Skip to main content

Advertisement

Log in

The antecedents and consequences of social interactions in firm-sponsored community: a social network perspective

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

A Correction to this article was published on 16 January 2023

This article has been updated

Abstract

The firm-sponsored online brand communities thrive on value-adding interactions. Existing studies, however, ignore the reasons for social interaction. A sufficient understanding of the factors driving social interactions and ultimately affecting community outcomes is still lacking. Our research examines how social interactions occur and influence consumer purchase behavior from a social network perspective, drawing on the theories of planned behavior and homophily. Our exponential random graph (ERG) models show that consumer-specific traits (e.g., deal proneness) and similarity on tenure, location, and deal proneness positively drive social interactions, while similarity on age, premium-product propensity does not. Our two-stage least square (2SLS) regressions find that social interactions among co-located consumers strongly influence purchase behavior. Our study contributes to the social interaction literature by emphasizing the types of social interactions and their antecedents and consequences with various consumer purposes. Our findings open a new research direction and novel business applications in firm-sponsored community management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Dewan, S., Ho, Y. J., Ian, & Ramaprasad, J. (2017). Popularity or Proximity: Characterizing the Nature of Social Influence in an Online Music Community. Information Systems Research, 28(1), 117–136. https://doi.org/10.1287/isre.2016.0654

    Article  Google Scholar 

  2. Qiu, L., Tang, Q., & Whinston, A. B. (2015). Two Formulas for Success in Social Media: Learning and Network Effects. Journal of Management Information Systems, 32(4), 78–108. https://doi.org/10.1080/07421222.2015.1138368

    Article  Google Scholar 

  3. Bock, G. W., Ahuja, M., Suh, A., & Yap, L. (2015). Sustainability of a Virtual Community: Integrating Individual and Structural Dynamics. Journal of the Association for Information Systems, 16(6), https://doi.org/10.17705/1jais.00400

  4. Rishika, R., & Ramaprasad, J. (2019). The Effects of Asymmetric Social Ties, Structural Embeddedness, and Tie Strength on Online Content Contribution Behavior. Management Science, 65(7), 3398–3422. https://doi.org/10.1287/mnsc.2018.3087

    Article  Google Scholar 

  5. Rishika, R., Kumar, A., Janakiraman, R., & Bezawada, R. (2013). The Effect of Customers’ Social Media Participation on Customer Visit Frequency and Profitability: An Empirical Investigation. Information Systems Research, 24(1), 108–127. https://doi.org/10.1287/isre.1120.0460

    Article  Google Scholar 

  6. Xu, J. J., & Chau, M. (2018). Cheap Talk? The Impact of Lender-Borrower Communication on Peer-to-Peer Lending Outcomes. Journal of Management Information Systems, 35(1), 53–85. https://doi.org/10.1080/07421222.2018.1440776

    Article  Google Scholar 

  7. Muniz, A. M. Jr., & O’Guinn, T. C. (2001). Brand Community. Journal of Consumer Research, 27(4), 412–432. https://doi.org/10.1086/319618

    Article  Google Scholar 

  8. Manchanda, P., Packard, G., & Pattabhiramaiah, A. (2015). Social Dollars: The Economic Impact of Customer Participation in a Firm-Sponsored Online Customer Community. Marketing Science, 34(3), 367–387. https://doi.org/10.1287/mksc.2014.0890

    Article  Google Scholar 

  9. Fiske, S. T., & Taylor, S. E. (1991). Social cognition, 2nd ed (pp. xviii, 717). New York, NY, England: Mcgraw-Hill Book Company

  10. Brass, D. J., & Dongyu Chen. (2015). &. Friendships in Online Peer-to-Peer Lending: Pipes, Prisms, and Relational Herding. MIS Quarterly, 39(3), 729-A4. Retrieved from https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=108873997&site=ehost-live

  11. Thies, F., Wessel, M., & Benlian, A. (2016). Effects of Social Interaction Dynamics on Platforms. Journal of Management Information Systems, 33(3), 843–873. https://doi.org/10.1080/07421222.2016.1243967

    Article  Google Scholar 

  12. Fournier, S., & Lee, L. (2009). Getting brand communities right. Harvard business review, 87(4), 105–111

    Google Scholar 

  13. Porter, C. E., & Donthu, N. (2008). Cultivating trust and harvesting value in virtual communities. Management Science, 54(1), 113–128

    Article  Google Scholar 

  14. Phang, C. W., Kankanhalli, A., & Sabherwal, R. (2009). Usability and Sociability in Online Communities: A Comparative Study of Knowledge Seeking and Contribution. Journal of the Association for Information Systems, 10(10), https://doi.org/10.17705/1jais.00210

  15. Cranefield, J., Yoong, P., & Huff, S. (2015). Rethinking Lurking: Invisible Leading and Following in a Knowledge Transfer Ecosystem. Journal of the Association for Information Systems, 16(4), https://doi.org/10.17705/1jais.00394

  16. Goh, J. M., Gao, G., & Agarwal, R. (2016). The Creation of Social Value: Can an Online Health Community Reduce Rural–Urban Health Disparities? MIS Quarterly, 40(1), 247–263. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=112750565&site=ehost-live

  17. Faraj, S., & Johnson, S. L. (2011). Network Exchange Patterns in Online Communities. Organization Science, 22(6), 1464–1480. https://doi.org/10.1287/orsc.1100.0600

    Article  Google Scholar 

  18. Cantor, N., & Kihlstrom, J. F. (Eds.). (2017). Personality, Cognition and Social Interaction. London: Routledge. https://doi.org/10.4324/9781315528816

    Book  Google Scholar 

  19. Brown, J., Broderick, A. J., & Lee, N. (2007). Word of mouth communication within online communities: Conceptualizing the online social network. Journal of Interactive Marketing, 21(3), 2–20. https://doi.org/10.1002/dir.20082

    Article  Google Scholar 

  20. Lewin, K. (1936). Principles of topological psychology (pp. xv, 238). New York, NY, US: McGraw-Hill. https://doi.org/10.1037/10019-000

  21. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

    Article  Google Scholar 

  22. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology, 27(1), 415–444. https://doi.org/10.1146/annurev.soc.27.1.415

    Article  Google Scholar 

  23. Shen, Y. C., Huang, C. Y., Chu, C. H., & Liao, H. C. (2010). Virtual Community Loyalty: An Interpersonal-Interaction Perspective. International Journal of Electronic Commerce, 15(1), 49–74. https://doi.org/10.2753/JEC1086-4415150102

    Article  Google Scholar 

  24. Ren, Y., Harper, F. M., Drenner, S., Terveen, L., Kiesler, S., Riedl, J., & Kraut, R. E. (2012). Building Member Attachment in Online Communities: Applying Theories of Group Identity and Interpersonal Bonds. MIS Quarterly, 36(3), 841–864. https://doi.org/10.2307/41703483

    Article  Google Scholar 

  25. Chiu, C. M., Fang, Y. H., & Wang, E. (2015). Building Community Citizenship Behaviors: The Relative Role of Attachment and Satisfaction. Journal of the Association for Information Systems, 16(11), https://doi.org/10.17705/1jais.00413

  26. Wang, J. C., & Chiang, M. J. (2009). Social interaction and continuance intention in online auctions: A social capital perspective. Decision Support Systems, 47(4), 466–476. https://doi.org/10.1016/j.dss.2009.04.013

    Article  Google Scholar 

  27. Gu, B., Konana, P., Raghunathan, R., & Chen, H. M. (2014). Research Note—The Allure of Homophily in Social Media: Evidence from Investor Responses on Virtual Communities. Information Systems Research, 25(3), 604–617. https://doi.org/10.1287/isre.2014.0531

    Article  Google Scholar 

  28. Beck, R., Pahlke, I., & Seebach, C. (2014). Knowledge Exchange and Symbolic Action in Social Media-Enabled Electronic Networks of Practice: A Multilevel Perspective on Knowledge Seekers and Contributors. MIS Quarterly, 38(4), 1245–1270. Retrieved from https://www.jstor.org/stable/26627970

  29. Vissa, B. (2011). A Matching Theory of Entrepreneurs’ Tie Formation Intentions and Initiation of Economic Exchange. Academy of Management Journal, 54(1), 137–158. https://doi.org/10.5465/amj.2011.59215084

    Article  Google Scholar 

  30. Ng, C. S. P. (2013). Intention to purchase on social commerce websites across cultures: A cross-regional study. Information & Management, 50(8), 609–620. https://doi.org/10.1016/j.im.2013.08.002

    Article  Google Scholar 

  31. Chen, Y., Wang, Q., & Xie, J. (2011). Online Social Interactions: A Natural Experiment on Word of Mouth versus Observational Learning. Journal of Marketing Research, 48(2), 238–254. https://doi.org/10.1509/jmkr.48.2.238

    Article  Google Scholar 

  32. Marketing Letters, 16(3), 415–428. https://doi.org/10.1007/s11002-005-5902-4

  33. Ma, L., Krishnan, R., & Montgomery, A. L. (2015). Latent Homophily or Social Influence? An Empirical Analysis of Purchase Within a Social Network. Management Science, 61(2), 454–473. https://doi.org/10.1287/mnsc.2014.1928

    Article  Google Scholar 

  34. Wu, J., Huang, L., Zhao, J. L., & Hua, Z. (2015). The deeper, the better? Effect of online brand community activity on customer purchase frequency. Information & Management, 52(7), 813–823. https://doi.org/10.1016/j.im.2015.06.001

    Article  Google Scholar 

  35. Yang, R., & Che, T. (2020). Do social ties matter for purchase frequency? The role of buyers’ attitude towards social media marketing. Computers in Human Behavior, 110, 106376. https://doi.org/10.1016/j.chb.2020.106376

    Article  Google Scholar 

  36. Steenkamp, J. B. E. M., & Maydeu-Olivares, A. (2015). Stability and Change in Consumer Traits: Evidence from a 12-Year Longitudinal Study, 2002–2013. Journal of Marketing Research, 52(3), 287–308. https://doi.org/10.1509/jmr.13.0592

    Article  Google Scholar 

  37. Bawa, K., & Shoemaker, R. W. (1987). The Coupon-Prone Consumer: Some Findings Based on Purchase Behavior across Product Classes. Journal of Marketing, 51(4), 99–110. https://doi.org/10.1177/002224298705100409

    Article  Google Scholar 

  38. Montgomery, D. B. (1971). Consumer Characteristics Associated with Dealing: An Empirical Example. Journal of Marketing Research, 8(1), 118–120. https://doi.org/10.1177/002224377100800121

    Article  Google Scholar 

  39. DelVecchio, D. (2005). Deal-prone consumers’ response to promotion: The effects of relative and absolute promotion value. Psychology & Marketing, 22(5), 373–391. https://doi.org/10.1002/mar.20064

    Article  Google Scholar 

  40. Zeithaml, V. A. (1988). Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52(3), 2–22. https://doi.org/10.1177/002224298805200302

    Article  Google Scholar 

  41. Pavlou, P. A., Liang, H., & Xue, Y. (2007). Understanding and Mitigating Uncertainty in Online Exchange Relationships: A Principal-Agent Perspective. MIS Quarterly, 31(1), 105–136. https://doi.org/10.2307/25148783

    Article  Google Scholar 

  42. Choi, N., Chengalur-Smith, I., & Nevo, S. (2015). Loyalty, Ideology, and Identification: An Empirical Study of the Attitudes and Behaviors of Passive Users of Open Source Software. Journal of the Association for Information Systems, 16(8), https://doi.org/10.17705/1jais.00405

  43. Huston, T. L., & Levinger, G. (1978). Interpersonal Attraction and Relationships. Annual Review of Psychology, 29(1), 115–156. https://doi.org/10.1146/annurev.ps.29.020178.000555

    Article  Google Scholar 

  44. Friedkin, N. (1981). Review of Networks and Places: Social Relations in the Urban Setting. American Journal of Sociology, 87(3), 764–767. Retrieved from https://www.jstor.org/stable/2778958

  45. Huang, Y., Shen, C., & Contractor, N. S. (2013). Distance matters: Exploring proximity and homophily in virtual world networks. Decision Support Systems, 55(4), 969–977. https://doi.org/10.1016/j.dss.2013.01.006

    Article  Google Scholar 

  46. Kalnins, A., & Chung, W. (2006). Social Capital, Geography, and Survival: Gujarati Immigrant Entrepreneurs in the U.S. Lodging Industry. Management Science, 52(2), 233–247. https://doi.org/10.1287/mnsc.1050.0481

    Article  Google Scholar 

  47. Kiang, M. Y., Raghu, T. S., & Shang, K. H. M. (2000). Marketing on the Internet — who can benefit from an online marketing approach? Decision Support Systems, 27(4), 383–393. https://doi.org/10.1016/S0167-9236(99)00062-7

    Article  Google Scholar 

  48. Parks, M. R., & Adelman, M. B. (1983). Communication Networks and the Development of Romantic Relationships: An Expansion of Uncertainty Reduction Theory. Human Communication Research, 10(1), 55–79. https://doi.org/10.1111/j.1468-2958.1983.tb00004.x

    Article  Google Scholar 

  49. Roloff, M. E., Miller, G. R., & Roloff, M. E. (1987). Interpersonal Processes: New Directions in Communication Research. Retrieved from https://www.scholars.northwestern.edu/en/publications/interpersonal-processes-new-directions-in-communication-research

  50. Xu, J. (David), Benbasat, I., & Cenfetelli, R. (Eds.). (2011). The Effects of Service and Consumer Product Knowledge on Online Customer Loyalty. Journal of the Association for Information Systems, 12(11). https://doi.org/10.17705/1jais.00279

  51. Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets. Information Systems Research, 19(3), 291–313. https://doi.org/10.1287/isre.1080.0193

    Article  Google Scholar 

  52. Agarwal, R., Animesh, A., & Prasad, K. (2009). Research note—Social interactions and the “digital divide”: Explaining variations in internet use. Information Systems Research, 20(2), 277–294

    Article  Google Scholar 

  53. Choi, J., Hui, S. K., & Bell, D. R. (2010). Spatiotemporal analysis of imitation behavior across new buyers at an online grocery retailer. Journal of Marketing Research, 47(1), 75–89

    Article  Google Scholar 

  54. Windeler, J., Maruping, L., Robert, L., & Riemenschneider, C. (2015). E-profiles, Conflict, and Shared Understanding in Distributed Teams. Journal of the Association for Information Systems, 16(7), https://doi.org/10.17705/1jais.00401

  55. Nieminen, J. (1974). On the centrality in a graph. Scandinavian journal of psychology, 15(1), 332–336

    Article  Google Scholar 

  56. Moody, J., & White, D. R. (2003). Structural Cohesion and Embeddedness: A Hierarchical Concept of Social Groups. American Sociological Review, 68(1), 103–127. https://doi.org/10.2307/3088904

    Article  Google Scholar 

  57. Levinson, S. C. (2003). Language and mind: Let’s get the issues straight.Language in mind: Advances in the study of language and thought,25–46

  58. Goh, K. Y., Heng, C. S., & Lin, Z. (2013). Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content. Information Systems Research, 24(1), 88–107. https://doi.org/10.1287/isre.1120.0469

    Article  Google Scholar 

  59. Robins, G., Snijders, T., Wang, P., Handcock, M., & Pattison, P. (2007). Recent developments in exponential random graph (p*) models for social networks. Social Networks, 29(2), 192–215. https://doi.org/10.1016/j.socnet.2006.08.003

    Article  Google Scholar 

  60. Goodreau, S. M., Kitts, J. A., & Morris, M. (2009). Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks*. Demography, 46(1), 103–125. https://doi.org/10.1353/dem.0.0045

    Article  Google Scholar 

  61. Lusher, D., Koskinen, J., & Robins, G. (2013). Exponential random graph models for social networks: Theory, methods, and applications (35 vol.). Cambridge University Press

  62. Chau, M., & Xu, J. (2012). Business Intelligence in Blogs: Understanding Consumer Interactions and Communities. MIS Quarterly, 36(4), 1189–1216. https://doi.org/10.2307/41703504

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the guidance received from the senior editor, the associate editor, and their anonymous reviewers. The first two authors are co-corresponding authors. This research was supported by grants from the National Natural Science Foundation of China (Nos.: 72071218, 71932002, 71704078, and 72188101), Shenzhen Special Fund for the Development of Strategic Emerging Industries (No. JCYJ20170818100156260), research fund of Science and Technology Department of Sichuan Province (2020YFSY0061), Hong Kong General Research Grants under CityU 11507717 and CityU 11508517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wu, J., ZHAO, J.L. et al. The antecedents and consequences of social interactions in firm-sponsored community: a social network perspective. Electron Commer Res 24, 1967–1995 (2024). https://doi.org/10.1007/s10660-022-09586-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-022-09586-0

Keywords