Skip to main content
Log in

A novel approach for product competitive analysis based on online reviews

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Recently, online reviews have become a prevalent information source for competitive analysis because they provide rich information on the voices of customers. Based on online reviews, we propose a novel method named Integrated-Degree based K-shell decomposition (ID-KS) to conduct competitive analysis via product comparison networks. Under the consideration of feature differences among products, we apply text-mining approaches and ID-KS to convert online reviews into competitive insights including competitor identification, product comparison, product ranking, brand comparison and market-structure analysis. To validate the feasibility and the effectiveness of ID-KS, we demonstrate our approach in two cases, SUV cars and laptops, and compare it with state-of-the-art methods. The results show that ID-KS analyzes product comparison networks more effectively and properly, and it derives comprehensive comparative insights that are not fully captured by existing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://www.edmunds.com.

  2. https://www.jd.com.

  3. https://github.com/chatopera/Synonyms.

References

  1. Gao, S., Tang, O., Wang, H., & Yin, P. (2018). Identifying competitors through comparative relation mining of online reviews in the restaurant industry. International Journal of Hospitality Management, 71, 19–32. https://doi.org/10.1016/j.ijhm.2017.09.004

    Article  Google Scholar 

  2. Nasr, S. B., Bécan, G., Acher, M., Ferreira Filho, J. B., Sannier, N., Baudry, B., & Davril, J.-M. (2017). Automated extraction of product comparison matrices from informal product descriptions. Journal of Systems and Software, 124, 82–103. https://doi.org/10.1016/j.jss.2016.11.018

    Article  Google Scholar 

  3. Liu, Y., Bi, J.-W., & Fan, Z.-P. (2017). Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory. Information Fusion, 36, 149–161. https://doi.org/10.1016/j.inffus.2016.11.012

    Article  Google Scholar 

  4. Amarouche, K., Benbrahim, H., & Kassou, I. (2015). Product opinion mining for competitive intelligence. Procedia Computer Science, 73, 358–365. https://doi.org/10.1016/j.procs.2015.12.004

    Article  Google Scholar 

  5. Kim, S. G., & Kang, J. (2018). Analyzing the discriminative attributes of products using text mining focused on cosmetic reviews. Information Processing & Management, 54(6), 938–957. https://doi.org/10.1016/j.ipm.2018.06.003

    Article  Google Scholar 

  6. Farhadloo, M., Patterson, R. A., & Rolland, E. (2016). Modeling customer satisfaction from unstructured data using a Bayesian approach. Decision Support Systems, 90, 1–11. https://doi.org/10.1016/j.dss.2016.06.010

    Article  Google Scholar 

  7. Li, S., Zha, Z.-J., Ming, Z., Wang, M., Chua, T.-S., Guo, J., & Xu, W. (2011). Product comparison using Comparative Relations. Presented at the SIGIR ’11 Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, Beijing, China.

  8. Zhang, Z., Guo, C., & Goes, P. (2013). Product comparison networks for competitive analysis of online word-of-mouth. ACM Transactions on Management Information Systems, 3(4), 1–22. https://doi.org/10.1145/2407740.2407744

    Article  Google Scholar 

  9. Yang, X., Yang, G., & Wu, J. (2016). Integrating rich and heterogeneous information to design a ranking system for multiple products. Decision Support Systems, 84, 117–133. https://doi.org/10.1016/j.dss.2016.02.009

    Article  Google Scholar 

  10. Tkachenko, M., & Lauw, H. W. (2017). Comparative relation generative model. IEEE Transactions on Knowledge and Data Engineering, 29(4), 771–783. https://doi.org/10.1109/tkde.2016.2640281

    Article  Google Scholar 

  11. Kumar, A., & Abirami, S. (2018). Aspect-based opinion ranking framework for product reviews using a Spearman’s rank correlation coefficient method. Information Sciences, 460–461, 23–41. https://doi.org/10.1016/j.ins.2018.05.003

    Article  Google Scholar 

  12. Wang, Z., Zhao, Y., Xi, J., & Du, C. (2016). Fast ranking influential nodes in complex networks using a k-shell iteration factor. Physica A: Statistical Mechanics and its Applications, 461, 171–181. https://doi.org/10.1016/j.physa.2016.05.048

    Article  Google Scholar 

  13. Wang, W. M., Wang, J. W., Li, Z., Tian, Z. G., & Tsui, E. (2019). Multiple affective attribute classification of online customer product reviews: A heuristic deep learning method for supporting Kansei engineering. Engineering Applications of Artificial Intelligence, 85, 33–45. https://doi.org/10.1016/j.engappai.2019.05.015

    Article  Google Scholar 

  14. Zhang, L., Chu, X., & Xue, D. (2018). Identification of the to-be-improved product features based on online reviews for product redesign. International Journal of Production Research, 57(8), 2464–2479. https://doi.org/10.1080/00207543.2018.1521019

    Article  Google Scholar 

  15. Wang, W. M., Li, Z., Tian, Z. G., Wang, J. W., & Cheng, M. N. (2018). Extracting and summarizing affective features and responses from online product descriptions and reviews: A Kansei text mining approach. Engineering Applications of Artificial Intelligence, 73, 149–162. https://doi.org/10.1016/j.engappai.2018.05.005

    Article  Google Scholar 

  16. Candi, M., Jae, H., Makarem, S., & Mohan, M. (2017). Consumer responses to functional, aesthetic and symbolic product design in online reviews. Journal of Business Research, 81, 31–39. https://doi.org/10.1016/j.jbusres.2017.08.006

    Article  Google Scholar 

  17. Jin, J., Ji, P., Liu, Y., & Johnson Lim, S. C. (2015). Translating online customer opinions into engineering characteristics in QFD: A probabilistic language analysis approach. Engineering Applications of Artificial Intelligence, 41, 115–127. https://doi.org/10.1016/j.engappai.2015.02.006

    Article  Google Scholar 

  18. Abrahams, A. S., Jiao, J., Wang, G. A., & Fan, W. (2012). Vehicle defect discovery from social media. Decision Support Systems, 54(1), 87–97. https://doi.org/10.1016/j.dss.2012.04.005

    Article  Google Scholar 

  19. Zhang, X., Niu, S., Zhang, D., Wang, G. A., & Fan, W. (2015). Predicting Vehicle Recalls with User-Generated Contents: A Text Mining Approach. Presented at the Intelligence and Security Informatics: Pacific Asia Workshop, PAISI 2015, Ho Chi Minh City, Vietnam.

  20. Law, D., Gruss, R., & Abrahams, A. S. (2017). Automated defect discovery for dishwasher appliances from online consumer reviews. Expert Systems with Applications, 67, 84–94. https://doi.org/10.1016/j.eswa.2016.08.069

    Article  Google Scholar 

  21. Mummalaneni, V., Gruss, R., Goldberg, D. M., Ehsani, J. P., & Abrahams, A. S. (2018). Social media analytics for quality surveillance and safety hazard detection in baby cribs. Safety Science, 104, 260–268. https://doi.org/10.1016/j.ssci.2018.01.003

    Article  Google Scholar 

  22. Khare, V. R., & Chougule, R. (2012). Decision support for improved service effectiveness using domain aware text mining. Knowledge-Based Systems, 33, 29–40. https://doi.org/10.1016/j.knosys.2012.03.005

    Article  Google Scholar 

  23. Korfiatis, N., Stamolampros, P., Kourouthanassis, P., & Sagiadinos, V. (2019). Measuring service quality from unstructured data: A topic modeling application on airline passengers’ online reviews. Expert Systems with Applications, 116, 472–486. https://doi.org/10.1016/j.eswa.2018.09.037

    Article  Google Scholar 

  24. Su, Y., & Teng, W. (2018). Contemplating museums’ service failure: Extracting the service quality dimensions of museums from negative on-line reviews. Tourism Management, 69, 214–222. https://doi.org/10.1016/j.tourman.2018.06.020

    Article  Google Scholar 

  25. Du, J., Xu, H., & Huang, X. (2014). Box office prediction based on microblog. Expert Systems with Applications, 41(4), 1680–1689. https://doi.org/10.1016/j.eswa.2013.08.065

    Article  Google Scholar 

  26. Hur, M., Kang, P., & Cho, S. (2016). Box-office forecasting based on sentiments of movie reviews and Independent subspace method. Information Sciences, 372, 608–624. https://doi.org/10.1016/j.ins.2016.08.027

    Article  Google Scholar 

  27. Hua Li, Sourav S Bhowmick, & Aixin Sun. (2010). Affinity-Driven Prediction and Ranking of Products in Online Product Review Sites. Presented at the Proceedings of the 19th ACM Conference on Information and Knowledge Management, Toronto, Ontario, Canada.

  28. Wang, H., & Wang, W. (2014). Product weakness finder: An opinion-aware system through sentiment analysis. Industrial Management & Data Systems, 114(8), 1301–1320. https://doi.org/10.1108/imds-05-2014-0159

    Article  Google Scholar 

  29. Wang, W., Feng, Y., & Dai, W. (2018). Topic analysis of online reviews for two competitive products using latent Dirichlet allocation. Electronic Commerce Research and Applications, 29, 142–156. https://doi.org/10.1016/j.elerap.2018.04.003

    Article  Google Scholar 

  30. Jin, J., Ji, P., & Gu, R. (2016). Identifying comparative customer requirements from product online reviews for competitor analysis. Engineering Applications of Artificial Intelligence, 49, 61–73. https://doi.org/10.1016/j.engappai.2015.12.005

    Article  Google Scholar 

  31. Wasserman, S., & Faust, K. (1994). Social network analysis: Mthods and applications. Cambridge University Press.

  32. Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888–893. https://doi.org/10.1038/nphys1746

    Article  Google Scholar 

  33. Garas, A., Schweitzer, F., & Havlin, S. (2012). A k-shell decomposition method for weighted networks. New Journal of Physics, 14(8), 083030. https://doi.org/10.1088/1367-2630/14/8/083030

    Article  Google Scholar 

  34. Wei, B., Liu, J., Wei, D., Gao, C., & Deng, Y. (2015). Weighted k-shell decomposition for complex networks based on potential edge weights. Physica A: Statistical Mechanics and its Applications, 420, 277–283. https://doi.org/10.1016/j.physa.2014.11.012

    Article  Google Scholar 

  35. Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3), 521–543. https://doi.org/10.1287/mksc.1120.0713

    Article  Google Scholar 

  36. Chen, K., Luo, P., & Wang, H. (2016). Investigating transitive influences on WOM: From the product network perspective. Electronic Commerce Research, 17(1), 149–167. https://doi.org/10.1007/s10660-016-9241-8

    Article  Google Scholar 

  37. Tan, K. H., Ji, G., Lim, C. P., & Tseng, M.-L. (2017). Using big data to make better decisions in the digital economy. International Journal of Production Research, 55(17), 4998–5000. https://doi.org/10.1080/00207543.2017.1331051

    Article  Google Scholar 

  38. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.

    Google Scholar 

  39. Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467–483. https://doi.org/10.1016/j.tourman.2016.09.009

    Article  Google Scholar 

  40. Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51–65. https://doi.org/10.1016/j.tourman.2016.10.001

    Article  Google Scholar 

  41. Wang, Y., & Xu, W. (2018). Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decision Support Systems, 105, 87–95. https://doi.org/10.1016/j.dss.2017.11.001

    Article  Google Scholar 

  42. Duan, W., Cao, Q., Yu, Y., & Levy, S. (2013). Mining Online User-Generated Content: Using Sentiment Analysis Technique to Study Hotel Service Quality. Presented at the 46th Hawaii International Conference on System Sciences, Wailea, Maui, HI, USA.

  43. Lee, K., & Yu, C. (2018). Assessment of airport service quality: A complementary approach to measure perceived service quality based on Google reviews. Journal of Air Transport Management, 71, 28–44. https://doi.org/10.1016/j.jairtraman.2018.05.004

    Article  Google Scholar 

  44. Bi, J.-W., Liu, Y., Fan, Z.-P., & Cambria, E. (2019). Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model. International Journal of Production Research, 57(22), 7068–7088. https://doi.org/10.1080/00207543.2019.1574989

    Article  Google Scholar 

  45. Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2018). Extracting sentiment knowledge from pros/cons product reviews: Discovering features along with the polarity strength of their associated opinions. Expert Systems with Applications, 114, 267–288. https://doi.org/10.1016/j.eswa.2018.07.046

    Article  Google Scholar 

  46. Eliacik, A. B., & Erdogan, N. (2018). Influential user weighted sentiment analysis on topic based microblogging community. Expert Systems with Applications, 92, 403–418. https://doi.org/10.1016/j.eswa.2017.10.006

    Article  Google Scholar 

  47. Jeong, B., Yoon, J., & Lee, J.-M. (2017). Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2017.09.009

    Article  Google Scholar 

  48. Jo, Y., & Oh, A. (2011). Aspect and sentiment unification model for online review analysis. Presented at the WSDM ’11 Proceedings of the fourth ACM international conference on Web search and data mining, HongKong, China.

  49. Qiu, J., Liu, C., Li, Y., & Lin, Z. (2018). Leveraging sentiment analysis at the aspects level to predict ratings of reviews. Information Sciences, 451–452, 295–309. https://doi.org/10.1016/j.ins.2018.04.009

    Article  Google Scholar 

  50. Liu, B. (2015). Sentiment analysis: Mining opinions. Cambridge University Press.

  51. Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. arXiv e-prints. Retrieved from http://arxiv.org/abs/1405.4053

  52. Elrod, T. (1991). Internal analysis of market structure: Recent developments and future prospects. Marketing Letters, 2(3), 253–266. https://doi.org/10.1007/BF00554130

    Article  Google Scholar 

  53. Lee, T. Y., & BradLow, E. T. (2011). Automated marketing research using online customer reviews. Journal of Marketing Research (JMR), 48(5), 881–894. https://doi.org/10.1509/jmkr.48.5.881

    Article  Google Scholar 

  54. Saaty, T. L. (2001). Analytic hierarchy process. In S. I. Gass & C. M. Harris (Eds.), Encyclopedia of Operations Research and Management Science (pp. 19–28). New York, NY: Springer US. https://doi.org/10.1007/1-4020-0611-X_31

  55. Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 71872123, 72032005 and 71572122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zheng.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Details of weight measurement via AHP

AHP is a popular approach to estimating the relative importance or weights of assorted factors or decisions. Combining our research objects and the process of AHP proposed by Saaty [54, 55], we illustrate the weight evaluation of product features as follows.

STEP 1: Pairwise comparing product features and estimating their relative importance using the nine-scale scoring. The nine-scale scoring is introduced bellowing table. The comparing results are recorded in the pairwise comparison matrix (PCM). For example, PCM(PF2, PF1) denotes the importance of PF2 comparing to PF1 (Table

Table 9 Meanings of nine-scale scores (evaluate PF2 comparing to PF1)

9).

STEP 2: For each PF in PCM, if the PCM(PFi, PFj) = A, then PCM(PFj, PFi) = 1/A.

STEP 3: Checking the consistency of PCM by calculating the consistency ratio (CR). Detailed measurement of CR is introduced in the work of Saaty [54]. If CR is smaller than 0.1, PCM is consistent. Otherwise, PCM must be revised until it is consistent.

STEP 4: Normalizing PCM by columns using the sum of the column.

STEP 5: obtaining weights of PFs by averaging the normalized PCM by arrays.

Appendix B: Node attributes of 24 car models

Car

Brand

#Review

Avg.rate

Agreed rate %

Car

Brand

#Review

Avg.rate

Agreed rate %

P1

PB1

854

4.400

77.97

P13

PB5

945

4.043

69.82

P2

PB1

683

4.312

67.45

P14

PB6

420

4.104

77.77

P3

PB2

403

4.304

66.15

P15

PB7

759

4.202

69.00

P4

PB2

316

4.133

70.43

P16

PB4

649

4.336

67.25

P5

PB3

1136

4.053

74.10

P17

PB4

719

4.519

74.02

P6

PB4

799

4.281

74.28

P18

PB8

738

4.547

77.03

P7

PB4

983

4.191

70.68

P19

PB8

1052

3.998

75.82

P8

PB4

572

3.993

72.84

P20

PB9

1203

4.117

71.41

P9

PB3

899

3.904

69.61

P21

PB9

1333

4.278

74.57

P10

PB1

2595

4.344

66.25

P22

PB7

598

4.595

67.77

P11

PB1

1354

4.446

73.95

P23

PB7

1031

4.509

71.95

P12

PB5

433

3.857

74.38

P24

PB7

1275

4.385

69.89

Appendix C: Node attributes of 20 laptops

Laptops

Brand

5SR %

TUV

ALPR

Laptops

Brand

5SR %

TUV

ALPR

C1

LB1

93

1538

8.42

C11

LB6

96

1188

14.58

C2

LB2

94

728

8.33

C12

LB6

98

1612

14.27

C3

LB2

91

699

6.54

C13

LB7

96

1490

17.23

C4

LB2

95

1435

12.25

C14

LB7

97

937

9.83

C5

LB3

94

1119

10.92

C15

LB7

98

865

6.75

C6

LB3

92

1274

10.36

C16

LB7

94

684

13.64

C7

LB4

95

2757

11.44

C17

LB8

94

465

10.06

C8

LB5

95

761

11.10

C18

LB8

94

1419

12.99

C9

LB6

96

1141

15.05

C19

LB9

96

4038

13.37

C10

LB6

96

385

8.74

C20

LB9

97

1405

10.05

Appendix D1: PFSM of car dataset

 

Seat

Driving experience

Gas mileage

Driving performance

Dealer service

Space

Reliability

Interior

Assistant system

Transmission

Outlook

w

0.0072

0.0258

0.0530

0.0797

0.0262

0.0071

0.1343

0.0147

0.0170

0.1107

0.0137

P1

0.46

0.56

0.01

0.45

0.36

0.46

1.09

0.86

0.76

0.88

0.69

P2

0.61

0.40

0.24

0.40

0.35

0.48

1.22

1.04

0.00

0.87

1.14

P3

0.40

0.45

0.41

0.33

0.50

0.47

0.00

0.57

0.00

1.08

0.00

P4

0.46

0.37

0.45

0.43

0.32

0.53

0.82

0.00

0.00

0.00

0.72

P5

0.33

0.44

0.42

0.17

0.40

0.43

0.00

0.00

0.69

0.86

0.74

P6

0.34

0.40

0.29

0.35

0.35

0.56

0.64

1.16

0.68

0.78

0.31

P7

0.28

0.23

0.34

0.34

0.38

0.44

0.88

1.06

0.72

0.00

0.00

P8

0.57

0.55

0.39

0.29

0.42

0.45

0.83

1.19

0.00

0.00

0.00

P9

0.33

0.46

0.31

0.36

0.52

0.40

0.63

0.03

0.00

0.00

0.78

P10

0.39

0.33

0.41

0.49

0.43

0.45

0.66

0.00

0.41

0.81

1.45

P11

0.50

0.36

0.05

0.28

0.42

0.45

0.88

0.82

1.06

0.88

0.87

P12

0.50

0.39

0.42

0.46

0.30

0.31

0.56

0.00

0.77

0.83

0.00

P13

0.46

0.33

0.42

0.38

0.19

0.46

0.93

0.00

0.00

0.00

0.00

P14

0.39

0.22

0.31

0.26

0.41

0.51

0.00

1.21

0.90

0.00

0.80

P15

0.43

0.21

0.47

0.21

0.47

0.44

0.00

0.68

0.57

0.00

0.96

P16

0.48

0.20

0.34

0.23

0.48

0.58

1.21

1.10

0.78

0.00

0.00

P17

0.37

0.17

− 0.10

0.41

0.50

0.57

1.00

1.21

0.71

0.00

0.88

P18

0.46

0.43

0.31

0.14

0.51

0.45

0.52

0.00

0.76

0.85

0.00

P19

0.36

0.71

0.40

0.30

0.44

0.46

0.61

0.00

0.36

0.67

0.00

P20

0.41

0.25

0.25

0.53

0.33

0.69

0.94

0.89

0.00

1.04

0.00

P21

0.41

0.13

0.50

0.59

0.32

0.53

0.00

0.00

0.00

1.00

0.00

P22

0.48

0.08

0.42

0.38

0.55

0.33

0.76

1.01

0.00

0.00

0.00

P23

0.46

0.21

0.47

0.44

0.35

0.40

0.66

1.18

0.00

0.00

0.00

P24

0.48

0.35

0.33

0.36

0.48

0.64

0.71

0.90

0.93

0.00

0.00

Appendix D2: PFSM of car dataset

 

Control

Power

Quality

Steering wheel

Console

Sunroof

Entertainment

Cost performance

w

0.1318

0.0879

0.1780

0.0262

0.0274

0.0079

0.0102

0.0410

P1

1.00

0.97

1.06

1.00

1.20

0.93

0.86

0.74

P2

0.00

0.00

1.20

0.00

0.00

0.00

0.00

0.00

P3

0.00

0.76

0.00

1.00

0.00

1.00

0.00

0.00

P4

0.80

0.00

0.00

0.00

0.00

1.09

0.00

0.00

P5

0.00

1.39

0.00

0.81

0.00

0.00

0.00

0.00

P6

0.00

0.93

0.00

0.93

1.03

0.00

0.00

0.00

P7

0.00

0.22

0.00

0.00

0.00

0.00

0.00

0.00

P8

0.00

0.85

0.00

0.00

0.00

0.00

0.00

0.00

P9

1.12

0.00

0.85

0.00

0.00

0.00

0.00

0.00

P10

1.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

P11

0.84

0.00

0.00

0.00

0.00

0.00

1.00

0.00

P12

0.99

0.85

0.00

0.00

0.00

0.00

0.00

0.00

P13

0.00

0.00

0.73

0.00

0.00

0.00

0.00

0.00

P14

0.00

0.63

0.92

0.00

0.00

0.00

0.00

0.00

P15

0.00

0.00

0.00

0.00

0.69

0.00

1.10

0.00

P16

0.96

0.00

0.00

0.00

0.00

0.00

0.00

0.00

P17

0.00

1.29

0.87

0.00

0.00

0.00

0.00

0.86

P18

0.90

0.00

0.00

0.00

0.00

0.00

0.00

0.00

P19

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

P20

0.00

0.00

0.00

0.00

0.85

0.00

0.00

0.00

P21

0.00

0.00

0.00

0.88

0.00

0.00

0.00

0.00

P22

0.97

0.00

0.00

0.00

0.00

0.00

0.00

0.00

P23

0.00

0.00

1.07

0.00

0.64

0.00

0.00

0.00

P24

0.96

0.00

0.84

1.02

0.00

0.00

0.00

0.00

Appendix E1: PFSM of laptop dataset

 

Screen

Customer service

Running speed

Startup speed

Appearance

Office work performance

Heat dissipation

Cost performance

Logistics

Weight

Keyboard

Configuration

game performance

w

0.0527

0.0358

0.2835

0.1063

0.0217

0.0425

0.0193

0.0640

0.0047

0.0072

0.0096

0.0241

0.0432

C1

0.26

0.04

0.14

0.59

0.26

0.00

0.83

0.00

0.00

0.00

0.00

0.00

0.00

C2

0.26

0.12

0.19

0.31

0.49

0.46

0.55

0.90

0.00

0.00

0.00

0.00

0.00

C3

0.49

0.68

0.24

0.59

0.57

0.00

1.67

1.54

1.48

0.90

0.00

0.00

0.00

C4

0.44

0.29

0.69

0.53

0.23

0.00

0.29

0.00

0.00

0.00

0.37

0.00

0.62

C5

0.24

0.21

0.21

0.14

0.34

0.46

0.00

0.00

1.11

0.00

0.00

0.00

0.00

C6

0.35

0.14

0.08

0.66

0.42

0.00

0.71

0.00

0.00

0.00

0.00

0.21

0.20

C7

0.40

0.59

0.41

0.43

0.61

0.00

0.00

0.46

0.97

0.00

0.53

0.55

0.36

C8

0.62

0.11

0.16

0.31

0.57

0.00

1.23

1.07

0.00

1.08

0.00

0.00

0.00

C9

0.53

0.60

0.17

0.63

0.32

1.38

0.00

1.34

0.00

1.34

1.59

0.00

0.00

C10

0.64

0.01

0.30

0.28

0.38

1.05

0.81

0.00

0.60

1.27

0.00

0.00

0.00

C11

0.27

0.69

0.38

0.47

0.52

0.17

0.00

0.00

0.00

0.83

0.00

0.00

0.00

C12

0.29

0.39

0.75

0.73

0.68

0.96

0.67

0.00

0.89

1.46

1.14

0.00

0.00

C13

0.05

0.15

0.30

0.37

0.46

1.10

0.23

0.00

0.00

0.00

1.04

0.98

0.16

C14

0.63

0.32

0.30

0.12

0.62

0.32

0.00

0.00

0.68

0.00

0.00

0.00

0.00

C15

0.81

0.65

0.37

0.87

0.57

0.69

0.00

0.00

0.00

0.96

1.42

0.00

0.00

C16

0.33

− 0.05

0.22

0.28

0.41

0.54

0.71

0.00

0.00

1.24

0.00

1.26

0.00

C17

0.21

0.23

0.42

0.52

0.50

0.00

0.90

1.34

0.00

0.00

0.00

1.17

0.00

C18

0.24

0.06

0.23

0.46

0.41

0.00

0.00

0.00

0.00

0.00

0.48

1.19

0.64

C19

0.39

0.53

0.38

0.34

0.60

0.43

0.78

1.09

0.47

0.00

0.00

1.48

0.00

C20

0.64

0.22

0.18

0.44

0.55

0.55

0.00

1.09

1.03

0.00

0.00

0.00

0.68

Appendix E2: PFSM of laptop dataset

 

Price

Workmanship

System

Complimentary products

After-sales

Accessories

Quality

Office software

H-Share

Packaging

Easy to use

Audio

w

0.0503

0.0111

0.0228

0.0079

0.0206

0.0121

0.1007

0.0358

0.0095

0.0030

0.0076

0.0039

C1

0.38

0.00

0.00

− 0.07

− 0.10

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C2

0.00

0.00

0.00

0.00

0.00

0.14

0.00

0.00

0.00

0.00

0.00

0.00

C3

0.00

0.00

0.00

0.00

0.00

0.00

1.18

0.00

0.00

0.00

0.00

0.00

C4

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C5

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.52

C6

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C7

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C8

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C9

0.00

0.00

1.36

0.00

0.92

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C10

0.00

0.00

0.38

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C11

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.83

0.00

0.52

0.00

C12

0.00

0.77

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C13

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C14

0.31

0.63

0.00

0.54

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C15

0.00

1.30

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.81

0.00

C16

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.30

0.00

0.00

0.00

0.00

C17

0.48

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C18

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.83

0.00

0.00

C19

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C20

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zheng, L. & He, S. A novel approach for product competitive analysis based on online reviews. Electron Commer Res 23, 2259–2290 (2023). https://doi.org/10.1007/s10660-022-09534-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-022-09534-y

Keywords

Navigation