Abstract
In the current study, we examine why peer-to-peer (P2P) lending platforms play only a minor role in the finance industry in Israel, compared to the traditional banking system. We conducted two studies and attempted to discover if a discrepancy exists between the lenders' preferences and the platforms’ incentives. In the first study, we conducted a conjoint analysis to examine the impact of lenders' decisions to invest through P2P platforms. The second study examines the factors in which platforms use to determine the lending interest rate for loans. We found that although lenders wish to decrease their risk and guarantee their investment, P2P companies encourage riskier borrowers. This contradiction between the priorities of the lenders and those of the platforms may explain why the non-users consider P2P lending to be a high risk. We offer several suggestions to increase the attractiveness of the Fintech and lending platforms industry.




Similar content being viewed by others
Notes
Based on Bizportal data https://www.bizportal.co.il/capitalmarket/news/article/619815.
References
Aleksynska, M., & Havrylchyk, O. (2013). FDI from the south: The role of institutional distance and natural resources. European Journal of Political Economy, 29, 38–53.
Bachmann, A., Becker, A., Buerckner, D., Hilker, M., et al. (2011). Online peer-to-peer lending-a literature review. Journal of Internet Banking and Commerce, 16(2), 1–17.
Capelle-Blancard, G., & Havrylchyk, O. (2017). Incidence of bank levy and bank market power. Review of Finance, 21(3), 1023–1046.
Chen, X. H., Jin, F. J., Zhang, Q., & Yang, L. (2016). Are investors rational or perceptual in P2P lending? Information Systems and e-Business Management, 14(4), 921–944.
Duarte, J., Siegel, S., & Young, L. (2012). Trust and credit: The role of appearance in peer-to-peer lending. The Review of Financial Studies, 25(8), 2455–2484.
Gao, Y., Yu, S. H., & Shiue, Y. C. (2018). The performance of the P2P finance industry in China. Electronic Commerce Research and Applications, 30, 138–148.
Green, P. E., Krieger, A. M., & Agarwal, M. K. (1991). Adaptive conjoint analysis: Some caveats and suggestions. Journal of Marketing Research, 28(2), 215–222.
Greenberg, D., & Shtudiner, Z. (2016). Can financial education extend the border of bounded rationality? Modern Economy, 7(2), 103–108.
Havrylchyk, O., & Verdier, M. (2018). The financial intermediation role of the P2P lending platforms. Comparative Economic Studies, 60(1), 115–130.
Hidayat, A. S., Alam, F. S., & Helmi, M. I. (2020). Consumer protection on peer to peer lending financial technology in Indonesia. International Journal of Scientific and Technology Research, 9(1), 4069–4072.
Hilgert, M. A., Hogarth, J. M., & Beverly, S. G. (2003). Household financial management: The connection between knowledge and behavior. Federal Reserve Bulletin, 89, 309–322.
Klafft, M. (2008, March). Peer to peer lending: auctioning microcredits over the internet. In Proceedings of the International Conference on Information Systems, Technology and Management, A. Agarwal, R. Khurana, (Eds)., IMT, Dubai.
Klein, G. (2016). Different thinking or similar models: do entrepreneurs and franchisees apply the same decision-making models prior to establishing a company? Journal for International Business and Entrepreneurship Development, 9(3), 342–357.
Klein, G. (2016). Trying to make rational decisions while employing intuitive reasoning: a look at the due-diligence process using the dual-system reasoning model. International Journal of Entrepreneurship and Innovation Management, 20(3–4), 214–234.
Klein, G., & Shtudiner, Z. (2016). Trust in others: Does it affect investment decisions? Quality & Quantity, 50(5), 1949–1967.
Liu, D., Brass, D. J., Lu, Y., & Chen, D. (2015). Friendships in online peer-to-peer lending. Mis Quarterly, 39(3), 729–742.
Milne, A., & Parboteeah, P. (2016). The business models and economics of peer-to-peer lending.
Mariotto, C., & Verdier, M. (2015). Innovation and competition in internet and mobile banking: An industrial organization perspective. Communication and Strategies, 99, 129–146.
Natek, S., & Zwilling, M. (2014). Student data mining solution–knowledge management system related to higher education institutions. Expert Systems with Applications, 41(14), 6400–6407.
Pope D. G., & Sydnor J.R. (2011) What’s in a picture? Evidence of discrimination from prosper.com. Journal of Human Resources; 46(1):53–92.
Ravina, E. (2008). Love & loans: The effect of beauty and personal characteristics in credit markets. Working paper, Columbia University, New York.
Serrano-Cinca, C., Gutiérrez-Nieto, B., & López-Palacios, L. (2015). Determinants of default in P2P lending. PloS one, 10(10), e0139427. https://doi.org/10.1371/journal.pone.0139427https://doi.org/10.1371/journal.pone.0139427
Shen, D., Krumme, C., & Lippman, A. (2010). Follow the profit or the herd? Exploring social effects in peer-to-peer lending. In 2010 IEEE Second International Conference on Social Computing (pp. 137–144). https://doi.org/10.1109/SocialCom.2010.28
Shen, F., & Luo, N. (2016, June). Investment pattern clustering based on online P2P lending platform. In 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) (pp. 1–6). https://doi.org/10.1109/ICIS.2016.7550754
Shtudiner, Z., Klein, G., Zwilling, M., & Kantor, J. (2019). The value of souvenirs: Endowment effect and religion. Annals of Tourism Research, 74, 17–32.
Shtudiner, Z., Zwilling, M., & Kantor, J. (2017). Did I make the right decision? Attributes that influence people choice of city of residence. Review of Urban & Regional Development Studies, 29(2), 103–113.
Shtudiner, Z., Zwilling, M., & Kantor, J. (2017). Field of Study Choice: Using Conjoint Analysis and Clustering. International Journal of Educational Management, 31(2), 179–188.
Verdier, M. (2011). Interchange fees in payment card systems: A survey of the literature. Journal of Economic Surveys, 25(2), 273–297.
Yan, Y., Lv, Z., & Hu, B. (2018). Building investor trust in the P2P lending platform with a focus on Chinese P2P lending platforms. Electronic Commerce Research, 18(2), 203–224.
Zhao, H., Ge, Y., Liu, Q., Wang, G., Chen, E., & Zhang, H. (2017). P2P lending survey: platforms, recent advances and prospects. ACM Transactions on Intelligent Systems and Technology (TIST), 8(6), 1–28.
Zhang, J., & Liu, P. (2012). Rational herding in microloan markets. Management Science, 58(5), 892–912.
Zwilling, M., Klein, G., & Shtudiner, Z. (2020). The question of Peer-to-Peer lending platforms’ legitimacy in the eyes of the general public and lenders. Israel Affairs, 26(6), 854–874.
Acknowledgements
This work was supported by The Heth Academic Center for Research of Competition and Regulation. We would like to thank the reviewers and the editor for helping us improve the paper.
Funding
This work was supported by the Heth Academic Center for Research of Competition and Regulation] under Grant RA1700000423.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of intrest
This work was supported by The Heth Academic Center for Research of Competition and Regulation.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Appendix A: Correlation matrix
Appendix A: Correlation matrix
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Amount requested | 1 | ||||||||||||||||||||
2. Period of the loan | 0.61* | 1 | |||||||||||||||||||
3. Arrears (1- loan in arrears; 0-open or closed loan) | − 0.00 | 0.01 | 1 | ||||||||||||||||||
4. Returning debts | − 0.08 | − 0.03 | − 0.05 | 1 | |||||||||||||||||
5. Renovation of assets | 0.11* | 0.12* | − 0.02 | − 0.35** | 1 | ||||||||||||||||
6. Purchase goods | 0.00 | − 0.07 | 0.08 | − 0.28** | − 0.13** | 1 | |||||||||||||||
7. Events | − 0.00 | 0.06 | 0.00 | − 0.24** | − 0.11* | − 0.08 | 1 | ||||||||||||||
8. Investment in the business | 0.11* | − 0.00 | 0.03 | − 0.15** | − 0.07 | − 0.05 | − 0.04 | 1 | |||||||||||||
9. Other | − 0.04 | − 0.05 | 0.00 | − 0.48** | − 0.22** | − 0.18** | − 0.15** | − 0.09* | 1 | ||||||||||||
10. Gender (0-male, 1-female) | − 0.13* | − 0.01 | − 0.01 | 0.06 | 0.00 | − 0.08 | − 0.06 | − 0.09* | 0.06 | 1 | |||||||||||
11. Home ownership (1-own, 0-not) | 0.34** | 0.32** | − 0.16** | − 0.03 | 0.18** | − 0.04 | − 0.01 | 0.00 | − 0.07 | − 0.15** | 1 | ||||||||||
12. Income | 0.31** | 0.23** | 0.04 | − 0.05 | 0.09* | − 0.05 | 0.05 | 0.01 | − 0.00 | − 0.11** | 0.27** | 1 | |||||||||
13. Seniority at work | 0.09* | 0.23** | − 0.04 | 0.06 | 0.00 | − 0.07 | 0.03 | − 0.06 | − 0.02 | 0.03 | 0.34** | 0.16** | 1 | ||||||||
14. Full-time work (1-full time, 0-other) | − 0.04 | 0.08 | 0.04 | 0.09* | − 0.05 | 0.09* | − 0.00 | − 0.10* | − 0.08 | − 0.00 | − 0.07 | 0.00 | − 0.05 | 1 | |||||||
15. Self-employed (1-self-employed, 0- other) | 0.10* | − 0.03 | − 0.05 | − 0.05 | 0.05 | − 0.06 | − 0.01 | 0.14** | 0.01 | − 0.08 | 0.09* | 0.07 | 0.12* | − 0.44** | 1 | ||||||
16. Marital status (1-married, 0-other) | 0.34** | 0.34** | − 0.06 | 0.00 | 0.15** | − 0.11* | 0.05 | − 0.02 | − 0.08 | − 0.15** | 0.50** | 0.41** | 0.18** | 0.02 | 0.00 | 1 | |||||
17. Providers (1- 2 or more providers, 0-solo) | 0.36** | 0.29** | − 0.06 | 0.00 | 0.10* | − 0.09* | 0.04 | − 0.03 | − 0.04 | − 0.11 | 0.40* | 0.42** | 0.12 | 0.01 | − 0.03 | 0.65** | 1 | ||||
18. Academic Degree (1-have an academic degree, 0-no) | 0.15* | 0.08 | − 0.04 | 0.09 | 0.02 | − 0.04 | 0.00 | − 0.03 | − 0.08 | − 0.06 | 0.06 | 0.03 | 0.04 | − 0.12 | 0.14* | 0.11 | 0.05 | 1 | |||
19. Credit profile -A/B | 0.46** | 0.18** | − 0.02 | − 0.05 | 0.03 | 0.03 | 0.04 | 0.01 | − 0.02 | − 0.16** | 0.27** | 0.22** | 0.03 | 0.00 | 0.04 | 0.22** | 0.19** | 0.09 | 1 | ||
20. Credit profile -C | 0.32** | 0.28** | − 0.00 | 0.05 | 0.02 | − 0.00 | − 0.03 | 0.35 | − 0.06 | − 0.05 | 0.24** | 0.11* | 0.17* | − 0.05 | 0.06 | 0.18** | 0.20** | 0.00 | − 0.21** | 1 | |
21. Credit profile -D/E | − 0.38** | − 0.07 | 0.07 | − 0.00 | 0.01 | − 0.05 | 0.01 | − 0.01 | 0.03 | 0.13** | − 0.29** | − 0.15** | − 0.06 | 0.05 | − 0.06 | − 0.20** | − 0.22** | − 0.06 | − 0.40** | − 0.62** | 1 |
Rights and permissions
About this article
Cite this article
Klein, G., Shtudiner, Z. & Zwilling, M. Why do peer-to-peer (P2P) lending platforms fail? The gap between P2P lenders' preferences and the platforms’ intentions. Electron Commer Res 23, 709–738 (2023). https://doi.org/10.1007/s10660-021-09489-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10660-021-09489-6