marketing, 27(6), 467–485.

    Article  Google Scholar 

  27. Grace, D., & Cohen, S. (2009). Business ethics: Australian problems and cases. New York: Oxford University Press.

    Google Scholar 

  28. Ha, H.-Y., John, J., Janda, S., & Muthaly, S. (2011). The effect of advertising spending on brand loyalty in services. European Journal of Marketing, 45(4), 673–691.

    Article  Google Scholar 

  29. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  30. Hsieh, C. C., Kuo, P. L., Yang, S. C., & Lin, S. H. (2010). Assessing blog-user satisfaction using the expectation and disconfirmation approach. Computers in Human Behavior, 26(6), 1434–1444.

    Article  Google Scholar 

  31. Hsu, M. H., Yen, C. H., Chiu, C. M., & Chang, C. M. (2006). A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. International Journal of Human-Computer Studies, 64(9), 889–904.

    Article  Google Scholar 

  32. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  33. Jang, J. H., Kim, S. W., Lee, Y. S., & Kim, J. S. (2013). The effects of relationship benefit on relationship quality and store loyalty from convergence environments—NPS analysis and moderating effects. Electronic Commerce Research, 13(3), 291–315.

    Article  Google Scholar 

  34. Kassim, A. W. M., Igau, O. A., Harun, A., & Tahajuddin, S. (2014). Mediating effect of customer satisfaction on perceived product quality, perceived value, and their relation to brand loyalty. International Journal of Research in Management & Business Studies, 1(2), 13–18.

    Google Scholar 

  35. Keating, B., Rugimband, R., & Quzai, A. (2003). Differentiating between service quality and relationship quality in cyberspace. Managing Service Quality, 13(3), 217–232.

    Article  Google Scholar 

  36. Kim, J. B. (2012). An empirical study on consumer first purchase intention in online shopping: Integrating initial trust and TAM. Electronic Commerce Research, 12(2), 125–150.

    Article  Google Scholar 

  37. Kim, S., Littrell, M. A., & Ogle, J. L. P. (1999). Academic papers: The relative importance of social responsibility as a predictor of purchase intentions for clothing. Journal of Fashion Marketing and Management, 3(3), 207–218.

    Article  Google Scholar 

  38. Klein, J., & Dawar, N. (2004). Corporate social responsibility and consumers’ attributions and brand evaluations in a product–harm crisis. International Journal of Research in Marketing, 21(3), 203–217.

    Article  Google Scholar 

  39. Koh, J., & Kim, Y. G. (2003). Sense of virtual community: A conceptual framework and empirical validation. International Journal of Electronic Commerce, 8(2), 75–93.

    Google Scholar 

  40. Kuo, Y. F. (2003). A study on service quality of virtual community web sites. Total Quality Management, 14(4), 461–473.

    Article  Google Scholar 

  41. Lee, G. G., & Lin, H. F. (2005). Customer perceptions of e-service quality in online shopping. International Journal of Retail and Distribution Management, 33(2), 161–176.

    Article  Google Scholar 

  42. Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation-confirmation model. Computers & Education, 54(2), 506–516.

    Article  Google Scholar 

  43. Levesque, T., & McDougall, G. H. G. (1996). Determinants of customer satisfaction in retail banking. International Journal of Bank Marketing, 14(7), 12–20.

    Article  Google Scholar 

  44. Liao, C., Liu, C. C., Liu, Y. P., To, P. L., & Lin, H. N. (2011). Applying the expectancy disconfirmation and regret theories to online consumer behavior. Cyberpsychology, Behavior, and Social Networking, 14(4), 241–246.

    Article  Google Scholar 

  45. Lin, H. F. (2007). Measuring online learning systems success: Applying the updated DeLone and McLean model. CyberPsychology and Behavior, 10(6), 817–820.

    Article  Google Scholar 

  46. Lin, H. F. (2007). The role of online and offline features in sustaining virtual communities: An empirical study. Internet Research, 17(2), 119–138.

    Article  Google Scholar 

  47. Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with website success in the context of electronic commerce. Information & Management, 38(1), 23–33.

    Article  Google Scholar 

  48. Lorena, B. A., Blanca, H. O., & Julio, J. M. (2013). Adopting television as a new channel for e-commerce. The influence of interactive technologies on consumer behavior. Electronic Commerce Research, 13(4), 457–475.

    Article  Google Scholar 

  49. Luo, X., & Bhattacharya, C. B. (2006). Corporate social responsibility, customer satisfaction, and market value. Journal of Marketing, 70(4), 1–18.

    Article  Google Scholar 

  50. Maignan, I., Ferrell, O. C., & Hult, G. T. (1999). Corporate citizenship: Cultural antecedents and business benefits. Journal of the Academy of Marketing Science, 27(4), 455–469.

    Article  Google Scholar 

  51. Matei, S. (2004). The impact of state-level social capital on the emergence of virtual communities. Journal of Broadcasting and Electronic Media, 48(1), 23–40.

    Article  Google Scholar 

  52. Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199–235.

    Google Scholar 

  53. Norusis, M. J. (2000). The SPSS guide to data analysis for SPSS/PC. Chicago, IL: SPSS.

    Google Scholar 

  54. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  55. Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460–469.

    Article  Google Scholar 

  56. Oliver, R. L., & Burke, R. R. (1999). Expectation processes in satisfaction formation a field study. Journal of Service Research, 1(3), 196–214.

    Article  Google Scholar 

  57. Ostrom, A., & Iacobucci, D. (1995). Consumer trade-offs and the evaluation of services. Journal of Marketing, 59(1), 17–28.

    Article  Google Scholar 

  58. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1994). Reassessment of expectations as a comparison standard in measuring service quality: Implications for further research. Journal of Marketing, 58, 111–124.

    Article  Google Scholar 

  59. Pavlou, P. A., & Gefen, D. (2004). Building effective online marketplaces with institution-based trust. Information Systems Research, 15(1), 37–59.

    Article  Google Scholar 

  60. Pérez, A., García de los Salmones, M. M., & Rodríguez del Bosque, I. (2013). The effect of corporate associations on consumer behaviour. European Journal of Marketing, 47(1/2), 218–238.

    Article  Google Scholar 

  61. Pérez, A., Martínez, R. P., & Rodríguez del Bosque, I. (2013). The development of a stakeholder-based scale for measuring corporate social responsibility in the banking industry. Service Business, 7(3), 459–481.

    Article  Google Scholar 

  62. Pirsch, J., Gupta, S., & Grau, S. L. (2007). A framework for understanding corporate social responsibility programs as a continuum: An exploratory study. Journal of Business Ethics, 70(2), 125–140.

    Article  Google Scholar 

  63. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.

    Article  Google Scholar 

  64. Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531–544.

    Article  Google Scholar 

  65. Porter, M. E., & Kramer, M. R. (2006). Strategy and society. Harvard Business Review, 84(12), 78–92.

    Google Scholar 

  66. Preece, J. (2001). Sociability and usability in online communities: Determining and measuring success. Behaviour and Information Technology, 20(5), 347–356.

    Article  Google Scholar 

  67. Rao, A. R., & Monroe, K. B. (1989). The effect of price, brand name, and store name on buyers’ perceptions of product quality: An integrative review. Journal of Marketing Research, 26, 351–357.

    Article  Google Scholar 

  68. Rodgers, W., Negash, S., & Suk, K. (2005). The moderating effect of on-line experience on the antecedents and consequences of on-line satisfaction. Psychology and Marketing, 22(4), 313–331.

    Article  Google Scholar 

  69. Santos, J., & Boote, J. (2003). A theoretical exploration and model of consumer expectations, post-purchase affective states and affective behaviour. Journal of Consumer Behaviour, 3(2), 142–156.

    Article  Google Scholar 

  70. Scarle, S., Amab, S., Dunwell, I., Petridis, P., Protopsaltis, A., & Freitas, S. D. (2012). E-commerce transactions in a virtual environment: Virtual transactions. Electronic Commerce Research, 12(3), 379–407.

    Article  Google Scholar 

  71. Scott, J. E. (1995). The measurement of information systems effectiveness: Evaluating a measuring instrument. ACM SIGMIS Database, 26(1), 43–61.

    Article  Google Scholar 

  72. Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. The Journal of Marketing, 60, 15–32.

    Article  Google Scholar 

  73. Straub, D., Boudreau, M., & Gefen, D. (2004). Validation guidelines for IS Positivist Research. Communications of the Association for Information Systems, 13, 380–427.

    Google Scholar 

  74. Suchánek, P., Richter, J., & Králová, M. (2014). Customer satisfaction, product quality and performance of companies. Review of Economic PerspectivesNARODOHOSPODAŘSKY OBZOR, 14(4), 329–344.

  75. Swaen, V., & Chumpitaz, C. R. (2008). Impact of corporate social responsibility on consumer trust. Recherche et Applications en Marketing (English Edition), 23(4), 7–33.

  76. Tam, J. L. M. (2004). Customer satisfaction, service quality and perceived value: An integrative model. Journal of Marketing Management, 20(7/8), 897–917.

    Article  Google Scholar 

  77. Teo, T. S. H., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: An empirical study. Journal of Management Information System, 25(3), 99–132.

    Article  Google Scholar 

  78. Tsai, H. T., Chien, J. L., & Tsai, M. T. (2014). The influences of system usability and user satisfaction on continued Internet banking services usage intention: Empirical evidence from Taiwan. Electronic Commerce Research, 14(2), 137–169.

    Article  Google Scholar 

  79. Tsai, H. T., Huang, H. C., Jaw, Y. L., & Chen, W. K. (2006). Why on-line customers remain with a particular e-retailer: An integrative model and empirical evidence. Psychology and Marketing, 23(5), 447–464.

    Article  Google Scholar 

  80. Turker, D. (2009). Measuring corporate social responsibility: A scale development study. Journal of Business Ethics, 85(4), 411–427.

    Article  Google Scholar 

  81. Wanderley, L. S. O., Lucian, R., Farache, F., & de Sousa Filho, J. M. (2008). CSR information disclosure on the web: A context-based approach analysing the influence of country of origin and industry sector. Journal of Business Ethics, 82, 369–378.

    Article  Google Scholar 

  82. Wang, Y. S. (2008). Assessing e-commerce systems success: A respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529–557.

    Article  Google Scholar 

  83. Wang, Y. S., & Liao, Y. W. (2008). Assessing egovernment systems success: A validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25(4), 717–733.

    Article  Google Scholar 

  84. Westland, J. C. (2010). Lower bounds on sample size in structural equation modeling. Electronic Commerce Research and Applications, 9(6), 476–487.

    Article  Google Scholar 

  85. Westland, J. C. (2014). Sample calibration in Likert-Metric survey data. Accessed December 8, 2014, from http://ssrn.com/abstract=2489010.

  86. White, J. C., Varadarajan, P. R., & Dacin, P. A. (2003). Market situation interpretation and response: The role of cognitive style, organizational culture, and information use. Journal of Marketing, 67(3), 63–79.

    Article  Google Scholar 

  87. Winder, R. E., & Judd, D. K. (1996). Organizational orienteering: Linking Deming, Covey, and Senge in an integrated five dimension quality model. In: ASQC seventh national quality management conference transactions. Milwaukee: American Society for Quality.

  88. Wood, D. J. (1991). Corporate social performance revisited. The Academy of Management Review, 16(4), 691–718.

    Google Scholar 

  89. Wright, K. B. (2005). Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication, 10(3), Article 11.

  90. Wu, J. H., & Wang, Y. M. (2006). Measuring KMS success: A respecification of the DeLone and McLean’s model. Information & Management, 43(6), 728–739.

    Article  Google Scholar 

  91. Yang, Z., & Peterson, R. T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology and Marketing, 21(10), 799–822.

    Article  Google Scholar 

  92. Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. The Journal of Marketing, 60(2), 31–46.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Nai-Chang Cheng, Dr. Jui-Lin Chien, and Prof. Ming-Chu Yu, University of Tainan, for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Cheng Chang.

Appendices

Appendix 1: Questionnaire measures for research model constructs

1.1 Information quality disconfirmation (IQD) [16, 45, 46]

  • IQD1 The company website was clearer than I expected.

  • IQD2 The company website was easier to understand than I expected.

  • IQD3 Information regarding my purchase was better than I expected.

  • IQD4 The company website was merited to make my purchase decision than I expected.

1.2 System quality disconfirmation (SYQD) [16, 45, 90]

  • SYQD1 In general, ease of access was better than I expected.

  • SYQD2 The layout for website contents was simpler than I expected.

  • SYQD3 The website was easier to use than expected.

1.3 Service quality disconfirmation (SEQD) [44, 79]

  • SEQD1 The quality of the services was higher than I expected.

  • SEQD2 All of the terms and conditions (e.g., payment, warranty, and return policies) were easy to read/understand; this was better than I expected.

  • SEQD3 If I wanted to, I could easily contact a customer service representative by telephone; this was better than I expected.

1.4 Product quality disconfirmation (PQD) [43, 91]

  • PQD1 The company offers lower product costs than I expected.

  • PQD2 The company charges me a fairer price for products than I expected.

  • PQD3 The company provides better quality products than I expected.

  • PQD4 I think the company provided me with better value and more competitive prices than I expected.

1.5 Satisfaction (SA) [45]

  • SA1 I feel satisfied with my overall experience with the company/website.

  • SA2 I feel pleased with my overall experience with the company/website.

  • SA3 I feel contented with my overall experience with the company/website.

  • SA4 I feel delighted with my overall experience with the company/website.

1.6 Corporate social responsibility to employees (CSRE) [80]

  • CSRE1 The policies of this company encourage company employees to develop their skills and careers.

  • CSRE2 The management of the company is concerned with needs and wants of their employees.

  • CSRE3 The company implements flexible policies to provide a good work and life balance for its employees.

1.7 Corporate social responsibility to customers (CSRC) [80]

  • CSRC1 The company respects consumer rights beyond the legal requirement.

  • CSRC2 The company provides full and accurate information about its products to its customers.

  • CSRC3 Customer satisfaction is highly important for the company.

1.8 Repurchase intention (RI) [44, 79]

  • RI1 I intend to continue using this company/website in the future.

  • RI2 I expect my use of this company/website to continue in the future.

  • RI3 I will frequently use this company/website in the future.

  • RI4 I will strongly recommend others to use this company/website.

Appendix 2: Correlation matrix of total sample

 

RI1

RI2

RI3

RI4

SA1

SA2

SA3

SA4

PQD1

PQD2

PQD3

PQD4

SEQD1

SEQD2

RI1

1

             

RI2

 

1

            

RI3

0.656

0.644

1

           

RI4

0.482

0.506

0.597

1

          

SA1

0.423

0.364

0.514

0.411

1

         

SA2

0.352

0.429

0.487

0.441

0.756

1

        

SA3

0.382

0.386

0.472

0.412

0.721

0.761

1

       

SA4

0.351

0.402

0.468

0.453

0.626

0.697

0.689

1

      

PQD1

0.361

0.358

0.47

0.41

0.488

0.483

0.436

0.428

1

     

PQD2

0.315

0.385

0.458

0.414

0.495

0.514

0.466

0.466

0.819

1

    

PQD3

0.273

0.319

0.404

0.327

0.489

0.489

0.482

0.434

0.717

0.743

1

   

PQD4

0.3

0.32

0.409

0.339

0.485

0.511

0.487

0.47

0.75

0.745

0.85

1

  

SEQD1

0.266

0.275

0.337

0.271

0.372

0.375

0.401

0.312

0.467

0.426

0.481

0.463

1

 

SEQD2

0.248

0.291

0.336

0.311

0.329

0.371

0.328

0.343

0.45

0.464

0.492

0.502

0.698

1

SEQD3

0.261

0.305

0.364

0.307

0.366

0.394

0.417

0.312

0.445

0.461

0.497

0.497

0.684

0.666

CSRC1

0.325

0.365

0.385

0.402

0.355

0.399

0.406

0.334

0.386

0.394

0.354

0.378

0.236

0.267

CSRC2

0.308

0.407

0.364

0.427

0.291

0.332

0.339

0.387

0.322

0.309

0.243

0.284

0.204

0.246

CSRC3

0.216

0.299

0.359

0.266

0.293

0.31

0.322

0.344

0.358

0.36

0.343

0.324

0.294

0.269

CSRE1

0.251

0.284

0.373

0.207

0.352

0.36

0.355

0.378

0.295

0.29

0.321

0.339

0.335

0.324

CSRE2

0.238

0.302

0.396

0.257

0.353

0.39

0.383

0.395

0.341

0.314

0.369

0.362

0.388

0.338

CSRE3

0.288

0.282

0.4

0.268

0.335

0.369

0.41

0.356

0.334

0.262

0.339

0.346

0.435

0.361

SYQD1

0.144

0.162

0.163

0.185

0.107

0.158

0.17

0.127

0.241

0.157

0.183

0.19

0.181

0.14

SYQD2

0.132

0.162

0.15

0.162

0.083

0.134

0.112

0.123

0.147

0.118

0.126

0.156

0.124

0.137

SYQD3

0.076

0.09

0.169

0.09

0.111

0.111

0.133

0.107

0.178

0.19

0.201

0.195

0.154

0.135

IQD1

0.112

0.042

0.178

0.186

0.177

0.19

0.147

0.136

0.246

0.216

0.234

0.246

0.197

0.248

IQD2

0.126

0.077

0.208

0.218

0.21

0.254

0.211

0.239

0.268

0.26

0.28

0.291

0.203

0.272

IQD3

0.089

0.068

0.095

0.133

0.098

0.169

0.153

0.146

0.148

0.114

0.126

0.165

0.097

0.123

IQD4

0.087

0.053

0.118

0.165

0.113

0.162

0.144

0.12

0.187

0.159

0.194

0.192

0.182

0.175

 

SEQD3

CSRC1

CSRC2

CSRC3

CSRE1

CSRE2

CSRE3

SYQD1

SYQD2

SYQD3

IQD1

IQD2

IQD3

IQD4

SEQD3

1

             

CSRC1

0.275

1

            

CSRC2

0.204

0.57

1

           

CSRC3

0.307

0.434

0.483

1

          

CSRE1

0.386

0.281

0.269

0.295

1

         

CSRE2

0.396

0.29

0.225

0.302

0.813

1

        

CSRE3

0.431

0.249

0.265

0.282

0.625

0.681

1

       

SYQD1

0.176

0.173

0.209

0.217

0.238

0.269

0.295

1

      

SYQD2

0.18

0.19

0.248

0.226

0.275

0.262

0.247

0.697

1

     

SYQD3

0.16

0.141

0.126

0.229

0.277

0.297

0.204

0.5

0.599

1

    

IQD1

0.247

0.149

0.153

0.201

0.135

0.175

0.238

0.295

0.288

0.274

1

   

IQD2

0.253

0.218

0.171

0.252

0.164

0.225

0.309

0.312

0.323

0.307

0.727

1

  

IQD3

0.097

0.203

0.232

0.286

0.095

0.185

0.196

0.403

0.417

0.364

0.473

0.505

1

 

IQD4

0.17

0.19

0.184

0.234

0.139

0.183

0.247

0.377

0.381

0.317

0.524

0.56

0.609

1

  1. Leading diagonal elements display the standard deviation of each item

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, HT., Chang, HC. & Tsai, MT. Predicting repurchase intention for online clothing brands in Taiwan: quality disconfirmation, satisfaction, and corporate social responsibility. Electron Commer Res 16, 375–399 (2016). https://doi.org/10.1007/s10660-015-9207-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-015-9207-2

Keywords