Abstract
Due to an increasing public desire for physical experiences, numerous online bookstores have begun to invest in offline bookstores for economic benefits. The investment of e-commerce companies results in additional online sales of both physical and electronic books (e-books) but complicates the publisher’s pricing strategy of e-books. We construct a supply chain comprising a publisher and an online bookstore, and investigate the strategic interactions between two e-books procing models (i.e., wholesale model and the agency model) and the offline investment strategy, which enriches many traditional e-book pricing models. We analytically derive that the offline investment changes the bookstore’s preference for the e-book pricing model. Additionally, in the wholesale model, the publisher prefers the bookstore with low investment efficiency not to invest. Otherwise, the publisher prefers the bookstore to invest. Finally, in the wholesale model, the bookstore always prefers to invest; but in the agency model, the bookstore chooses to invest only if the investment efficiency and revenue sharing ratio satisfy certain conditions.

















Similar content being viewed by others
References
Lu, Q., Shi, V., & Huang, J. (2017). Who benefit from agency model: A strategic analysis of pricing models in distribution channels of physical books and e-books. European Journal of Operational Research, 264(3), 1074–1091.
Zhang, J. (2017). The integration of technology and the publishing industry in china. Publishing Research Quarterly, 33, 173–182.
Ji, J., Zhang, Z., & Yang, L. (2017). Comparisons of initial carbon allowance allocation rules in an o2o retail supply chain with the cap-and-trade regulation. International Journal of Production Economics, 187, 68–84.
Jiang, Y., Kim, J., Choi, J., & Kang, M. Y. (2020). From clicks to bricks: The impact of product launches in offline stores for digital retailers. Journal of Business Research, 120, 302–311. https://doi.org/10.1016/j.jbusres.2019.08.025
Zhu, X. (2019). Case xi: Amazon’s DNA: Driving technology innovation in the digital economy. Management for Professionals. https://doi.org/10.1007/978-981-13-2628-8_13
Fan, J., Li, X., Liu, C., et al. (2019). Report on the development of China’s Publishing Industry in 2018. Publishing Research Quarterly, 35(4), 543–561.
Poirel, C. (2019). Omnichannel innovations in the bookstore business: The case of the Libraires Ensemble Group. Innovation in the Cultural and Creative Industries, 8, 29–53. https://doi.org/10.1002/9781119681250.ch2
Pettersen, C. T., & Colbjørnsen, T. (2018). Omnichannel and digital-only: Analyzing digital bookselling operations in four Norwegian bookstores. Publishing Research Quarterly, 35, 108–121. https://doi.org/10.1007/s12109-018-9620-1
Wang, J., Yan, Y., Du, H., & Zhao, R. (2019). The optimal sales format for green products considering downstream investment. International Journal of Production Research, 58, 1107–1126.
Huang, S., Chen, S., & Guan, X. (2020). Retailer information sharing under endogenous channel structure with investment spillovers. Computers & Industrial Engineering, 142, 106346. https://doi.org/10.1016/j.cie.2020.106346
Hua, G., Cheng, T. C. E., & Wang, S. (2011). Electronic books: To “E” or not to “E”? A strategic analysis of distribution channel choices of publishers. International Journal of Production Economics, 129(2), 338–346.
Babur, D. L. S., & Wildenbeest, M. R. (2017). E-book pricing and vertical restraints. Quantitative Marketing & Economics, 15(2), 85–122.
Wirl, F. (2018). Agency model and wholesale pricing: Apple versus Amazon in the E-Book Market. International Journal of the Economics of Business. https://doi.org/10.1080/13571516.2017.1401282
Zhu, C., & Yao, Z. (2017). Comparison between the agency and wholesale model under the e-book duopoly market. Electronic Commerce Research, 18(8), 313–337. https://doi.org/10.1007/s10660-017-9256-9
Johnson, J. P. (2020). The agency and wholesale models in electronic content markets. International Journal of Industrial Organization, 69, 102581. https://doi.org/10.1016/j.ijindorg.2020.102581
Dantas, D. C., Taboubi, S., & Zaccour, G. (2014). Which business model for e-book pricing? Economics Letters, 125(1), 126–129.
Li, Y., & Liu, N. (2013). Pricing models of e-books when competing with p-books. Mathematical Problems in Engineering. https://doi.org/10.1155/2013/369214
Mai, F., Zhang, J., & Sun, X. (2021). Dynamic analysis of pricing model in a book supply chain. International Journal of Production Economics, 233, 108026. https://doi.org/10.1016/j.ijpe.2021.108026
Ke, H., Ye, S., & Mo, Y. (2021). A comparison between the wholesale model and the agency model with different launch strategies in the book supply chain. Electronic Commerce Research. https://doi.org/10.1007/s10660-021-09474-z
Luo, C., Leng, M., Tian, X., & Song, J. (2018). Pricing the digital version of a book: wholesale vs. agency models. Information Systems and Operational Research, 56(2), 163–191. https://doi.org/10.1080/03155986.2017.1348570
Li, H. (2019). Intertemporal price discrimination with complementary products: E-Books and E-Readers. Management Science, 65, 2665–2694.
Liu, Z. (2018). Whither the book retailing Industry in China: A historical reflection. Publishing Research Quarterly, 34, 133–146. https://doi.org/10.1007/s12109-018-9569-0
Bigerna, S., Wen, X., Hagspiel, V., & Kort, P. M. (2019). Green electricity investments: Environmental target and the optimal subsidy. European Journal of Operational Research, 279, 635–644.
Sarkar, S., & Bhadouriya, A. (2020). Manufacturer competition and collusion in a two-echelon green supply chain with production trade-off between non-green and green quality. Journal of Cleaner Production, 253, 119904. https://doi.org/10.1016/j.jclepro.2019.119904
Dong, C., Liu, Q., & Shen, B. (2019). To be or not to be green? strategic investment for green product development in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 131, 193–227.
Xiao, L., Xu, M., Zheng, J. J., & Huang, S. (2020). Inducing manufacturer’s quality enhancement via retailer’s acquisition strategy. Omega. https://doi.org/10.1016/j.omega.2019.02.001
Golmohammadi, A., & Hassini, E. (2021). Investment strategies in supplier development under capacity and demand uncertainty. Decision Sciences, 52(1), 109–141. https://doi.org/10.1111/deci.12419
Hu, B., Hu, M., & Yang, Y. (2017). Open or closed? technology sharing, supplier investment, and competition. Manufacturing & Service Operations Management, 19(1), 132–149.
Giovanni, P. D., & Zaccour, G. (2019). Optimal quality improvements and pricing strategies with active and passive product returns. Omega, 88, 248–262. https://doi.org/10.1016/j.omega.2018.09.007
Yoo, S., & Cheong, T. (2018). Quality improvement incentive strategies in a supply chain. Transportation Research Part E. Logistics and Transportation Review, 114, 331–342. https://doi.org/10.1016/j.tre.2018.01.005
Cui, Q. (2019). Quality investment, and the contract manufacturer’s encroachment. European Journal of Operational Research, 279, 407–418. https://doi.org/10.1016/j.ejor.2019.06.004
Lee, H. H., & Li, C. (2016). Supplier quality management: Investment, inspection, and incentives. Production and Operations Management, 27, 304–322. https://doi.org/10.1111/poms.12802
Giri, B. C., & Roy, B. (2015). Dual-channel competition: The impact of pricing strategies, sales effort and market share. International Journal of Management Science & Engineering Management, 11(4), 203–212.
Zhou, Y. W., Guo, J., & Zhou, W. (2018). Pricing/service strategies for a dual-channel supply chain with free riding and service-cost sharing. International Journal of Production Economics, 196, 198–210. https://doi.org/10.1016/j.ijpe.2017.11.014
Xia, Y., Xiao, T., & Zhang, G. P. (2019). Service investment and channel structure decisions in competing supply chains. Service Science, 11, 57–74. https://doi.org/10.1287/serv.2018.0235
Hong, X., Wang, L., Gong, Y., & Chen, W. A. (2020). What is the role of value-added service in a remanufacturing closed-loop supply chain? International Journal of Production Research, 58(11), 3342–3361. https://doi.org/10.1080/00207543.2019.1702230
Hou, R., De Koster, R., & Yu, Y. (2018). Service investment for online retailers with social media—does it pay off? Transportation Research, Part E Logistics and Transportation Review, 118, 606–628. https://doi.org/10.1016/j.tre.2018.08.011
Li, Y., Lin, Z., Xu, L., & Swain, A. (2015). Do the electronic books reinforce the dynamics of book supply chain market? A theoretical analysis. European Journal of Operational Research, 245(2), 591–601.
Lai, X., Tao, Y., Wang, F., & Zou, Z. (2019). Sustainability investment in maritime supply chain with risk behavior and information sharing. International Journal of Production Economics, 218, 16–29.
Funding
This work was supported by National Natural Science Foundation of China [Grant Number 71771044].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix
Proof of Proposition 1
According to the backward induction, the pricing decisions of p-books and e-books of the online bookstores are first obtained.
The Hessian Matrix \(H_{1}\) of \(\pi_{bs}^{WN}\) in terms of \(\beta\) and \(p_{e}\) is obtained through Eq. (4). That is, \(H_{1} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta^{2} }}} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta \partial p_{e} }}} \\ {\frac{{\partial^{2} \pi_{bs} }}{{\partial p_{e} \partial \beta }}} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial p_{e}^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 2p^{2} } & {2p\theta } \\ {2p\theta } & { - 2} \\ \end{array} } \right)\), where \(\frac{{\partial^{2} \pi_{bs}^{RN} }}{{\partial \beta^{2} }} < 0\). Given that \(\left| {H_{1} } \right| = 4p^{2} \left( {1 - \theta^{2} } \right) > 0\), the bookstore’s profit function is a joint concave function with respect to \(\beta\) and \(p_{e}\). We can get \(\left\{ \begin{gathered} \beta \left( {w_{p} ,w_{e} } \right) = \frac{{a + \theta + w_{p} - \theta^{2} w_{p} }}{{2p - 2p\theta^{2} }} \hfill \\ p_{e} \left( {w_{p} ,w_{e} } \right) = \frac{{ - 1 - a\theta - w_{e} + \theta^{2} w_{e} }}{{2\left( { - 1 + \theta^{2} } \right)}} \hfill \\ \end{gathered} \right.\) through \(\left\{ \begin{gathered} \frac{{\partial \pi_{bs}^{WN} }}{\partial \beta } = 0 \hfill \\ \frac{{\partial \pi_{bs}^{WN} }}{{\partial p_{e} }} = 0 \hfill \\ \end{gathered} \right.\). Then substituting \(\beta \left( {w_{p} ,w_{e} } \right)\) and \(p_{e} \left( {w_{p} ,w_{e} } \right)\) into \(\pi_{pub}^{WN}\) and the Hessian Matrix \(H_{2}\) of \(\pi_{pub}^{WN}\) in terms of \(w_{p}\) and \(w_{e}\) is obtained. That is \(H_{2} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{e}^{2} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{e} \partial w_{p} }}} \\ {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p} \partial w_{e} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p}^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 1} & \theta \\ \theta & { - 1} \\ \end{array} } \right)\), where \(\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{e}^{2} }} < 0\). Given that \(\left| {H_{2} } \right| = 1 - \theta^{2} > 0\), the publisher’s profit function is a joint concave function with respect to \(w_{p}\) and \(w_{e}\). We get \(\left\{ \begin{gathered} w_{e}^{WN} = \frac{ - 1 - 2\theta + a\theta }{{2\left( { - 1 + \theta^{2} } \right)}} \hfill \\ w_{p}^{WN} = \frac{2 - a + \theta }{{2 - 2\theta^{2} }} \hfill \\ \end{gathered} \right.\) through \(\left\{ \begin{gathered} \frac{{\partial \pi_{pub}^{WN} }}{{\partial w_{p} }} = 0 \hfill \\ \frac{{\partial \pi_{pub}^{WN} }}{{\partial w_{e} }} = 0 \hfill \\ \end{gathered} \right.\). Finally, substituting \(w_{p}\) and \(w_{e}\) into \(\beta \left( {w_{p} ,w_{e} } \right)\), \(p_{e} \left( {w_{p} ,w_{e} } \right)\), we obtained \(\left\{ \begin{gathered} p_{e}^{WN} = \frac{{3 + \left( {2 + a} \right)\theta }}{{4 - 4\theta^{2} }} \hfill \\ \beta^{WN} = \frac{2 + a + 3\theta }{{4p\left( {1 - \theta^{2} } \right)}} \hfill \\ \end{gathered} \right.\). Also, we can get \(D_{p}^{WN} = \frac{2 - a}{4}\), \(D_{e}^{WN} = \frac{1}{4}\), \(\pi_{{_{pub} }}^{WN} = \frac{{5 + a^{2} + 4\theta - 2a\left( {2 + \theta } \right)}}{{8 - 8\theta^{2} }}\), \(\pi_{bs}^{WN} = \frac{{3 + 3a^{2} - 2a\left( {4 + \theta } \right)}}{{16\left( { - 1 + \theta^{2} } \right)}}\).
Proof of Corollary 1
(i) We can obtain \(\frac{{\partial \pi_{pub}^{WN} }}{\partial \theta } = \frac{{2 + 5\theta + a^{2} \theta + 2\theta^{2} - a\left( {1 + 4\theta + \theta^{2} } \right)}}{{4\left( { - 1 + \theta^{2} } \right)^{2} }}\). Note \(f\left( \theta \right) = 2 + 5\theta + a^{2} \theta + 2\theta^{2} - a\left( {1 + 4\theta + \theta^{2} } \right)\), \(\frac{\partial f\left( \theta \right)}{{\partial \theta }} = 5 + a^{2} + 4\theta - a\left( {4{ + 2}\theta } \right)\). From \(\frac{{\partial^{{2}} f\left( \theta \right)}}{{\partial \theta^{{2}} }} = {4} - {2}a \ge 0\), we can get \(\frac{\partial f\left( \theta \right)}{{\partial \theta }}\) increases with \(\theta\). \(\frac{\partial f\left( \theta \right)}{{\partial \theta }}\left| {_{\theta = 0} } \right. = \left( {a - 2} \right)^{2} + 1 > 0\), so \(\frac{\partial f\left( \theta \right)}{{\partial \theta }} > 0\). \(f\left( \theta \right)\left| {_{\theta = 0} } \right. = 2 - a > 0\), so \(f\left( \theta \right) \ge 0\). Finally, we get \(\frac{{\partial \pi_{pub}^{WN} }}{\partial \theta } > 0\).
(ii) We can obtain \(\frac{{\partial \pi_{bs}^{WN} }}{\partial \theta } = \frac{{ - 3\theta - 3a^{2} \theta + a\left( {1 + 8\theta + \theta^{2} } \right)}}{{8\left( { - 1 + \theta^{2} } \right)^{2} }}\). Note \(g\left( \theta \right) = - 3\theta - 3a^{2} \theta + a\left( {1 + 8\theta + \theta^{2} } \right)\), \(\frac{\partial g\left( \theta \right)}{{\partial \theta }} = - 3 - 3a^{2} + a\left( {8 + 2\theta } \right)\). From \(\frac{{\partial^{2} g\left( \theta \right)}}{{\partial \theta^{2} }} = 2a \ge 0\), we can get \(\frac{\partial g\left( \theta \right)}{{\partial \theta }}\) increases with \(\theta\). When \(\frac{\partial g\left( \theta \right)}{{\partial \theta }} = 0\), \(\theta^{*} = \frac{{3 - 8a + a^{2} }}{2a}\). So when \(\theta < \theta^{*}\), \(\frac{\partial g\left( \theta \right)}{{\partial \theta }}\) decreases with \(\theta\); when \(\theta > \theta^{*}\), \(\frac{\partial g\left( \theta \right)}{{\partial \theta }}\) increases with \(\theta\). \(\frac{\partial g\left( \theta \right)}{{\partial \theta }}\left| {_{{\theta = \theta^{*} }} } \right. = \frac{{3\left( { - 1 + a} \right)^{2} \left( {a - 3} \right)\left( { - 3a + 1} \right)}}{4a}\). ① when \(0 < a < \frac{1}{3}\), from \(g\left( \theta \right) = 0\),we get \(\theta^{^{\prime}} = \frac{{3 - 8a + 3a^{2} - \sqrt 3 \sqrt {3 - 16a + 26a^{2} - 16a^{3} + 3a^{4} } }}{2a} < 1\), \(\theta^{^{\prime\prime}} = \frac{{3 - 8a + 3a^{2} + \sqrt 3 \sqrt {3 - 16a + 26a^{2} - 16a^{3} + 3a^{4} } }}{2a} > 1\)(Not with in the parameter \(\theta\) constraint). Thus when \(\theta < \theta^{^{\prime}}\), \(\pi_{bs}^{WN}\) increases; when \(\theta^{^{\prime}} < \theta < 1\), \(\pi_{bs}^{WN}\) decreases. ② when \(\frac{1}{3} < a < 2\), \(\frac{\partial g\left( \theta \right)}{{\partial \theta }}\left| {_{{\theta = \theta^{*} }} } \right. > 0\), so \(g\left( \theta \right) > 0\), \(\pi_{bs}^{WN}\) increases with \(\theta\).
Proof of Proposition 2
Similar to Proof of Proposition 1, the bookstore’s profit function \(\pi_{bs}^{AN} \left( \beta \right)\) is concave in \(\beta\), that is, \(\frac{{\partial^{2} \pi_{bs}^{AN} \left( \beta \right)}}{{\partial \beta^{2} }} = - 2p^{2} < 0\). We obtained the optimal \(\beta \left( {w_{p} ,p_{e} } \right) = \frac{{\alpha + 2\theta p_{e} - \gamma \theta p_{e} + w_{p} }}{2p}\) with \(\frac{{\partial \pi_{bs}^{AN} \left( \beta \right)}}{\partial \beta } = 0\). By substituting \(\beta = \beta \left( {w_{p} ,p_{e} } \right)\) into \(\pi_{pub}^{AN} \left( {w_{p} ,p_{e} } \right)\), we obtained the Hessian Matrix \(H_{3}\) of \(\pi_{bs}^{RN}\) in terms of \(w_{p}\) and \(p_{e}\). That is \(H_{3} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p}^{2} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p} \partial p_{e} }}} \\ {\frac{{\partial^{2} \pi_{pub} }}{{\partial p_{e} \partial w_{p} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial p_{e}^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 1} & {\gamma \theta } \\ {\gamma \theta } & { - \gamma \left( {2 + \left( { - 2 + \gamma } \right)\theta^{2} } \right)} \\ \end{array} } \right)\), where \(\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p}^{2} }} < 0\). Given that \(\left| {H_{3} } \right| = 2\gamma \left( {1 - \theta^{2} } \right) > 0\), the publisher’s profit function is a joint concave function with respect to \(w_{p}\) and \(p_{e}\). We obtained the optimal \(\left\{ \begin{gathered} w_{p}^{AN} = \frac{1}{2}\left( {\alpha + \frac{{\gamma \theta \left( {1 + \alpha \theta } \right)}}{{1 - \theta^{2} }}} \right) \hfill \\ p_{e}^{AN} = \frac{1 + \alpha \theta }{{2\left( {1 - \theta^{2} } \right)}} \hfill \\ \end{gathered} \right.\) with \(\left\{ \begin{gathered} \frac{{\partial \pi_{pub}^{AN} }}{{\partial w_{p} }} = 0 \hfill \\ \frac{{\partial \pi_{pub}^{AN} }}{{\partial p_{e} }} = 0 \hfill \\ \end{gathered} \right.\). Finally, substituting \(w_{p}\) and \(p_{e}\) into \(\beta \left( {w_{p} ,p_{e} } \right)\), we obtained \(\beta^{AN} = \frac{{3a + 2\theta - a\theta^{2} }}{{4p\left( {1 - \theta^{2} } \right)}}\), also, we can get \(D_{p}^{AN} = \frac{a}{4}\), \(D_{e} = \frac{1}{4}\left( {2 + a\theta } \right)\), \(\pi_{{_{pub} }}^{AN} = \frac{{2\gamma + 4a\gamma \theta + a^{2} \left( {1 - \left( {1 - 2\gamma } \right)\theta^{2} } \right)}}{{8\left( {1 - \theta^{2} } \right)}}\), \(\pi_{bs}^{AN} = \frac{{4\left( { - 1 + \gamma } \right) + 8a\left( { - 1 + \gamma } \right)\theta + a^{2} \left( { - 1 + \left( { - 3 + 4\gamma } \right)\theta^{2} } \right)}}{{16\left( { - 1 + \theta^{2} } \right)}}\).
Proof of Proposition 3
The bookstore’s profit function \(\pi_{bs}^{WN} \left( {\beta ,p_{e} ,s} \right)\) is concave in \(\beta\), \(p_{e}\), \(s\), that is \(H_{4} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta^{2} }}} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta \partial p_{e} }}} & {\frac{{\partial^{2} \pi_{bs} }}{\partial \beta \partial s}} \\ {\frac{{\partial^{2} \pi_{bs} }}{{\partial p_{e} \partial \beta }}} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial p_{e}^{2} }}} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial p_{e} \partial s}}} \\ {\frac{{\partial^{2} \pi_{bs} }}{\partial s\partial \beta }} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial s\partial p_{e} }}} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial s^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 2p^{2} } & {2p\theta } & {p\lambda } \\ {2p\theta } & { - 2} & \lambda \\ {p\lambda } & \lambda & { - k} \\ \end{array} } \right)\), where \(\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta^{2} }} = - 2p^{2} < 0\), \(\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta^{2} }}\frac{{\partial^{2} \pi_{bs} }}{{\partial p_{e}^{2} }} - \frac{{\partial^{2} \pi_{bs} }}{{\partial \beta \partial p_{e} }}\frac{{\partial^{2} \pi_{bs} }}{{\partial p_{e} \partial \beta }} = 4p^{2} \left( {1 - \theta^{2} } \right) > 0\), and \(\left| {H_{4} } \right| = - 4kp^{2} + 4kp\theta^{2} + 2p\lambda^{2} + 4p^{2} \theta \lambda^{2} + 2p^{2} \lambda^{2} < 0\) must be met. We get the optimal \(\left\{ \begin{gathered} p_{e} \left( {w_{p} ,w_{e} } \right) = \frac{{ - 2k - 2ak\theta + \lambda^{2} - a\lambda^{2} + \left( {1 + \theta } \right)\left( {2k\left( { - 1 + \theta } \right) + 3\lambda^{2} } \right)w_{e} + \left( {1 + \theta } \right)\lambda^{2} w_{p} }}{{4\left( {1 + \theta } \right)\left( {k\left( { - 1 + \theta } \right) + \lambda^{2} } \right)}} \hfill \\ \beta \left( {w_{p} ,w_{e} } \right) = \frac{{ - 2ak - 2k\theta - \lambda^{2} + a\lambda^{2} + \left( {1 + \theta } \right)\lambda^{2} w_{e} + \left( {1 + \theta } \right)\left( {2k\left( { - 1 + \theta } \right) + 3\lambda^{2} } \right)w_{p} }}{{4p\left( {1 + \theta } \right)\left( {k\left( { - 1 + \theta } \right) + \lambda^{2} } \right)}} \hfill \\ s\left( {w_{p} ,w_{e} } \right) = - \frac{{\lambda \left( {1 + a + \left( { - 1 + \theta } \right)w_{e} + \left( { - 1 + \theta } \right)w_{p} } \right)}}{{2\left( {k\left( { - 1 + \theta } \right) + \lambda^{2} } \right)}} \hfill \\ \end{gathered} \right.\) through \(\left\{ \begin{gathered} \frac{{\partial \pi_{bs}^{WN} }}{{\partial p_{e} }} = 0 \hfill \\ \frac{{\partial \pi_{bs}^{WN} }}{\partial \beta } = 0 \hfill \\ \frac{{\partial \pi_{bs}^{WN} }}{\partial s} = 0 \hfill \\ \end{gathered} \right.\). By substituting \(p_{e} \left( {w_{p} ,w_{e} } \right)\), \(\beta \left( {w_{p} ,w_{e} } \right)\), \(s\left( {w_{p} ,w_{e} } \right)\) into \(\pi_{pub}^{WN}\), then we obtained the Hessian Matrix \(H_{5}\) of \(\pi_{pub}^{WN}\) in terms of \(w_{p}\) and \(w_{e}\). That is \(H_{5} { = }\left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p}^{2} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p} \partial w_{e} }}} \\ {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{e} \partial w_{p} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{e}^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - \frac{{2k\left( { - 1 + \theta } \right) + \left( {1 + \theta } \right)\lambda^{2} }}{{2\left( {k\left( { - 1 + \theta } \right) + \lambda^{2} } \right)}}} & {\frac{{2k\left( { - 1 + \theta } \right)\theta + \left( {1 + \theta } \right)\lambda^{2} }}{{2\left( {k\left( { - 1 + \theta } \right) + \lambda^{2} } \right)}}} \\ {\frac{{2k\left( { - 1 + \theta } \right)\theta + \left( {1 + \theta } \right)\lambda^{2} }}{{2\left( {k\left( { - 1 + \theta } \right) + \lambda^{2} } \right)}}} & { - \frac{{2k\left( { - 1 + \theta } \right) + \left( {1 + \theta } \right)\lambda^{2} }}{{2\left( {k\left( { - 1 + \theta } \right) + \lambda^{2} } \right)}}} \\ \end{array} } \right)\), where \(\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p}^{2} }} = \frac{{2k\left( { - 1 + \theta } \right) + \left( {1 + \theta } \right)\lambda^{2} }}{{2\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}} < 0\) and \(\left| {H_{5} } \right| = \frac{{k\left( {1 - \theta } \right)^{2} \left( {1 + \theta } \right)}}{{k\left( {1 - \theta } \right) - \lambda^{2} }} > 0\) must be contained, that is,\(k\left( {1 - \theta } \right) - \lambda^{2} > 0\), \(2k\left( { - 1 + \theta } \right) + \left( {1 + \theta } \right)\lambda^{2} < 0\). The publisher’s profit function is a joint concave function with respect to \(w_{p}\) and \(w_{e}\), we get the optimal equilibrium \(\left\{ \begin{gathered} w_{p}^{WI} = \frac{a + \theta }{{2 - 2\theta^{2} }} \hfill \\ w_{e}^{WI} = \frac{1 + a\theta }{{2 - 2\theta^{2} }} \hfill \\ \end{gathered} \right.\). Finally, substituting \(w_{p}^{WI}\) and \(w_{e}^{WI}\) into \(p_{e} \left( {w_{p} ,w_{e} } \right)\), \(\beta \left( {w_{p} ,w_{e} } \right)\), \(s\left( {w_{p} ,w_{e} } \right)\),we obtained \(p_{e}^{WI} = \frac{{6k\left( {1 - \theta } \right)\left( {1 + a\theta } \right) + \left( { - 5 + a + \theta - 5a\theta } \right)\lambda^{2} }}{{8\left( {1 - \theta^{2} } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\), \(\beta^{WI} = \frac{{6k\left( {1 - \theta } \right)\theta + \left( {1 - 5\theta } \right)\lambda^{2} + a\left( {6k\left( {1 - \theta } \right) - \left( {5 - \theta } \right)\lambda^{2} } \right)}}{{8p\left( {1 - \theta^{2} } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\), \(s^{WI} = \frac{{\left( {1 + a} \right)\lambda }}{{4\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\) also, we can get \(D_{p}^{WI} = \frac{{\lambda^{2} + a\left( {2k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}{{8\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\), \(D_{e}^{WI} = \frac{{2k\left( {1 - \theta } \right) - \left( {1 - a} \right)\lambda^{2} }}{{8\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\), \(\pi_{pub}^{WI} = \frac{{2k\left( {1 + a^{2} + 2a\theta } \right) + \left( {1 - a} \right)^{2} \lambda^{2} }}{{16\left( {1 + \theta } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\), \(\pi_{bs}^{WI} = \frac{{2k\left( {1 + a^{2} + 2a\theta } \right) - \left( {1 - a} \right)^{2} \lambda^{2} }}{{32\left( {1 + \theta } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\).
Proof of Proposition 4
The bookstore’s profit function \(\pi _{{bs}}^{{AI}} \left( {\beta ,s} \right)\) is concave in \(\beta\) and \(s\), that is, \(H_{6} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta^{2} }}} & {\frac{{\partial^{2} \pi_{bs} }}{\partial \beta \partial s}} \\ {\frac{{\partial^{2} \pi_{bs} }}{\partial s\partial \beta }} & {\frac{{\partial^{2} \pi_{bs} }}{{\partial s^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 2p^{2} } & {p\lambda } \\ {p\lambda } & { - k} \\ \end{array} } \right)\), where \(\frac{{\partial^{2} \pi_{bs} }}{{\partial \beta^{2} }} = - 2p^{2} < 0\), \(\left| {H_{6} } \right| = 2k - \lambda^{2} > 0\) must be contained. We get the optimal.
\(\left\{ \begin{gathered} \beta \left( {w_{p} ,p_{e} } \right) = \frac{{ak + 2k\theta p_{e} - k\gamma \theta p_{e} + \lambda^{2} p_{e} - \gamma \lambda^{2} p_{e} + kw_{p} - \lambda^{2} w_{p} }}{{p\left( {2k - \lambda^{2} } \right)}} \hfill \\ s\left( {w_{p} ,p_{e} } \right) = \frac{{\lambda \left( {a + \left( {2\left( {1 + \theta } \right) - \gamma \left( {2 + \theta } \right)} \right)p_{e} - w_{p} } \right)}}{{2k - \lambda^{2} }} \hfill \\ \end{gathered} \right.\) with \(\left\{ \begin{gathered} \frac{{\partial \pi_{bs}^{AI} }}{\partial \beta } = 0 \hfill \\ \frac{{\partial \pi_{bs}^{AI} }}{\partial s} = 0 \hfill \\ \end{gathered} \right.\). By substituting \(\beta \left( {w_{p} ,p_{e} } \right)\), \(s\left( {w_{p} ,p_{e} } \right)\), into \(\pi_{pub}^{AI}\), then we obtained the Hessian Matrix \(H_{7}\) of \(\pi_{pub}^{AN}\) in terms of \(w_{p}\) and \(P_{e}\). That is \(H_{7} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p}^{2} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p} \partial p_{e} }}} \\ {\frac{{\partial^{2} \pi_{pub} }}{{\partial p\partial w_{p} }}} & {\frac{{\partial^{2} \pi_{pub} }}{{\partial p_{e}^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - \frac{2k}{{2k - \lambda^{2} }}} & {\frac{{2k\gamma \theta - \left( { - 1 + 2\gamma } \right)\left( {1 + \theta } \right)\lambda^{2} }}{{2k - \lambda^{2} }}} \\ {\frac{{2k\gamma \theta - \left( { - 1 + 2\gamma } \right)\left( {1 + \theta } \right)\lambda^{2} }}{{2k - \lambda^{2} }}} & { - \frac{{2\gamma \left( {k\left( {2 + \left( { - 2 + \gamma } \right)\theta^{2} } \right) + \left( { - 3 + 2\gamma } \right)\left( {1 + \theta } \right)\lambda^{2} } \right)}}{{2k - \lambda^{2} }}} \\ \end{array} } \right)\), where \(\frac{{\partial^{2} \pi_{pub} }}{{\partial w_{p}^{2} }} = - \frac{2k}{{2k - \lambda^{2} }} < 0\), \(\left| {H_{7} } \right| = - \frac{{\left( {1 + \theta } \right)\left( {8k^{2} \gamma \left( { - 1 + \theta } \right) + 4k\gamma \left( {3 + \theta - 2\gamma \left( {1 + \theta } \right)} \right)\lambda^{2} + \left( {1 - 2\gamma } \right)^{2} \left( {1 + \theta } \right)\lambda^{4} } \right)}}{{\left( { - 2k + \lambda^{2} } \right)^{2} }} > 0\) must be contained, that is,\(8k^{2} \gamma \left( { - 1 + \theta } \right) + 4k\gamma \left( {3 + \theta - 2\gamma \left( {1 + \theta } \right)} \right)\lambda^{2} + \left( {1 - 2\gamma } \right)^{2} \left( {1 + \theta } \right)\lambda^{4} < 0\). We obtained \(\left\{ \begin{gathered} w_{p}^{AI} = \frac{{ - \gamma \left( {a\lambda^{4} (1 - 2\gamma )(1 + \theta ) + 4ak^{2} \left( {\gamma \theta^{2} - \theta^{2} + 1} \right) + ak\lambda^{2} \left( { - 2\gamma \theta^{2} + 4\gamma \theta + 4\gamma + \theta^{2} - 5\theta - 6} \right) + \left( {2k - \lambda^{2} } \right)\left( {2\gamma \theta k - (2\gamma - 1)(\theta + 1)\lambda^{2} } \right)} \right)}}{{\left( {1 + \theta } \right)A}} \hfill \\ p_{e}^{AI} = \frac{{ - k\left( {4k\gamma \left( {1 + a\theta } \right) + \lambda^{2} \left( { - 2\gamma + a\left( {1 + \theta - 2\gamma \theta } \right)} \right)} \right)}}{{\left( {1 + \theta } \right)A}} \hfill \\ \end{gathered} \right.\) through \(\left\{ \begin{gathered} \frac{{\partial \pi_{pub}^{AI} }}{{\partial w_{p} }} = 0 \hfill \\ \frac{{\partial \pi_{pub}^{AI} }}{{\partial p_{e} }} = 0 \hfill \\ \end{gathered} \right.\). Finally, substituting \(w_{p}^{AI}\) and \(p_{e}^{AI}\) into \(\beta \left( {w_{p} ,p_{e} } \right)\), \(s\left( {w_{p} ,p_{e} } \right)\),we obtained \(\beta^{AI} = \frac{\begin{gathered} a\left( {\gamma \lambda^{4} (2\gamma - 1)(1 + \theta ) + 2\gamma k^{2} \left( {\theta^{2} - 3} \right) - k\lambda^{2} \left( {2\gamma^{2} \left( {\theta^{2} + 4\theta + 3} \right) - \gamma \left( {3\theta^{2} + 9\theta + 8} \right) + \theta (1 + \theta )} \right)} \right) \hfill \\ + \gamma \left( {\lambda^{4} (1 - 2\gamma )(1 + \theta ) - 4\theta k^{2} + k\lambda^{2} (4\gamma \theta + 4\gamma - \theta - 3)} \right) \hfill \\ \end{gathered} }{(1 + \theta )pA}\), \(s^{AI} = \frac{{2k\lambda \gamma \left( {2\gamma - 2 - a\left( {1 + \theta - 2\gamma \theta } \right)} \right) + \lambda^{3} \left( {1 - 2\gamma } \right)\left( {\gamma + a\left( { - 1 + \gamma - \theta + 2\gamma \theta } \right)} \right)}}{A}\),also, we can get \(D_{p}^{AI} = \frac{{ - \lambda^{2} k\gamma + ak\gamma \left( {2k\left( { - 1 + \theta } \right) + \lambda^{2} \left( {2 + \theta - 2\gamma - 2\gamma \theta } \right)} \right)}}{A}\), \(D_{e}^{AI} = \frac{\begin{gathered} \lambda^{4} (1 - a)\left( {2\gamma^{2} - 3\gamma + 1} \right)(\theta + 1) + 2\gamma k^{2} (\theta - 1)(a\theta + 2) + \hfill \\ k\lambda^{2} \left( {\gamma (3\theta + 6 - 4\gamma \theta - 4\gamma ) - a\left( {2\gamma^{2} \theta^{2} + 2\gamma^{2} \theta - 3\gamma \theta^{2} - 4\gamma \theta + 2\gamma + \theta^{2} - 1} \right)} \right) \hfill \\ \end{gathered} }{A}\), \(D_{e}^{AI} = \frac{\begin{gathered} \lambda^{4} (1 - a)\left( {2\gamma^{2} - 3\gamma + 1} \right)(\theta + 1) + 2\gamma k^{2} (\theta - 1)(a\theta + 2) + \hfill \\ k\lambda^{2} \left( {\gamma (3\theta + 6 - 4\gamma \theta - 4\gamma ) - a\left( {2\gamma^{2} \theta^{2} + 2\gamma^{2} \theta - 3\gamma \theta^{2} - 4\gamma \theta + 2\gamma + \theta^{2} - 1} \right)} \right) \hfill \\ \end{gathered} }{A}\), \(\pi_{pub}^{AI} = - \frac{{k\gamma \left( {\gamma \left( {2k - \lambda^{2} } \right) + a\left( {4k\gamma \theta + \lambda^{2} \left( {1 + \theta - 2\gamma \theta } \right)\lambda^{2} } \right) + a^{2} \left( {k\left( {1 + \theta^{2} \left( { - 1 + 2\gamma } \right)} \right) + \lambda^{2} \left( { - 1 + \gamma - \theta + 2\gamma \theta } \right)} \right)} \right)}}{{\left( {1 + \theta } \right)A}}\), where \(A = 8k^{2} \gamma \left( { - 1 + \theta } \right) + 4k\gamma \lambda^{2} \left( {3 + \theta - 2\gamma - 2\gamma \theta } \right) + \lambda^{4} \left( {1 - 2\gamma } \right)^{2} \left( {1 + \theta } \right)\).
Proof of Lemma 1
Firstly, we can get \(\Delta \pi_{pub}^{WN - AN} = \pi_{pub}^{WN} - \pi_{pub}^{AN} = \frac{{ - 2\gamma \left( {1 + a\theta } \right)^{2} + 5 - 4a + 4\theta - 2a\theta + a^{2} \theta^{2} }}{{8\left( {1 - \theta^{2} } \right)}}\), then we denote \(f\left( \gamma \right) = - 2\gamma \left( {1 + a\theta } \right)^{2} + 5 - 4a + 4\theta - 2a\theta + a^{2} \theta^{2}\), thus when \(f\left( \gamma \right) > 0\), \(\pi_{pub}^{WN} > \pi_{pub}^{AN}\); \(f\left( \gamma \right) < 0\), \(\pi_{pub}^{WN} < \pi_{pub}^{AN}\). In a word, we need to figure out the relationship between \(f\left( \gamma \right)\) and 0. We can see \(\frac{\partial f\left( \gamma \right)}{{\partial \gamma }} = - 2\left( {1 + a\theta } \right)^{2} < 0\), so we have two scenarios to discuss: (1) \(f\left( \gamma \right) < 0\); (2) \(f\left( \gamma \right) > 0\). From \(f\left( 0 \right) = 5 - 4a + 4\theta - 2a\theta + a^{2} \theta^{2}\), we get \(\frac{\partial f\left( 0 \right)}{{\partial a}} = - 4 - 2\theta + 2a\theta^{2} < 0\), when \(f\left( 0 \right) = 0\), \(a_{2}^{*} = \frac{{2 + \theta - 2\sqrt {1 + \theta - \theta^{2} - \theta^{3} } }}{{\theta^{2} }}\) (\(a_{2}^{*}\) increases with \(\theta\), when \(a_{2}^{*} = 2\),\(\theta = \frac{\sqrt 3 }{2}\)). When \(f\left( 0 \right) > 0\), \(f\left( \gamma \right) = 0\)\(\gamma_{1}^{*} = \frac{{5 - 4a + 4\theta - 2a\theta + a^{2} \theta^{2} }}{{2\left( {1 + a\theta } \right)^{2} }}\)(\(\gamma_{1}^{*}\) decreases with \(a\), when \(\gamma_{1}^{*} = 1\), \(a_{1}^{*} = \frac{{ - 2 - 3\theta + 2\sqrt {\left( {1 + \theta } \right)^{3} } }}{{\theta^{2} }}\)). Next we consider the following three cases.
Case A \(f\left( 0 \right) < 0\), that is, \(0 < \theta < \frac{\sqrt 3 }{2}\), \(a_{2}^{*} < a < 2\).
We can prove that in this case \(f\left( \gamma \right)\) is always less than 0, that is, the publisher prefers the agency model.
Case B \(f\left( 0 \right) > 0\) and \(\gamma_{1}^{*} > 1\), that is \(0 < \theta < 1\), \(0 < a < a_{1}^{*}\).
We can prove that in this case \(f\left( \gamma \right)\) is always greater than 0 in the range \(0 < \gamma < 1\), the publisher prefers the wholesale model always.
Case C \(f\left( 0 \right) > 0\) and \(0 < \gamma_{1}^{*} < 1\), that is \(0 < \theta < \frac{\sqrt 3 }{2}\), \(a_{1}^{*} < a < a_{2}^{*}\) and \(\frac{\sqrt 3 }{2} < \theta < 1\), \(a_{1}^{*} < a < 2\).
We can prove in this case when \(0 < \gamma < \gamma_{1}^{*}\),\(f\left( \gamma \right) > 0\),the publisher chooses the wholesale model, if \(\gamma_{1}^{*} < \gamma < 1\), \(f\left( \gamma \right) < 0\), the publisher prefers the agency model.
Summarizing the above results, we can conclude the publisher’s preferences as follows:
where \(a_{1}^{*} = \frac{{ - 2 - 3\theta + 2\sqrt {\left( {1 + \theta } \right)^{3} } }}{{\theta^{2} }}\), \(a_{2}^{*} = \frac{{2 + \theta - 2\sqrt {\left( {1 - \theta } \right)\left( {1 + \theta } \right)^{2} } }}{{\theta^{2} }}\), \(\gamma_{1}^{*} = \frac{{5 - 4a + 4\theta - 2a\theta + a^{2} \theta^{2} }}{{2\left( {1 + a\theta } \right)^{2} }}\).
Proof of Lemma 2
Similar to Proof of Lemma 1, denote \(\Delta \pi_{bs}^{WN - AN} = \pi_{bs}^{WN} - \pi_{bs}^{AN} = \frac{{4\gamma \left( {1 + a\theta } \right)^{2} - \left( {7 + a\left( { - 8 + 6\theta } \right) + a^{2} \left( {4 + 3\theta^{2} } \right)} \right)}}{{16\left( {1 - \theta^{2} } \right)}}\), then we need to figure out the relationship between \(g\left( \gamma \right) = 4\gamma \left( {1 + a\theta } \right)^{2} - \left( {7 + a\left( { - 8 + 6\theta } \right) + a^{2} \left( {4 + 3\theta^{2} } \right)} \right)\) and 0. We can obtain \(\frac{\partial g\left( \gamma \right)}{{\partial \gamma }} = 4\left( {1 + a\theta } \right)^{2} > 0\), then we get \(g\left( 0 \right) = - \left( {7 + a\left( { - 8 + 6\theta } \right) + a^{2} \left( {4 + 3\theta^{2} } \right)} \right) < 0\). With \(g\left( \gamma \right) = 0\), we can obtain \(\gamma_{2}^{*} = \frac{{7 + a\left( { - 8 + 6\theta } \right) + a^{2} \left( {4 + 3\theta^{2} } \right)}}{{4\left( {1 + a\theta } \right)^{2} }}\). For the range of \(0 < \gamma < 1\), we need to analyze function \(\gamma_{2}^{*}\). Moreover, one can show \(\frac{{\partial \gamma_{2}^{*} }}{\partial a} = \frac{{2\left( { - 1 + a} \right)\left( {1 + \theta } \right)}}{{\left( {1 + a\theta } \right)^{3} }}\), when \(0 < a < 1\), \(\frac{{\partial \gamma_{2}^{*} }}{\partial a} < 0\), and when \(1 < a < 2\), \(\frac{{\partial \gamma_{2}^{*} }}{\partial a} > 0\) and \(\gamma_{2}^{*} \left| {_{a = 1} } \right. = 0.75\). With \(\gamma_{2}^{*} = 1\), we get \(a = \frac{1}{2 + \theta } < 1\) or \(\frac{3}{2 - \theta } > 1\)(\(\frac{3}{2 - \theta }\) increases with \(\theta\), when \(\frac{3}{2 - \theta } = 2\),\(\theta = 0.5\)). Next we consider the following three cases.
Case A \(0 < \theta < 0.5\), \(a_{3}^{*} = \frac{1}{2 + \theta }\), \(a_{4}^{*} = \frac{3}{2 - \theta }\).
When \(0 < \theta < 0.5\), \(0 < a < a_{3}^{*} \,\) and \(a_{4}^{*} < a < 2\), the bookstore prefers the agency model and when \(a_{3}^{*} < a < a_{4}^{*}\), she need to observe the threshold \(\gamma_{2}^{*}\), when \(0 < \gamma < \gamma_{2}^{*}\), she profits more from the agency model, when \(\gamma_{2}^{*} < \gamma < 1\), she prefers the wholesale model.
Case B \(0.5 < \theta < 1\),\(a_{3}^{*} = \frac{1}{2 + \theta }\).
When \(0.5 < \theta < 1\),\(0 < a < a_{3}^{*} \,\), the bookstores choose the agency model and when \(a_{3}^{*} < a < 2\), the results are similar to the above Case A situation \(a_{3}^{*} < a < a_{4}^{*}\).
Summarizing the above results, we can conclude the bookstore’s preferences as follows:
where \(a_{3}^{*} = \frac{1}{2 + \theta }\), \(a_{4}^{*} = \frac{3}{2 - \theta }\), \(\gamma_{2}^{*} = \frac{{7 + a\left( { - 8 + 6\theta } \right) + a^{2} \left( {4 + 3\theta^{2} } \right)}}{{4\left( {1 + a\theta } \right)^{2} }}\).
Proof of Lemma 3
The difference profit of the publisher without and with the bookstore’s investment under the wholesale model is \(\Delta \pi_{pub}^{WN - WI} = \frac{{8k\left( {1 - a} \right)\left( {1 - \theta } \right) - \left( {3 - a} \right)^{2} \lambda^{2} }}{{16\left( {1 - \theta } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\). In Sect. 5.1, we have got the condition \(k > \frac{{\lambda^{2} }}{1 - \theta }\) that ensures \(16\left( {1 - \theta } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right) > 0\). When \(1 < a < 2\), \(8k\left( {1 - a} \right)\left( {1 - \theta } \right) - \left( {3 - a} \right)^{2} \lambda^{2} < 0\) is obvious. So we have \(\pi_{pub}^{WN} > \pi_{pub}^{WI}\). When \(0 < a < 1\), with \(8k\left( {1 - a} \right)\left( {1 - \theta } \right) - \left( {3 - a} \right)^{2} \lambda^{2} = 0\), we get \(k_{2}^{*} = \frac{{\left( {3 - a} \right)^{2} \lambda^{2} }}{{8\left( {1 - a} \right)\left( {1 - \theta } \right)}} > k_{1}^{*} = \frac{{\lambda^{2} }}{{\left( {1 - \theta } \right)}}\). Thus if \(k > k_{2}^{*}\),\(\Delta \pi_{pub}^{WN - WI} > 0\), he prefers the publisher not to invest in the offline bookstores; if \(k_{1}^{*} < k < k_{2}^{*}\), \(\Delta \pi_{pub}^{WN - WI} < 0\), he would like the bookstore to invest.
We also can get \(\Delta \pi_{bs}^{WN - WI} = \frac{{8k\left( {1 - a} \right)^{2} \left( { - 1 + \theta } \right) - \lambda^{2} \left( {a^{2} \left( { - 7 + \theta } \right) + 2a\left( {9 + \theta } \right) - 7 + \theta } \right)}}{{32\left( {1 - \theta^{2} } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right)}}\). Obviously, \(32\left( {1 - \theta^{2} } \right)\left( {k\left( {1 - \theta } \right) - \lambda^{2} } \right) > 0\), \(8k\left( {1 - a} \right)^{2} \left( { - 1 + \theta } \right) < 0\). If \(\lambda^{2} \left( {a^{2} \left( { - 7 + \theta } \right) + 2a\left( {9 + \theta } \right) - 7 + \theta } \right) > 0\), then \(\Delta \pi_{bs}^{WN - WI}\) will less than zero; if \(\lambda^{2} \left( {a^{2} \left( { - 7 + \theta } \right) + 2a\left( {9 + \theta } \right) - 7 + \theta } \right) < 0\), we should compare \(8k\left( {1 - a} \right)^{2} \left( { - 1 + \theta } \right)\) with \(\lambda^{2} \left( {a^{2} \left( { - 7 + \theta } \right) + 2a\left( {9 + \theta } \right) - 7 + \theta } \right)\). Then we can see \(f\left( a \right) = a^{2} \left( { - 7 + \theta } \right) + 2a\left( {9 + \theta } \right) - 7 + \theta\) is a quadratic function of \(a\), the axis of symmetry is \(a = \frac{9 + \theta }{{7 - \theta }} > 1\),\(f\left( 0 \right) = - 7 + \theta < 0\), \(f\left( 2 \right) = 9\theta + 1 > 0\). With \(f\left( a \right) = 0\), we get \(a_{5}^{*} = \frac{{ - 9 - \theta + 4\sqrt 2 \sqrt {1 + \theta } }}{ - 7 + \theta } < 1\). When \(a > a_{5}^{*}\), \(f\left( a \right) > 0\), \(\lambda^{2} f\left( a \right) > 0\)\(\Delta \pi_{bs}^{WN - WI} < 0\), the bookstore prefers to invest. When \(0 < a < a_{5}^{*}\), \(8k\left( {1 - a} \right)^{2} \left( { - 1 + \theta } \right) - \lambda^{2} \left( {a^{2} \left( { - 7 + \theta } \right) + 2a\left( {9 + \theta } \right) - 7 + \theta } \right)\) decreases with respect to \(k\) monotonically, so with \(8k\left( {1 - a} \right)^{2} \left( { - 1 + \theta } \right) - \lambda^{2} \left( {a^{2} \left( { - 7 + \theta } \right) + 2a\left( {9 + \theta } \right) - 7 + \theta } \right) = 0\), we obtained \(k_{3}^{*} = \frac{{\lambda^{2} }}{1 - \theta }*\frac{{a^{2} \left( {7 - \theta } \right) - 2a\left( {9 + \theta } \right) + 7 - \theta }}{{8\left( {1 - a} \right)^{2} }}\). \({{\partial \frac{{a^{2} \left( {7 - \theta } \right) - 2a\left( {9 + \theta } \right) + 7 - \theta }}{{8\left( {1 - a} \right)^{2} }}} \mathord{\left/ {\vphantom {{\partial \frac{{a^{2} \left( {7 - \theta } \right) - 2a\left( {9 + \theta } \right) + 7 - \theta }}{{8\left( {1 - a} \right)^{2} }}} {\partial a}}} \right. \kern-\nulldelimiterspace} {\partial a}} = \frac{{\left( {1 + a} \right)\left( {1 + \theta } \right)}}{{2\left( { - 1 + a} \right)^{3} }} < 0\), \(k_{3}^{*} \left| {_{a = 0} } \right. = \frac{{\lambda^{2} }}{1 - \theta }*\frac{7 - \theta }{8} < \frac{{\lambda^{2} }}{1 - \theta }\). Thus summarizing the above results, we can conclude the bookstore’s preferences when \(k > \frac{{\lambda^{2} }}{1 - \theta }\), she always prefers to invest.
Rights and permissions
About this article
Cite this article
Lyu, R., Zhang, C., Li, Z. et al. Who benefits from offline investment: an analysis of strategic interactions between e-book pricing and bookstores’ investment. Electron Commer Res 23, 2605–2645 (2023). https://doi.org/10.1007/s10660-022-09555-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10660-022-09555-7