Empirical Software Engineering (2022) 27: 120
https://doi.org/10.1007/510664-022-10167-w

®

Check for
updates

A mixed-methods analysis of micro-collaborative
coding practices in OpenStack

Armstrong Foundjem’ @ . Eleni Constantinou? - Tom Mens? - Bram Adams’

Accepted: 5 April 2022 /Published online: 18 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Technical collaboration between multiple contributors is a natural phenomenon in dis-
tributed open source software development projects. Macro-collaboration, where each code
commiit is attributed to a single collaborator, has been extensively studied in the research
literature. This is much less the case for so-called micro-collaboration practices, in which
multiple authors contribute to the same commit. To support such practices, GitLab and
GitHub started supporting social coding mechanisms such as the “Co-Authored-By:” trailers
in commit messages, which, in turn, enable to empirically study such micro-collaboration.
In order to understand the mechanisms, benefits and limitations of micro-collaboration, this
article provides an exemplar case study of collaboration practices in the OpenStack ecosys-
tem. Following a mixed-method research approach we provide qualitative evidence through
a thematic and content analysis of semi-structured interviews with 16 OpenStack contribu-
tors. We contrast their perception with quantitative evidence gained by statistical analysis of
the git commit histories (~1M commits) and Gerrit code review histories (~631K change
sets and ~2M patch sets) of 1,804 OpenStack project repositories over a 9-year period. Our
findings provide novel empirical insights to practitioners to promote micro-collaborative
coding practices, and to academics to conduct further research towards understanding and
automating the micro-collaboration process.
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1 Introduction

In open-source software development projects, it is common for multiple contributors to
collaborate on a wide range of activities, from social activities such as submitting a forum
question or bug report comment, to technical activities such as developing and reviewing
code changes. This paper focuses on one of these activities, i.e., code contributions, chal-
lenging the assumptions that people have made thus far about the way in which collaboration
processes exploit distributed version control systems.

Traditionally, collaborations between open-source developers take the form of so-called
macro-collaborations, which focus on large-scale collaborations by entire teams on com-
plex features for extended amounts of time, typically on dedicated feature branches (de
Souza Costa et al. 2019; Costa et al. 2016; Krusche et al. 2016; Rahman 2015; Bird and
Zimmermann 2012). While developers do interact during such collaborations, their contri-
butions tend to be nicely modularized in their own commits for which they are recorded as
sole author by version control systems like git.

While macro-collaboration involves multiple developers contributing one or more com-
mits, in contrast micro-collaborative coding is a more fine-grained type of collaboration that
involves multiple developers contributing fo the same commit. Hence, instead of working
asynchronously, micro-collaboration involves synchronous technical activities on a shared
code base. This practice is claimed to have various benefits within teams, such as solving
complex problems (Datta 2018; Dingsgyr et al. 2018; Kalliamvakou et al. 2015; Bick et al.
2018; Neumayr et al. 2018; Mardi et al. 2021; Sharp and Robinson 2008) and improving
onboarding (Foundjem et al. 2021b). At the same time, micro-collaborations are essential
both in in-person settings (cf. traditional pair programming) and when working in an online,
global software development environment (as has become the norm since Covid-19), when
the required contributions by the different developers are impossible to decompose cleanly
into separate commits.

Despite the many advantages of micro-collaborations, and their similarity to agile prac-
tices such as pair programming, modern version control systems for online collaboration
like git unfortunately do not provide built-in support to track such collaborations, simply
because, by design, a git commit can only have one author and one (possibly different)
committer. The author is the one who created the content, and the committer is the one who
committed it to the repository. Similarly, code review systems such as Gerrit!, or reviews
integrated in GitHub’s pull request mechanism, only allow one individual to be the author
of a code change.

As such, for a long time developers have had to come up with workarounds to still
attribute micro-collaboration changes to all responsible collaborators, which is essential for
accountability, copyright, etc. purposes. For example, in November 2007, the Debian com-
munity raised awareness® for git to support multiple authors for a commit, and in March
2012, the Eclipse developer community expressed the need to attribute multiple authors for
a commit: “In the case, for example, of pair programming, we may have a situation where

Thttps://www.gerritcodereview.com
Zhttps://bugs.debian.org/cgi-bin/bugreport.cgi?bug=451880#12
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multiple developers should be credited with a commit ... there is no current mechanism to
do this. It might be cool to be able to specify multiple values in the ‘author’ field or multiple
occurrences of the author field” (Wayne Beaton).?

Only recently, a de facto approach to acknowledge all co-authors of a patch has been
integrated in GitHub,* GitLab, etc., basically requiring developers to add specific Co-
Authored-By: trailers at the end of their commit message, each one listing the name of one of
the main author’s collaborators. According to the OpenStack wiki,® the use of such trailers
is encouraged. It is even the only mechanism for micro-collaborative coding that is adver-
tized publicly as “a convention for recognizing multiple authors, and our projects would
encourage the stats tools to observe it when collecting statistics.” Moreover, according to
GitHub, “the new feature responds to a growing need in organizations where collaborative
coding is the norm to speed up onboarding of junior developers, to improve code quality
through peer programming or code reviews, etc.”. ’

Thus far, there is little empirical evidence about the prevalence of micro-collaboration
practices in large open-source development communities, and the expected and actual bene-
fits of such practices. Worse, there is no data about the extent of micro-collaboration before
commit trailers were established, nor to what extent those older practices still prevail. To
address this lack of knowledge, this paper carries out an exemplar case study of micro-
collaboration practices. Such exemplar case studies are a well-accepted, yet underexploited,
method in empirical software engineering to gain fine-grained insights and understanding
of specific phenomena (Runeson et al. 2012).

This paper studies as an exemplar case the OpenStack ecosystem,® a popular open-
source platform for cloud computing governed by the Open Infrastructure Foundation (OIF).
To do so, we follow a mixed-methods research methodology (Al-Subaihin et al. 2021)
combining qualitative semi-structured interviews of OpenStack contributors with quantita-
tive statistical analysis of historical data extracted from version control and code review
environments.

First, we perform an interview study with 16 participants to answer the following
research questions:

RQ; How do OpenStack contributors engage in collaborative coding practices?
RQ> What are the benefits of micro-collaboration?
RQ3 How can micro-collaboration be improved further?

Second, we perform a quantitative study on more than 900k commits and 600k Ger-
rit change sets of more than 1.8k OpenStack projects to validate the key findings of the
qualitative study. Furthermore, we validate our qualitative and quantitative results with nine
experts, all members of the Technical Committee at OpenStack. As a result, we provide the
following main contributions:

1. Ten qualitative findings describing the perceived practices, advantages and shortcom-
ings of micro-collaboration practices at OpenStack;

3https://bugs.eclipse.org/bugs/show_bug.cgi?id=375536
“https://github.blog/2018-01-29-commit-together- with-co-authors/
Shttps://gitlab.com/gitlab-org/gitlab-ce/issues/31640
Shttps://wiki.openstack.org/wiki/GitCommitMessages
7https://www.infoq.com/news/2018/01/github-multiple-author-commit/
8https://www.openstack.org/
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2. Empirical evidence validating five of these qualitative findings, notably we confirm that
micro-collaboration correlates positively with:

(a) onboarding and retention;
(b) alower likelihood of introducing bugs;
(c) more and larger code reviews, patch sets and commits;

3.  We observe that the large majority of micro-collaborative changes are not explicitly
marked as such using commit trailers.

The paper’s main message is that micro-collaboration matters in distributed development,
hence it makes sense for open-source communities to promote and support this practice.
Yet, one cannot only rely on the presence of co-author trailers in commit messages. Open-
source communities could adopt the various heuristics used in our study to identify micro-
collaborations hidden in Gerrit code reviews. A replication package containing all necessary
details of the qualitative analysis of the interviews, as well as the data and scripts of our
analyses is available (Foundjem et al. 2021a).°

2 Background

The goal of this paper is to understand the phenomenon of micro-collaborative coding
practices in open source software projects that are part of a larger software ecosystem.
This requires a case study containing multiple interdependent project teams with many
distinct contributors of diverse nature. Moreover, the community should be open to micro-
collaborations, and have established mechanisms and tools to support it. In addition, the
ecosystem should be sufficiently long-lived, and contain traceable and accurate data logs of
its software development history. OpenStack satisfies all of these criteria, which is why it
was selected for our case study.

2.1 About OpenStack

OpenStack is an open-source ecosystem for cloud computing that was jointly developed by
NASA and Rackspace in 2010. It is available under the Apache 2.0 license, and follows a 6-
month official release schedule, with releases ordered alphabetically starting with “Austin”
in October 2010.!° While this first release included only two initial projects (Nova and
Cinder), OpenStack has been growing steadily over time, and currently comprises over 60
core projects.!!

As of March 12, 2021, OpenStack’s code base of 20M lines of code involved code con-
tributions by over 100k community members including volunteers and developers employed
by over 710 companies'? (including large multinationals like Microsoft, Facebook, Huawei
and Red Hat), spread across 187 countries. There is also a large base of companies and
software ecosystems (SECOs) relying on OpenStack services, such as Apache Software
Foundation, etc. OpenStack development involves over 2k projects/sub projects (Found-
jem et al. 2021b), 63 of which are so-called core projects (Foundjem and Adams 2021).

9The replication package can be found on Zenodo: https://doi.org/10.5281/zenodo.5759968
10https://releases.openstack.org

https:/governance.openstack.org/tc/reference/projects/
12https://www.openstack.org/annual-reports/2020- openinfra- foundation-annual-report/
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Zhang et al. (2021) and Zhang et al. (2020) have studied how a large-scale complex sys-
tem, such as OpenStack, is developed by various companies collaborating with different
OpenStack projects. They found eight models of collaboration among these companies and
OpenStack that differs in their objectives and contribution performance. Despite their dif-
ferences, these companies work together as an ecosystem with a common goal: to release
OpenStack. The Open Infrastructure Foundation (OIF), formerly known as OpenStack
Foundation, was founded in 2012 with the objectives to promote, empower and protect the
OpenStack software and its community. The Foundation staff Members (FM) are the custo-
dians of the OpenStack trademark, controlling the flow of budget and defining the goal of
the Open Infrastructure Foundation. The Technical Committee (TC) members are respon-
sible for all technical matters concerning the foundation, and they control all the upstream
OpenStack projects (Zhou et al. 2020), such as the official core projects.

2.2 The OpenStack Development Workflow

The overall OpenStack collaborative development process is comparable to what one
expects to find in large collaborative open source communities. The specific implementa-
tion of this workflow at OpenStack relies on a variety of tools, including: (i) a distributed
version control system (git) that hosts the code base of all projects in its public reposito-
ries; (ii) a code review system (Gerrit) for patch sets and new features across all projects;
(iii) a task and issue tracker (that has migrated from Launchpad13 to Storyboard”); (iv) a
continuous integration (CI) system (Zuul).

Figure 1 shows the common development workflow that OpenStack project contributors
use. Each stage is numbered chronologically. In step D, as soon as a git account is set up,
the contributor can select a desired upstream project and create a branch on his local envi-
ronment to clone the project into. In step @, the contributor should switch from the master
branch to their local branch to make all necessary changes to the source code. Next @, the
contributor needs to run unit tests against the changed code and commit it to a staging area.
Then ®, the change set can be submitted to the Gerrit code review system (Mukadam et al.
2013; Mclntosh et al. 2014a) and can be iteratively amended © by code reviewers and the
original contributor(s) through a collaborative process. When the code reviewers eventually
approve the change set, the latest patch set is sent to the CI tool (Zuul) for automated testing
and compilation ®. If the CI tests are successful, the changes are merged into the upstream
project D.

Terminology-wise, a change set in Gerrit corresponds to a given feature or bug fix for
which a contributor submits an initial patch set (Xia et al. 2015) for code review. The
iterative code reviewing process leads to a series of subsequent patch sets, correspond-
ing to updates or fixes to the initial patch set. This series of patch sets belongs to the
same change set with a unique Change-Id identifier. These identifiers will be referred to
as change identifiers henceforth. If the code changes within a patch set are co-authored,
OpenStack recommends that the commit message can be used to indicate that multiple
people have been working on a particular patch, using the git commit message trailer
Co-Authored-By: <name> <email>.10

Bhttps://launchpad.net/openstack
4https://storyboard.openstack.org
IShttps://docs.openstack.org/infra/system-config/zuul htm]
1ohttps://wiki.openstack.org/wiki/GitCommitMessages

@ Springer


https://launchpad.net/openstack
https://storyboard.openstack.org
https://docs.openstack.org/infra/system-config/zuul.html
https://wiki.openstack.org/wiki/GitCommitMessages

120 Page 6 of 55 Empir Software Eng (2022) 27: 120
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Fig. 1 Gerrit code contribution process in OpenStack (adapted from *). *https://docs.opendev.org/opendev/
infra-manual/latest/gettingstarted.html

2.3 OpenStack Contribution and Attribution Policy

People can contribute to the OpenStack community!” in many different ways and there
are also different types of rewards.!® Contributions can be technical,!® social, 2 or admin-
istrative.2! Technical contribution happens through an upstream project, for example by
contributing to its documentation or code base, or by participating as a chair for any of
the project’s technical conferences and summits. Social contribution can occur by engag-
ing in the social life of the community, for example, by planning community events such
as summits, project team gatherings, forums, etc. Contributions can also be of administra-
tive nature, for example through participating in the OpenStack Ambassadors’ program or
serving the foundation through the Technical Council (TC) or Project Team Leads (PTL).
Besides, since OpenStack does not discriminate®” among these types of contributions,
but instead gives equal importance to contributors, every single contribution should count
towards reward and recognition. This paper will only focus on micro-collaboration to the
code base, thus, we will only investigate attribution and co-authorship in the code base.

https://www.openstack.org/videos/summits/berlin-2018/community-contributor-recognition-and-how-to-
get-started
18https://superuser.openstack.org/articles/open-infrastructure-community-contributor-awards-denver-summit-
edition/

https://wiki.openstack.org/wiki/AUCRecognition
20https://superuser.openstack.org/articles/auc-community/

2l https://wiki.openstack.org/wiki/Community/AmbassadorProgram
22https://docs.openstack.org/contributors/code-and-documentation/introduction.html
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3 Setup of Interviews with OpenStack Contributors

The research questions raised in the introduction aim to understand and document Open-
Stack’s practices for micro-collaboration. Are git commit message trailers used consis-
tently? What other collaborative coding mechanisms are used frequently? What are the
benefits of micro-collaboration? To address these and other related questions, we have
conducted semi-structured interviews (Bird 2016) with OpenStack practitioners during the
Open Infrastructure Summit (OIS) in Berlin, Germany from 13 to 15 November 2018.

3.1 Selection and Demographics of Participants

For the interviews, we required OpenStack practitioners to share their view on the potential
added value that collaborative coding brings to the ecosystem. To gain different perspectives
on the problem, we sought to obtain the opinion of Foundation staff Members (FM), as
well as Active Technical Contributors (ATC) having contributed to at least one OpenStack
project and having at least three years of experience within OpenStack.

In November 2018, we carried out an initial quantitative analysis on OpenStack’s git
repositories to identify code collaborators in terms of git co-authored trailers. Based on this,
we extracted a list of contributors having co-authored at least one patch set, and we sent
customized emails to three senior contributors that the first author knew personally. For
broader coverage and response we drafted a recruitment screener (Egelman et al. 2020) and
sent it to the OpenStack developers’ mailing list as well through personal emails, inviting
interested OpenStack practitioners to participate in the interview.

In total, we received 32 prospective participants for the interviews, of which 24 ATC
and 8 FM (6 confirmed upfront through email confirmation, and 2 more were recruited
on-site through snowball sampling (Salleh et al. 2018) upon suggestion by a senior FM).
During the summit, as the interviews progressed, we noticed after the 16th participant that
no additional new information was provided on top of what previous participants had said;
we thus reached a point of saturation (Guest et al. 2006; Fusch and Ness 2015b), similar
to how previous studies (Kim et al. 2016; Meyer et al. 2019) reached saturation at 16 and
10 interviews, respectively. In qualitative studies, saturation usually happens during data
collection and analysis when no new theme emerges from any additional data collected, i.e.,
in our case from the interviewed participants. Therefore, we stopped the interview session
and discarded the redundant interviews.

The demographics of the 16 retained respondents is shown in Table 1, with seven inter-
viewees self-identifying as female and nine as male. The respondents were spread across
different geographical regions. Only three of the respondents were contributing to Open-
Stack on a volunteer basis, while the other 13 were hired (9 were hired directly by companies
participating in the OpenStack consortium, whereas 4 got hired through OpenStack events
or summits). Respondents 7' to 771 were all active technical contributors (ATC) to project
teams, while respondents B; to Bs were additionally involved in a more organizational role
at OpenStack, such as being an FM or TC member, project team leader (PTL), or member
of the infrastructure (Infra) team. Their experience in OpenStack ranged from three to nine
years, and they were involved in between 1 and 11 different projects.

3.2 Interview Recording and Transcription

All interviews were semi-structured and performed by the first author of this article during
the 2018 OpenStack Summit in Berlin. The 16 recorded interviews lasted a median of 17
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Table 1 Demographics of interview respondents

D Region Gender OpenStack role Status #projects #years
Ty North America d ATC hired 5 6
T, Europe Q ATC hired 4 5
T3 Asia Q ATC hired 3 3
Ty Europe d ATC hired 3 4
Ts North America Q ATC volunteer 1 4
Te North America J ATC volunteer 11 6
T7 Asia d ATC hired 4 4
Ty Africa Q ATC volunteer 1 8
Ty North America d ATC hired 5 9
Tio Europe Q ATC hired 2 3
T Asia d ATC hired 8 9
B North America Q PTL/TC hired 7 3
B> Asia J FM/Infra hired 4 5
B3 Europe d TC/Infra hired 5 9
By South America Q PTL/TC hired 2 9
Bs North America d PTL/FM hired 3 9

minutes. Before the interview, each respondent was asked to fill a consent form. Most of
the questions were open-ended. The questionnaire is shown in Appendix A. The interview
guide was designed to include three main series of sections:

1. general questions aimed to understand the background and demographics of each
participant;

2. questions targeted to respondents of type By (having an organizational role in Open-
Stack) to gain more insight in the mechanisms and modalities OpenStack governance
has put in place to encourage the practice of collaborative coding; and

3. questions targeted to respondents of either type 7; or By to capture the technical
perspective of collaborative coding.

After the summit, the recorded interviews were distributed equally over the last three
authors of this paper for transcription. The interviewer double-blinded the respondent names
before providing the recordings to the transcribers. Each interview transcript was stored in
a file labelled by a unique identifier associated to the respondent. Each transcriber received
instructions to further anonymize the transcripts by hiding any personal data, in order to
anonymize any privacy-sensitive information.

3.3 Interview Coding and Reviewing

Our qualitative methods consisted of: (1) a thematic analysis (Terzimehi¢ et al. 2019;
Lenberg et al. 2017; Cruzes and Dyba 2011) from the transcribed data to uncover themes
such as the expected benefits, challenges and communication mechanisms at OpenStack;
and (2) a content analysis (Arya et al. 2019; Himmelsbach et al. 2019) to understand the
prevalence of emerged themes that practitioners discussed about during the interview. To
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uncover themes from the transcribed corpus, we started with a qualitative coding process.
We identified how identical codes form categories of high-level themes. We kept track of
the prevalence (i.e., popularity) of the emerged themes as they appear in each code category.
Below, we provide more details.

After transcription of the 16 interviews, which form our data points at document-level,
we started a two-phase process consisting of (1) coding the transcripts; and (2) reviewing the
coding to reach mutual agreement. The coding phase started with an initial inductive cod-
ing (Bernard et al. 2016) conducted by one author who used two transcripts (corresponding
to 10— 15% of the total set of transcripts (DiStaso and Bortree 2012)). He assigned labels to
the transcribed text, without any predetermined theory, structure or hypothesis. As the cod-
ing progressed, common themes started emerging, that were classified into code categories.
The coding process continued until all transcribed text was coded. This process resulted in
an initial codebook (Saldania 2015).

Next, all authors were involved in a deductive coding process (Bernard et al. 2016) using
this initial codebook as a guide. Each author independently coded the interview transcripts
that were initially assigned to them. Whenever a new theme emerged during this coding, the
authors would discuss, resolve and manually harmonize the resulting codebook as described
below.

In the reviewing phase, each author was assigned for coding a different set of four tran-
scripts that had already been coded in the first phase by another author. The purpose was to
assess whether both coders reached a sufficient rate of agreement on the performed coding.
For each code found in each transcript, value 1 was assigned if both coders agreed on the
code category, and value O otherwise. Based on the categorical structure of the data, and the
use of two raters, we used Cohen’s « (Islam et al. 2018) to calculate inter-rater reliability
(IRR) (Campbell et al. 2013). We used Landis’ agreement levels (Landis and Koch 1977)
to interpret the IRR as poor, slight, fair, moderate, substantial or excellent.

To iteratively improve the IRR, we performed three rounds of negotiated agree-
ment (Campbell et al. 2013). The first round of coding already yielded a substantial IRR
of k = 0.69. During the second round the raters negotiated the disagreements that were
encountered during the first round using a combination of online and in-person discussion.
After sorting out these differences the improved IRR became excellent, with k = 0.81. In
the third round, we rearranged and merged certain code categories that were considered con-
textually similar. This lead to a final coding structure that satisfied all raters, with a perfect
coding agreement of k = 1.

The resulting codebook, provided in our online replication package (Foundjem et al.
2021a), enables us to understand practitioners’ perspectives on collaborative coding in a
complex ecosystem. Ten themes emerged from the transcribed text that depict the advan-
tages and benefits of collaborative coding in OpenStack. Section 4 reports on these themes
derived from the qualitative results together with their frequencies.

4 Qualitative Results of Interviews
T his section reports on the findings that we derived from analysing the interview transcripts.
They provide qualitative evidence to answer the research questions outlined in Section 1.

Numbered from F1 to F10, the findings are summarised in Table 2 and discussed in the
following subsections.

@ Springer
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Table 2 Research questions and associated thematic findings on micro-collaboration practices based on the
transcribed qualitative data

RQ Finding Emerging theme on micro-collaboration
RO F1 There are 2 main mechanisms for micro-collaboration.
F2 Most frequent communication media are IRC and Gerrit.
RQ» Collaborative coding ...
F3 ...encourages teamwork.
F4 ...improves onboarding.
F5 ...enhances learning and understanding.
Fé6 ...improves software quality.
F7 ...improves productivity.
F8 ...enables recognition and accountability.
F9 ... facilitates solving complex problems.
RQ3 F10 There is a need for automation, tracking and awareness.

For the findings highlighted in grey we will provide additional quantitative empirical evidence in Section 6

4.1 RQ; How do OpenStack Contributors Engage in Collaborative Coding Practices?

F1 While OpenStack uses git feature branches for macro-collaboration, there are
two main mechanisms for micro-collaboration: (a) Co-Authored-By: commit trailers;
and (b) Gerrit code reviews. Even though OpenStack and GitHub encourage the use
of commit trailers, it is not considered to be the most frequently used approach for
micro-collaboration.

We asked the interviewees about the collaborative coding mechanisms they were aware
of, or had personal experience with, in OpenStack projects. All different mechanisms they
mentioned are discussed below. Some of them correspond to macro-level collaboration,
while others correspond to micro-level collaboration. In the remainder of this paper, we will
narrow down our focus on micro-level collaboration between individuals.

(a) Co-Authored-By: trailers in git commits The micro-collaborative coding mechanism
that was mentioned by all 16 respondents consists of appending trailers of the form Co-
Authored-By: <name> <email> to git commit messages to indicate the contributors that
collaborated on a particular patch (see Section 2.2). While all respondents were aware of
such commit message trailers, two of them (B and Ts) did not participate in co-authoring
activities within OpenStack, while three respondents (B, Bs, and Ty;) only experienced
this technique outside of OpenStack.

Three respondents stated that they used such trailers when it was important to list all
co-authors in a code commit that is a product of collaboration, and six participants said to
systematically use the trailers during collaborative coding. Three other respondents said that
they sometimes forget to add the trailers because they are not interested in the perks com-
ing with the collaboration (e.g., credits to attend OpenStack events). Two respondents said
they only use the trailers for non-trivial changes. When asked how frequently trailers were
used across the OpenStack projects, only three respondents claimed that it was extremely
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common. The other 13 reported that the mechanism was used even though it was not a
frequent practice.

(b) Gerrit code review collaboration The second most mentioned technique for col-
laborative coding is through Gerrit code reviews, and could support either micro- or
macro-collaboration.

Respondents mentioned the following two code review mechanisms that can be consid-
ered as micro-collaboration:

1. Five respondents mentioned the practice of co-authoring by uploading a new patch set
version of someone else’s patch set, under the same Gerrit change id. As such, one
can download a patch under review, modify it, then re-upload a modified version that
supersedes the previous patch version. This approach is easy to use and preserves the
original co-authoring information. It also registers the information of the new author(s)
in the final commit. Three of these respondents mentioned the use of Gerrit’s web
interface for inline patch editing®®, allowing to quickly generate a new patch set for
minor edits such as fixing typos.

2. Four respondents considered the act of providing code review comments as a form of
code collaboration, typically when they expect no credit for their contributions in the
form of co-authorship. This is the most loose interpretation of micro-collaboration that
we encountered, and we did not study this further.

In terms of macro-collaboration, four respondents discussed the practice of writing a
separate change set dependent on someone else’s change set, such that the combination
of both change sets achieves the intended functionality. The advantage of this approach is
that both authors get full credits, since they each submit their own change set (and hence
commits). The disadvantage is that it requires the code contributions to be cleanly decom-
posable, and that it introduces strong dependencies between patches. This approach is often
used when the original contributor is no longer available or interested to work on the patch.

(c) git feature branches Four respondents mentioned the macro-collaborative coding
mechanism of feature branches in git. Development of certain complex features at Open-
Stack requires a large-scale, macro-level collaboration among cross-project teams. Such
features usually take longer than expected to develop (otherwise the patch set approach men-
tioned previously could be used). As such, development takes place in a feature branch®*
with several iterations of commits. When development is completed, these features are later
merged into the master branch. Bz explains: “You just set an official feature branch where
you land those various patches and then once the branch is ready you can squash it as a
single commit and merge it back to the main, with all the co-authors. So that would be: the
lightweight ... spontaneous ... and the industrial way of doing it.”

F2 IRC is the most frequently reported communication medium for joint contribu-
tions, followed by code review comments.

While joint contributions could potentially involve many different communication chan-
nels, the responses highlighted that some of them were more common. Table 3 reports six

Bhttps://gerrit-review.googlesource.com/Documentation/user-inline-edit. html#editing-change
24https://docs.openstack.org/infra/manual/drivers. html#feature-branches
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Table 3 Communication media

used for collaboration, per Communication channel n Pct. (%)

number of respondents (n), in

percentages (Pct). IRC and IRC 13 3171

Gerrit-comments are the most Code review comments 9 22.01

used media with 33.7% General mailing list 8 1951
Git commits 6 14.61
Personal email 4 9.8l
Video/phone conferencing 1 241

different communication channels that are used for collaborating within OpenStack. IRC
is the most common, followed by code review comments, communication through mailing
lists and git commits. More traditional forms of private communication, such as personal
emails and phone calls, appear to be less common or were simply not mentioned.

4.2 RQ, What are the Benefits of Micro-Collaboration?

OpenStack contributors perceive benefiting from micro-collaborative coding for a diverse
set of reasons. Based on an analysis of the contents of the interview transcripts, Table 4
summarises in decreasing order of frequency the benefits that respondents perceive from
micro-collaborative coding. The frequency of each benefit indicates how prevalent contrib-
utors perceive its value in collaborative coding. F3, F4, F5 and F6 are considered the most
frequent benefits, totaling 75.4% of all responses. Each perceived benefit is discussed in
detail below.

F3 Co-authoring encourages teamwork.

14 respondents consider co-authoring as a mechanism that both enables and exploits the
benefits of collaboration and teamwork. For example, co-authoring was said to facilitate the
planning and actual development of code contributions, to provide more confidence about
the quality of a contribution, and to speed up development in areas with high complex-
ity, even of larger contributions. T4 affirms that it is “nice to know that it wasn’t just one
person thinking through the design of it and developing it but that it was multiple people
collaboratively doing it”.

Co-authoring encourages diversity amongst contributing developers (in terms of think-
ing, skills, expertise, seniority, etc.) and provides a common platform for developers to share

Table 4 Perceived benefits of

micro-collaborative coding at Preceived benefits of micro-collaboration n Pct. (%)
OpenStack in descending order
of respondents (n) per F3 Encourage team work 14 2461
percentages (Pct) F4 Improve onboarding 14 2461
F5 Enhance learning and understanding 8 1401
F6 Improve software quality 7 1221
F8 Enable recognition and accountability 5 8.8l
F9 Facilitate solving complex problems 5 8.8l
F7 Improve productivity 4 7.0l
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expertise; divide and conquer. By awarding credits for OpenStack events to all co-authors,
co-authoring provides an additional incentive to make developers collaborate. Finally, Ts
signaled more implicit cases of co-authoring, where a contributor is “... picking up things
that have just been abandoned or left or people don’t have time for ...”

F4 Collaboration improves onboarding.

All respondents emphasized the importance and benefits of collaboration and mentoring
for onboarding newcomers. For example, B3 reported that collaboration makes it easier for
new contributors to submit their first patch: “You notice that they might be too shy to author
completely a patch, but if they can be counted as a co-author, or if they wrote the design of
it or the documentation of it that does not really show in the code, then you can credit them
for their work. So, I feel like it is a positive system.”

Eight respondents reported that they started co-authoring as junior developers, whereas
five claimed they were already experienced. Only four respondents mostly did co-authoring
with less experienced people (typically as mentor), while the other twelve respondents typ-
ically performed co-authoring while being mentored by more experienced contributors.
Hence, new contributors as well as more experienced ones seem to benefit from learning
from more senior contributors, allowing a better understanding of the design and gaining
deeper technical details of projects.

While one respondent claimed that the person who is doing most of the work is recorded
as lead author, fourteen other respondents instead claimed that the lead author would just be
the person doing the final submission of the patch.

Eight respondents mentioned both the social and technical aspects that can influence
contributor’s retention/abandoning/turnover. Four respondents stated that the TC is doing
its utmost to improve OpenStack’s work culture, besides just being aware of unpleasant
experiences that contributors have had in the past. For example, B3 said “we try to keep it fun
and engaging, ... make sure that people are happy contributing to OpenStack and that they
want to contribute to OpenStack.” OpenStack has also put in place an onboarding program
to attract new contributors and keep them engaged (Foundjem et al. 2021b). Moreover, Ty
mentioned the benefits on feedback during collaboration: ... like the onboarding sessions
that we do here attempt to get you familiar with the specifics of a project but the toolset
in general. But I think that’s also a good way for feedback in regard to the retention; for
feedback where things might not be working well. That’s how we find out.” Collaboration
creates an atmosphere for contributors to share immediate feedback on their work progress,
since collaborators are accountable to one another. This allows to address obstacles timely
before they may lead to abandonment.

F5 Collaboration enhances learning and understanding.

Eight respondents indicated that collaboration enhances learning and understanding of
the code base, since it (i) encourages junior developers to learn the development process
faster; (ii) helps to better understand other people’s context, component, expertise and prob-
lems; and (iii) facilitates better comprehension of the scope and complexity of the overall
project.

F6 Collaboration improves software quality.
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Seven respondents stated that collaborative coding fosters higher-quality contributions,
for example in terms of (i) coding style and clarity and (ii) code correctness. Since every
contributor brings in her own specific expertise, the resulting contribution becomes more
than the sum of its parts. To sustain this claim on collaborative coding, B asserts that ... to
ensure that the code has the style that matches the rest of the library code for that particular
project and that it is readable and simple and accurate, correct. So, all the usual reasons that
you do code review.” In addition, B; advocates “... When more than one person contributes,
it helps the quality of the code. ”

F7 Collaboration improves productivity.

Four respondents highlighted that collaboration increases productivity, since there is no
more need to wait for other people to fix something. Instead, one can just collaborate to
make things move quicker. At the same time, the fact that a group of people is working
together on a contribution allows to bring larger changes faster, while everyone only needs
to perform a part of the effort (less work for everyone involved). This was highlighted by
Bg: ““... most projects do encourage that, it’s a good way that people can work together and
come up with changes ... than one person or they are able to get more work done than one
person can do by themselves.”

Two respondents provided another perspective on productivity improvement, namely that
co-authoring stimulates developers to not just reject other people’s contributions (with a
high chance the rejected contributions would never make it), but instead encourages them
to collaborate themselves on the broken patches. As such, a small fix could still allow a
broken patch to go in, rather than the project losing out on it or stalling while waiting for
improvements by the patch author. As such, this mechanism leads to an improvement of the
code review culture. Related to this are the aforementioned implicit collaborations, where
contributors can effectively pick up an abandoned patch or a patch people do not have time
for anymore (with their permission, if needed).

F8 Collaboration enables recognition and accountability.

Five respondents declared that co-authoring brings about individual recognition. It allows
acknowledging everyone involved in a joint contribution, so that even the smallest contri-
bution gives visibility to its contributors. Six respondents uphold that one major way of
thanking joint contributors is by providing credits to them for each contribution. Such cred-
its enable contributors to obtain a rebate on the registration cost for OpenStack events, such
as a project team gathering or summit. In addition, credits allow contributors to vote or stand
in elections.

Visibility and recognition also implies accountability, since in the case of a bug or other
issues the responsible can be tracked easily. This is an important aspect of joint contribution,
yet not everyone follows these guidelines consistently. Especially the more experienced
developers would forego being recorded as a collaborator, since they already have enough
visibility in the community or do not need the extra credits (they have direct access to all
OpenStack events). By doing so, the accountability aspect is lost.

Furthermore, two respondents mention that the recognition provided by joint contribu-
tions positively reflects on the public image of the contributor’s company. This is why many
companies actively track their employees in order to encourage such contributions. T high-
lights that it makes “... certain sense for some companies that employ contributors that
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having a name attached to a patch is important because it gives that company recognition in
addition to the individual contributor.”

Related to F6, the provisions for accountability also provide more confidence in the
quality of joint collaborations, since, in the event that one of the developers of a project
leaves, the other collaborators still share a sizeable amount of knowledge and expertise
about the contributed code. Hence, the organization can continue to work without being
impacted.

Ts emphasises accountability during collaborative coding: “Usually most people try
adding co-authored-by ... so at least they have tracked accountability. And very rarely do
we run in cases where people actually completely pull a patch down, recommit it without.”
T3 claims collaborative coding is important to credit or encourage collaboration: “It gives
credit or credit is due if many people are involved in an idea then they should all get credit
for the idea.”

Accountability of co-authorship can also be important because of legal obligations.
This was highlighted by respondent T3: ... giving credit is important for legal reasons
... someone created some code but if there is no attribution then that causes legal problems.”

F9 Collaboration facilitates tackling more complex problems

Five respondents stressed that joint contributions enable a project to deal with complex
and inter-dependent multi-person patches. These are patches that cannot be decomposed
into separate parts, but need to be submitted as one. Similarly, co-authoring can help to break
down complex tasks for contributors with different expertise. For example, Bs reported that
“The reasons in which I contributed was mostly on complex task as we applied the divide
and conquer technique.”

4.3 RQ; How can Micro-Collaboration be Improved Further?

When respondents were asked about whether they were satisfied with how OpenStack sup-
ports collaboration and co-authoring, 15 respondents said they were generally happy, and
11 could not think of any specific drawback. When asked more specifically about things
that could be improved in the processes or tools for co-authoring, responses were more
diverse, as shown in Table 5. Automation, tracking and promotion account for 71% of the
total demands.

F10 Better automation, tracking and awareness of joint contributions are the most
commonly mentioned requests for improvement.

Table 5 Mechanisms to

improve collaboration Things to improve # respondents %

practices, per number of

respondents, expressed in Automation 10 3230

percentages (%) Tracking 7 2261
Promotion 5 16.11
Enforcing “Co-Authored-By:” 3 9.71
Documentation 3 9.71
Communication 2 6.51
Licensing 1 3.2l
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The respondents raised various concerns regarding the process and tools used for co-
authoring commits, and suggested mechanisms that could improve joint collaboration. For
example, as Table 5 shows, ten respondents mentioned the importance of more automated
tools involved in co-authored commits, for example to automatically insert trailers. Seven
respondents asked for better ways for tracking (co-)authorship, since for example the Gerrit-
based workflows require manual effort to look up all versions (sets) of a patch to identify
all co-authors, and contributions other than source code are not tracked that well. Moreover,
automating the tools should also facilitate the process of adding co-authors, standardize the
information provided in git commit messages, and speed up collaborations.

Five respondents stated that the practice of co-authoring commits should be promoted
more actively, to create more awareness and hence achieve more collaboration. In addition,
three respondents said that the usage of a Co-Authored-By: commit trailer should be enforced
when co-authoring commits. This might partly be due to lack of clear documentation of the
joint collaboration process (two respondents).

Two respondents emphasized the need for better communication means during collab-
orative coding activities. Finally, respondent T5 advocated that collaborative coding could
result in licensing violations (Mlouki et al. 2016), since more people are involved and might
(accidentally) bring in source code protected by different licenses: ““... There is a lot of
licensing problems that might occur ... You have to be generally careful. If it is already in
the repo than naturally it is licensed, and they should be honoring our licenses.”

5 Setup of Quantitative Study

This section explains the setup of our quantitative study on OpenStack aiming to find sta-
tistical support for the key qualitative findings of RQ; and R(Q; that were highlighted in
gray in Table 2. We will empirically evaluate these qualitative findings on the basis of the
quantitative study outlined in this section.

5.1 Extracting Micro-Collaborations

The qualitative analysis of Section 4 revealed two important sources of micro-collaboration,
namely, co-authorship trailers in git commit messages, and patch sets for Gerrit change sets
to which multiple individuals have contributed. This subsection presents the datasets used
in our quantitative analysis.

Cinit = initial dataset of git commits OpenDev is the integrated collaborative open source
platform hosting the OpenStack code base. On the 22nd of July 2020 we cloned all 2,219
OpenDev git repositories with a total of 1,870,705 commits, in order to identify those con-
tributors that are most involved in co-authorship activities. To gather a history of exactly
nine years of OpenStack activity, we removed any activity before the 1st of July 2011
(66,015 commits) and after the 30th of June 2020 (5,503 commits). We selected July 2011
as the start for our commit data set to better align with the Gerrit dataset (described below),
since Gerrit was introduced in the OpenStack workflow in July 20112,

We ignored 343 repositories and their 97,630 commits that corresponded to retired
projects?®, as indicated by their latest commit’s message. This left us with 1,701,557 git

ZShttp://lists.openstack.org/pipermail/openstack/201 1- August/022939.html
26https://opendev.org/opendev/puppet-ansible
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commits for 1,869 OpenStack projects, covering all branches including feature branches.
From these, we removed another 210,462 commits corresponding to the activity of the open-
stack/openstack repository as it does not contain actual content, rather pointers to other
repositories. As such, the initial commit dataset C;y;; consists of 1,491,095 git commits in
1,868 repositories.

To determine co-authorship in this commit dataset, we proceeded as follows. For each
git commit we extracted its author and committer, as well as any contribution that could be
retrieved through commit message trailers signaling co-authorship. Officially, co-authored
commits should use the Co-Authored-By: commit message trailer (see Section 2.2). How-
ever, we manually observed and confirmed the presence of many variations of this trailer
in the OpenStack git repositories, which we also included as valid signals of co-authorship.
More specifically, after conversion to lowercase we found and considered at least one
instance of each of the following alternative trailers: author:, co-author:, authored-by:,
co-authored:, co-author-by:, co-authored-with:, author attribution:, also-authored-by: and
co-authored-by:.

Pinic = initial dataset of Gerrit change sets The second data source of micro-
collaborations in OpenStack is based on the Gerrit code review system. Micro-collaboration
in Gerrit is more subtle than in git since, to signal co-authorship, we had to consider all
change set instances where at least one individual other than the initial patch set submitter,
modified and uploaded a patch set.

We gathered all change sets through OpenDev’s Gerrit REST API?’. For each change
set we extracted all comments, all patch sets and their comments and files touched. The
extracted data contains relevant information about which contributor performed which
action, such as who commented on a change set or patch set, and who authored and sub-
mitted the patch set. On the 22nd of July 2020, we fetched the change sets of all 2,219
git repositories of OpenDev with a total of 733,465 change sets. Similar to the git commit
dataset C we considered a 9-year observation period from the start of July 2011 (the intro-
duction of Gerrit in OpenStack) to the end of June 2020 and removed change sets of retired
projects and the openstack/openstack repository.

The initial review dataset Pj,;; consists of 675,159 Gerrit change sets and 2,098,269
patch sets in 1,818 projects. The new, merged and abandoned change sets correspond to
13,890, 538,381 and 122,888 change sets, respectively.

5.2 Data Cleaning

The initial datasets C;y,;; and P;,;; presented in Section 5.1 need to be cleaned in order to
merge developer identities and remove bots.

Merging identities To avoid false positives of collaborative coding and report only true
collaborative coding instances, we applied developer identity merging (Goeminne and Mens
2013) on the datasets C;,;; and P;j; . Cinis contains 20,312 distinct identities, composed of
a name and email address, corresponding to authors, committers and persons mentioned in
the commit message trailers. P contains 18,392 distinct identities that typically contain a

2Thttps://review.opendev.org/Documentation/rest-api.html
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name, email and username information®®; 5,089 of the extracted identities were missing the
username.

Prior to merging identities, we manually analysed the combined dataset Cinir U Pinis
to recover generic names and emails that are not associated with identities (e.g., root, etc,
Your Name, Author Name, root@localhost.localdomain, none @none); we recovered 20 such
labels in total. The list of terms was enhanced with an initial invalid name list based on the
suggestions of Goeminne and Mens (2013). These names and emails where excluded when
comparing terms during identity merging.

Then, the first author acquired a partial ground-truth dataset containing the list of active
contributor accounts, with names and username(s) of each contributor mapped to all their
email addresses, as recorded in OpenStack’s internal database. This partial dataset did not
contain inactive or deleted accounts and was used as the first step to merge identities.

After this merging step, identity names, emails and usernames in the P;;;; were normal-
ized following the approach of Bird et al. (2006) and identities with at least two common
tokens were manually inspected to decide whether they needed to be merged. The man-
ual inspection was based on three criteria: (1) name/email/username labels, (2) activity
statistics of each identity; and (3) recovery of OpenStack webpages for each identity to
verify if the person corresponds to the identities. In case one criterion was not suffi-
cient, then the following one was used to make a decision. For example, the identities
Tom Mens <tom.mens @domain.com> and Mens Tom <tom@mens.com> do not share the
same email address, but the normalized terms (Tom, Mens) in both identities indicate that
they should be merged based on the first criterion. This identity merging process resulted in
a final set of 17,195 merged identities in Cipnir U Pinir -

Removing bots The second cleaning step consisted of excluding bot activity. Bots are tools
performing automated processes and their accounts are disguised as real identities. In the
context of identifying collaborative coding of OpenStack contributors, such automated bots
should not be considered as collaborators and thus be excluded from our analysis.

To identify bots, we relied on an official OpenStack list of Gerrit accounts correspond-
ing to bots?®. We enhanced this list in three ways. Firstly, we identified OpenStack system
names>® and manually verified identities that contain terms stemming from the system
names. Secondly, we manually identified Gerrit identities having the same name as the offi-
cial bots used by continuous integration tools; this was achieved using variations of the
search term “CI” in their name or username. In addition, the most active Gerrit accounts for
different activity types (change set ownership, change set or patch set comments, authored
or uploaded patch sets, patch set approvals, reviewing) were manually inspected to recover
very active bots that might have been missed by the first two bot identification steps. Using
the above process, 322 distinct bot accounts were detected in Cipiy U Pinis-

Throughout the process, we discovered 14 mixed profiles of combined human and bot
activity (Golzadeh et al. 2021; Cassee et al. 2021). For example, the fictitious merged iden-
tity of John Doe <john.doe @domain.com> and John Doe Cl <john.doe @domain.com>
would be marked as a mixed profile, as the first identity is marked as human while the
second is marked as bot.

28There are identity pairs in 7 that contain the same name-email pairs, but the username information
only appears in one of them. If we account identities in 7P as name-email pairs, the number of identities
corresponds to 18,081.

Dhttps://wiki.openstack.org/wiki/ThirdPartySystems
3Onttps://docs.opendev.org/opendev/system-config/latest/systems.html
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All activity corresponding to bots and all bot-specific activity of mixed profiles were
excluded, thereby effectively removing 572,544 commits from C;,;,, and 43,713 change sets
from P;ni; . Moreover, 218 change sets are removed as all their patch sets were authored
or uploaded by bots. This resulted in cleaned datasets Cjeqn of 918,551 commits in 1,832
projects, and Pjeq, containing 631,223 change sets in 1,817 projects.

5.3 Dataset Alignment

The cleaned datasets C jeqn and Pejeqn still need to be aligned. We need to carry out project
alignment to ensure that we only consider projects that exist in both datasets. Otherwise, we
might overestimate the collaboration in one of the datasets if there are highly collaborative
projects that are only present in that dataset. Second, in order to compare both datasets we
need to carry out commit alignment by mapping git commits to the corresponding Gerrit
change sets.

Project alignment There are 1,804 projects in common between the commit dataset Cejeqn
(corresponding to 1,832 projects) and the review dataset Ppjeqn (corresponding to 1,817
projects). Restricting ourselves to these 1,804 projects, we obtain a final commit dataset C
with 917,970 git commits and a final review dataset P with 631,201 Gerrit change sets.
These final datasets will be used for the quantitative analyses of Section 6.

Commit alignment To align the individual commits in C with the merged code reviews
in P, we cannot simply rely on commit hash values, since commits can be rebased or
squashed (Kalliamvakou et al. 2015). As a first heuristic, we use the change identifiers
(change-id trailer in the commit message) that persist when squashing, according to the
OpenStack documentation!. This heuristic allowed us to align 474,156 git commits and
490,860 Gerrit change sets corresponding to 442,509 change identifiers.

As a second heuristic, we use commit hash values to match commits in the case they have
not been squashed. The heuristic aligned 102 commits and change sets that had identical
commit hash values, corresponding to 108 change identifiers. This low number is due to
the large number of alignments already achieved by the first heuristic. Unfortunately, the
second heuristic is not robust due to rebasing and cherry-picking, as in these cases the hash
value changes and there is no traceability.

Thus, a third heuristic matches the author and commit messages to align commits as
these fields proved to be the most reliable to align commits in the presence of rebasing,
according to German et al. (2016). This heuristic allowed us to align 22 commits and 19
change sets, corresponding to 24 change identifiers. In total, 442,637 change identifiers
are aligned, corresponding to 474,280 git commits and 490,981 Gerrit change sets. These
aligned commits and change sets are only used in our analyses when directly comparing the
collaborative or individual activity between the two platforms and are annotated as C N P
in the remainder of the paper.

5.4 Analysing Bug-Introducing Commits
One aspect of code quality related to (F6) is the probability of introducing bug-inducing

changes (BIC) when doing micro-collaboration vs. individual coding activities. Bug-
inducing commits contain changes to files that introduced new bugs but unfortunately

31 https://docs.opendev.org/opendev/infra-manual/latest/developers.html
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slipped through code review and were only noticed and reported later on (Fan et al. 2019;
Neto et al. 2019; Borg et al. 2019). Existing work on bug-inducing changes has focused
especially on predicting whether a given change introduces a bug (Sliwerski et al. 2005; An
et al. 2018), as well as on heuristics to trace back from a bug-fixing change to the change
that introduced the original bug (in particular the SZZ family of algorithms (Borg et al.
2019; Rodriguez et al. 2018)). We follow a 3-step methodology to mine BIC data:

5.4.1 Step 1 — Linking Bug ID to Bug Fixing Commit ID

Over the studied period, OpenStack has used both the Launchpad and Storyboard issue
trackers. We mined the bug metadata (e.g., ID, date, time, and time zone of bug submission)
from both tracking systems, focusing only on “confirmed” issues since those are the cate-
gories of issues for which bug fixes are being proposed. This resulted in a list of 1,194,026
issues.

We extracted and parsed all the commit messages from the commit dataset C to identify
bug-fix related commits. We used regular expressions to scan the commit messages for the
typical trailers used by developers to communicate the bug ID being fixed (Sliwerski et al.
2005; Borg et al. 2019; Wen et al. 2019):

L [A —za — 2]« [\=1[BbI[Uu][GEILI\s 12[#]17[\d]{6, T}
2. [FILIXX]NA — Za — z]%? :2[\s]2[#]?[0 — 9]{6, 7}
3. [A = za —z]* [LUIPPI?EI?N\s1?H#][0 — 96, 7}

The regular expressions enabled us to extract bug IDs from the commit messages. We
compared the bug IDs from their corresponding issue report on LaunchPad or Storyboard to
the extracted bug IDs in the commit messages. If a match was found, we linked the bug ID
to the commit ID (SHA-1) of the bug fixing commits (about 1.2M in total). In doing so, we
found and removed 231,726 duplicate bug IDs, leaving us with a total of 917,970 unique
bug IDs linked to their corresponding bug fixing commits IDs.

5.4.2 Step 2 — Identifying BICs

To identify the BICs for the obtained bug fixing commits, we used the SZZ implementation
provided by PyDriller (Spadini et al. 2018). On each bug fix commit, this SZZ variant
performs git blame to identify the last commits that touched the lines fixed by the bug fix.
Those commits form the initial set of candidate BICs, since they were the last ones to touch
the fixed lines. However, since the actual BICs have already been made before the bugs
were reported (otherwise, the bug would not exist yet), PyDriller uses the bug report date to
remove the commits made after the fixed bugs were reported. If, after filtering, more than
one commit remains, the algorithm considers all of them as BICs. We ran the algorithm on
917,970 commits, yielding 315,690 BICs.

5.4.3 Step 3 — Analyzing BICs

Based on the identified BICs, we aim to find out if micro-collaborative coding correlates to
software quality. To do so, we use a x 2-test of independence (McHugh 2013; Satorra and
Bentler 2001) with confidence level &« = 0.001. This test measures how far the observed
counts of a variable are from the expected counts if the null hypothesis is true. The fur-
ther, the more evidence the data presents against the null hypothesis. In our case, the
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null hypothesis states that there is no difference in the proportion of BICs between indi-
vidual and micro-collaborative coding. To report the observed and expected counts, we
first count the number of observations (i.e., observed counts) for two events of interest:
event A for the response variable (BIC or non-BIC), and event B for the explanatory vari-
able (collaborative or individual coding). Next, for each of the four cases, we compute
Expected Count = W. This allows to calculate the x statistic.

5.5 Validation of Qualitative Findings Through Multivariate Analysis

In RQ», improvement of software quality (F6) and productivity (F7) were reported as two
of the benefits of micro-collaboration. To quantitatively validate these benefits, we use both
statistical tests (for F6 involving BIC) and multivariate statistical analysis on a large number
of observed variables that are potentially related to quality and productivity improvement.
Inspired by Siegmund et al. (2014) we carry out exploratory factor analysis (EFA) and
confirmatory factor analysis (CFA) (Treiblmaier and Filzmoser 2010) with structural path
analysis to analyze multivariate structures in quality and productivity improvement.

These analyses were implemented in Python using Factor Analyzer’> and
semopy (Meshcheryakov et al. 2021). Full details are available in our replication pack-
age (Foundjem et al. 2021a).

Structural Equation Model (SEM) is a set of statistical models rooted on the assumptions
of two requirements (1) the concept under consideration must be a complex multivariate
relationship, and (2) the data to understand these relationships should be interval-scaled or
continuous data (Gopal et al. 2005), even though Johnson and Creech (1983) argue that cate-
gorical data with more than five categories can still be considered for SEM models (Johnson
and Creech 1983). Our observed variables contain a mixture of categorical and continuous
data.

In order to study the relation of micro-collaboration with the quality and productivity
of code contributions, we started off with a catalogue of metrics known from related work
to be related to quality and/or productivity (Forsgren et al. 2021; Foundjem et al. 2021b;
Izquierdo-Cortazar et al. 2017; Kononenko et al. 2016; Kovalenko and Bacchelli 2018;
Mclntosh et al. 2014b; 2016; Oliveira et al. 2020; Rigby et al. 2012). We then filtered out all
metrics not fit for SEM models, either (1) because they were not categorical with more than
five categories (Johnson and Creech 1983), not interval-scaled or not continuous (Gopal
et al. 2005), (2) because more than 90% of their values were either zero or absent, or (3)
because the metrics were correlated. This led us to the 17 observed variables (metrics) that
are listed in Table 6. The quality metrics are measured per change set, similar to all produc-
tivity metrics, except for those marked as “p?”. The latter metrics measure the productivity
of the contributors involved in the change sets. Furthermore, the variables marked as “b”
are used both for the quality and change-set level productivity analysis. Note that collabs®
is a contributor-level version of collabs, hence has a different definition. A separate model
will be built for change set- and contributor-level productivity.

5.5.1 Exploratory Factor Analysis (EFA)

CFA (and SEM) assume the presence of factors, i.e., latent variables that aggregate seman-
tically related observed variables. One can either hypothesize such factors a priori, or use

3 https://factor-analyzer.readthedocs.io
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Table 6 Observed variables (metrics) for software quality (q), software productivity (p) and both (b)

Observed variables

Description

coreReviewers (q)

juniorReviewers (q)

reviewPriority (q)

gating (q)

verified (q)

workFlow (b)

comments (b)

commenters (b)

churn (b)
changedFiles (b)
status (b)

collab (b)

duration (p“)

codeReviews (p?)
collab? (p?)

commits (p?)

patchSets (p?)

devProjects (p?)

Number of experienced developers (core reviewers and PTL-Approved) with
core power (+2) involved in a code review process. At least two +2s are required
to trigger continuous integration. (Mclntosh et al. 2016)

Number of junior developers (reviewers) with a +1 power (Mclntosh et al. 2016)

Review priority of a patch set, the higher the more immediate attention required
from experienced developers. (Kovalenko and Bacchelli 2018) (Kononenko et al.
2016)

Number of times that CI/CD runs functional and integration testing jobs
(successfully or not) (Mclntosh et al. 2016)

Number of approval scores (+2) from automated testing, etc. (Mclntosh et al.
2016)

Number of +[1,2] scores for best practices including coding style, work-in-
progress, etc. (Rigby et al. 2012) (Kovalenko and Bacchelli 2018)

Total number of comments on a change set. (Izquierdo-Cortazar et al. 2017)

Number of contributors posting comments in addition to the original author of
the change set. (Izquierdo-Cortazar et al. 2017)

Number of added and deleted lines of code. (Mclntosh et al. 2014b)
Number of changed files in a change set. (Kononenko et al. 2016)

Status of patch sets, which can either be “Merged” or “Abandoned”. (McIntosh
et al. 2014b)

Indicates if contribution to a change set was collaborative or not (bool value, 1
if collaborative and 0 otherwise).

Time required to complete the code contribution. (Izquierdo-Cortazar et al. 2017)

Number of change sets under review. (Forsgren et al. 2021; Izquierdo-Cortazar
etal. 2017)

Indicates if a contributor has collaborated at least once with another contributor
(bool value, 1 if collaborative and 0 otherwise).

Number of commits by a given contributor (MclIntosh et al. 2014b) (Oliveira
et al. 2020). Gerrit encourages and enforces rules to split code changes into
smaller commits, as this practice makes review quicker and easier to identify
potential flaws.’

Number of patch sets submitted by each contributor. (Xia et al. 2015) (Izquierdo-
Cortazar et al. 2017)

Number of projects a contributor commits code to. (Foundjem et al. 2021b)

'https://docs.openstack.org/contributors/code-and-documentation/patch-best-practices.html

The productivity metrics marked as “p’

contributors

“p®” apply to change sets, while those marked as “p°” apply to

Exploratory Factor Analysis (EFA) to identify factors semi-automatically. EFA basically
does this by reducing the dimensionality of the observed variables such that the identified
factors are explained by the principal components of the observations. Similar to Siegmund
et al. (2014), we use EFA to semi-automatically extract the factors, together with the fac-
tor loadings, i.e., the degree to which each observed variable is associated with each latent
variable. We do a separate EFA on the observed variables related to software quality, those
related to change set productivity, and those related to contributor productivity.
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Table 7 The latent variables for quality and their loadings

Observed variables automationEffort sociallnteraction reviewQuality
coreReviewers 0.409 0.103 0.523
juniorReviewers 0.028 0.568 0.482
reviewPriority 0.008 0.005 0.030
verified -0.005 0.432 0.514
workFlow 0.684 0.077 0.339
gating 0.996 -0.011 0.000
comments 0.028 0.765 0.217
commenters 0.013 0.882 0.157
churn 0.034 0.222 0.269
changedFiles -0.005 0.025 0.089
status 0.989 -0.010 -0.008
collabs 0.055 0.126 0.349

Before proceeding with EFA, one needs to ascertain that the basic assumptions for factor
analysis are met. To do so, we used Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin
(KMO) tests (Tong et al. 2012) to examine the strength between the measured variables,
and how factors explain each other®3. Bartlett’s test validates the null hypothesis that the
correlation matrix of the data is identical to its identity matrix /. If this is the case, then
the observed variables are unrelated and the data is therefore unsuitable for EFA (in other
words, one should reject this test to continue EFA). KMO tests to what extent each observed
variable could be perfectly predicted by other observed variables in the dataset.

The KMO tests revealed an average fit of the EFA model for quality (KM O = 0.75)
as well as for productivity measured at change-set level (KM O = 0.73). Bartlett’s tests
were significant (p < 0.0001) with x? = 4.2 x 107 for quality and x> = 1.6 x 107°
for productivity at change-set level. However, none of the EFA tests were successful for
productivity measured at contributor level (i.e., for the p° variables in Table 6). Therefore,
we could not carry out a multivariate analysis at that level, and instead we only conducted a
univariate statistical analysis for them.

We then proceeded with EFA on the quality metrics and on the change-set level variables
to determine the latent variables and their loadings, resulting in the loadings reported in
Tables 7 and 8. To determine the number of factors, we used the eigenvalue rule (Treiblmaier
and Filzmoser 2010). We computed the eigenvalues of the correlation matrix for both quality
and (change-set level) productivity, and chose only the factors with eigenvalue > 1. We
obtained three latent variables for quality and two for productivity. To determine which
observed variables contributed to these latent variables, we considered the absolute value of
the loadings to be relevant when > 0.32 (Treiblmaier and Filzmoser 2010).

The observed variables highlighted in bold in Tables 7 and 8 contribute to the corre-
sponding latent variable. The higher the loading, the more the observed value contributes to
the latent variable. We then manually assigned a label to each latent variable on the basis of
the observed variables it is composed of. For example, factor automationEffort in Table 7
captures information from variables gating, status, workFlow and coreReviewers, most of

Bhttps://www.analysisinn.com/post/kmo-and-bartlett-s-test-of -sphericity/
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Table 8 The latent variables for

productivity at change-set level Observed variables sociallnteraction reviewProductivity
and their loadings

duration 0.332 0.275

collabs 0.164 0.373

churn 0.325 0.243

comments 0.583 0.291

commenters 0.977 0.199

codeReviews 0.510 0.542

workflow 0.121 0.450

which relate to the automation effort in the CI process. Note that some of the observed
variables contribute to multiple latent variables.

5.5.2 Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM)

Based on our EFA measurement model, we want to confirm and analyze the relationships
among the latent variables. This requires defining a CFA model and structural regression
model (SEM) (Klem 2000; Bagozzi and Yi 2012; Igolkina and Meshcheryakov 2020) in
terms of the latent variables, then performing a SEM analysis on these models to determine
the relationship(s) between latent variables. A typical SEM model can enable researchers to
uncover multiple regression causal relationships in a single analysis among latent variables.
The left-hand side of both equations are the endogenous (i.e., dependent) variables and
the right-hand sides are the exogenous (i.e., independent) variables. Therefore, endogenous
variables are explained by exogenous variables.

In particular, we define multivariate regressions for quality (F6) and productivity (F7) in
Eqgs. 1 and 2 below:

socialInteraction ~ automationEf fort
reviewQuality ~ automationEffort + sociallnteraction

M

review Productivity ~ sociallnteraction 2)

This allows us to see how reviewQuality is explained by automationEffort and socialln-
teraction (1), and how review Productivity is explained by social Interaction (2). These
relations will enable us to validate to what extent the act of micro-collaboration impacts
both reviewQuality and reviewProductivity while controlling for the other factors.

We first have to evaluate our models to either accept or reject them based on their fit.
We considered the indicators proposed in the literature (Kang and Ahn 2021; Ghaiumy
Anaraky et al. 2021; Bagozzi and Yi 2012; Kang and Ahn 2021; Gopal et al. 2005; Sieg-
mund et al. 2014; Beran and Violato 2010). Cronbach’s o (Vallat 2018) explains how
closely related tested items are in a group (Fan et al. 2019), which enables us to establish
reliability and validity of the three factors for software quality (sociallnteraction, automa-
tionEffort and reviewQuality), and the two factors for productivity at change-set level
(reviewProductivity and sociallnteraction). The reliability of our measurement ensures its
consistency over repeated trials, and the validity indicates to what extent the individual
observations rightly measure what they are supposed to measure. To accept the reliability
of a model a value of @ > 0.7 is expected. We obtained o = 0.77 for the quality model
and o = 0.74 for the productivity model, implying that both models passed this test. The
SEM model fit index (Siegmund et al. 2014) tells us how well the model fits the data. For
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both measurements of quality and productivity our models shows good and acceptable fits
(N=608,261).

While our models did not pass the SEM %2 index criterion (p < threshold of 0.05), this
criterion is known to be sensitive and to easily reject models with large sample sizes and
minor deviations, and is failed by most of the prior work. Instead, our models did pass more
robust criteria such as Root Mean Square Error (Bagozzi and Yi 2012; Ghaiumy Anaraky
et al. 2021) (0.07 < 0.08), Normed-Fit Index (0.98 > 0.95), Tucker-Lewis Index (0.97 >
0.95), Comparative-Fit Index (0.98 > 0.90), and Adjusted Goodness-of-Fit Index (0.97 >
0.90). Our models were accepted based on these goodness of fit indexes and show strong
support for both quality and change set-level productivity.

6 Quantitative Results

This section presents the quantitative empirical analyses that we conducted, using various
kinds of statistical testing, to confirm or refute the main findings of the qualitative analysis
of the interviews in Section 4. We would like to stress that, apart from the two SEM analy-
ses (Beran and Violato 2010; Bagozzi and Yi 2012), our quantitative analysis methods can
only infer correlation, and therefore do not claim any causal relationship between any of the
micro-collaboration related factors studied in this section.

6.1 How do OpenStack Contributors Engage in Micro-Collaborative Coding
Practices? (RQq)

F1 reported qualitative evidence that OpenStack contributors use two main micro-
collaboration mechanisms: git commit message trailers and Gerrit change sets. Since the
majority of respondents indicated that the practice of git commit trailers was infrequent, this
subsection studies the prevalence of these two micro-collaboration mechanisms.

Micro-collaborative coding happens in OpenStack, but is infrequent. It is consider-
ably more prevalent on Gerrit (~ 11% change sets and ~ 27% of patch sets) than
on git (< 2%), although the former instances are harder to identify manually than
the latter. Over three out of four collaboration instances involve only two distinct
contributors, while collaboration between larger groups is scarce.

Out of all 917,970 commits in the commit dataset C we only found 15,801 commits
(i.e., 1.72%) with git commit trailers. On the other hand, in the 497,442 merged change
sets belonging to the P dataset of 631,201 change set, we found a much higher propor-
tion of 55,794 change sets (11.2%) that can be regarded as review-based collaboration. In
terms of individual patch sets (i.e., patch versions), we found that 425,736 out of the stud-
ied 1,600,019 patch sets of the considered change sets appear in collaborative change sets,
indicating a 26.61% collaboration in terms of contributions to patch sets. In contrast to
the trailer-based mechanism, the Gerrit-based micro-collaboration is not explicitly tagged,
hence is hard to identify manually or retrace.

Figure 2 presents a violin plot of the distribution of the number of collaborators in each
individual git commit and change set. Most collaborations involve two distinct contributors,
accounting for over 75% of all collaboration instances in either platform. We found an
outlier with as much as 49 co-authors in git commits; they were all contributors to the

@ Springer



120 Page 26 of 55 Empir Software Eng (2022) 27: 120

50

=
o
L

w
L

# of collaborators

N
L

Platform
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neutron project, performing a divide-and-conquer technique to jointly implement seven sub-
features®*, to support some third-party APIs. The outlier with 13 collaborators in Gerrit
change sets happened in the DevStack project while working on major changes™ that aimed
to make DevStack more user-friendly to install, test and use.

Both commits and change sets need to be considered to gain a comprehensive
overview of micro-collaboration within OpenStack, since neither git commit trailers
nor Gerrit collaboration are used consistently.

Table 9 presents the top ten of most collaborative projects at OpenStack. They correspond
to cross-project teams>° that, combined together, account for 35% of the total collaborative
activity. Cross-project teams such as Nova, Neutron, Cinder, Keystone and Horizon develop
common features that other OpenStack projects consume. They typically manage Open-
Stack resources such as configuration and deployment services (Openstack-Ansible and
Kolla). Despite the 35% magnitude of collaborative coding within these ten cross-project
teams, five of them represent projects with the most commits (Zhang et al. 2020). In general,
as observed by (Zhang et al. 2020), collaborative coding doesn’t happen frequently during
OpenStack development cycles, but is used sparingly during complex features that involve
multiple teams and contributors.

As micro-collaboration in OpenStack is observed in both git and Gerrit, we also investi-
gate the overlap in micro-collaboration between both platforms. In other words, how many
instances of collaboration are indicated both by git commit trailers and multiple Gerrit patch
sets, and how many collaboration instances are unique to either method?

For this analysis, the dataset C N P of Section 5.3 is used to compare the two platforms
in an unbiased way. Out of the 442,637 aligned change identifiers, 56,202 are collaborative
either on git or Gerrit and will be used for the subsequent analysis.

Table 10 presents the number of collaborative change identifiers on git or Gerrit. Our
results indicate that 5,980 of these collaborative change identifiers exist in both C and P,

34https://opendev.org/openstack/neutron/commit/cd66232¢2b
3Shttps://review.opendev.org/c/x/group-based-policy/+/359883
36https://docs.huihoo.com/openstack/docs.openstack.org/project-team- guide/cross-project.html

@ Springer


https://opendev.org/openstack/neutron/commit/cd66232c2b
https://review.opendev.org/c/x/group-based-policy/+/359883
https://docs.huihoo.com/openstack/docs.openstack.org/project-team-guide/cross-project.html

Empir Software Eng (2022) 27: 120 Page 27 of 55 120

Table9 Top 10 of most

collaborative OpenStack projects project proportion (%)# collaborative change identifiers

in terms of proportion and

number of collaborative change nova 9.3 8,778

identifiers neutron 6.3 6,007
tripleo-heat-templates5.0 4,743
openstack-ansible 2.6 2,496
cinder 2.6 2,419
openstack-manuals 2.2 2,075
keystone 2.0 1,872
horizon 1.8 1,743
kolla 1.7 1,576
kolla-ansible 1.5 1,409
TOTAL 35.0 33,118

representing respectively 64.76% and 11.29% of retrieved micro-collaborations in each plat-
form. This overlap indicates cases where the implicit micro-collaboration observed in Gerrit
was made explicit through a commit message trailer. The remaining collaborative change
identifiers, respectively 3,254 in C and 46,986 in P, could only be found in one of both
datasets. Especially the latter cases represent a risk in terms of micro-collaboration visi-
bility. Overall, within C U P, commits alone capture 16.43% of all collaboration activity,
while change sets capture as much as 94.21%.

The proportion of micro-collaboration change identifiers in OpenStack fluctuates
around 15% from July 2015 onwards and around 19% from July 2017 onwards,
while it was less than 12% in the first 3 years of development.

Figure 3 shows the evolution during 07/2011- 06/2020 of the frequency of micro-colla-
borative change identifiers in C , P ,C U P and C N P. Figure 3(a) reveals that the amount
of micro-collaboration increased significantly for P and C U P, after which it decreases
again. Meanwhile, C and C N P increased slowly until 06/2015, followed by a gradual
decrease onwards. The drop of micro-collaboration in C and C N P seems to coincide with
an overall decrease in the number of OpenStack change identifiers, since Fig. 3(b) reveals
that, proportionally speaking, from 07/2015 onward P continuously increases but C and
C N P continuously decrease albeit at a much lower rate. Interestingly, the proportion of
micro-collaboration change identifiers dropped sharply during 07/2011-06/2012 (negative
slope of P and C U P ), which is likely due to the explosive growth of development activity
in OpenStack in that period (not shown in Fig. 3, given the exponential growth in Open-
Stack development, with a yearly increase in the number of change identifiers ranging from

Table 10 Recognition of . ]
collaborative activity of aligned Collaborative in Gerrit
change identifiers

True False
Collaborative in Git True 5,980 3,254
False 46,986 -
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Fig. 3 Annual evolution of collaboration frequency in OpenStack. Data points along the x-axis indicate the
start of each yearly interval (e.g., 07/2014)

37% to 135% until 2019, the stable micro-collaboration ratio indicates that collaboration
actually happens frequently): 6,622 change identifiers were made during 07/2011-06/2012
compared to the 17,720 change identifiers during 07/2012-06/2013.

6.2 RQ, What are the Benefits of Micro-Collaboration?

This section quantitatively validates the qualitative findings of perceived benefits high-
lighted in gray in Table 2: ¥4 Collaboration improves onboarding; F6 Collaboration
improves software quality; ¥7 Collaboration improves productivity; and ¥8 Collaboration
enables recognition and accountability.

6.2.1 F4 Collaboration Improves Onboarding

A recent study by Foundjem et al. (2021b) reveals that ecosystem-level onboarding at
OpenStack correlates with higher retention rate, productivity and quality. Since that study
indicated that micro-collaboration enables mentor-mentee interaction, here we focus on
studying to what extent micro-collaboration correlates with the retention rate of newcomers.

Participation in micro-collaboration is correlated with prolonged activity regardless
of contributor seniority.

For each studied year of development (ranging from July to June), we use survival anal-
ysis (Rich et al. 2010; Tufano et al. 2017) to analyse the probability that contributors remain
active (“survive”) for a given period of time. To avoid bias, we split our dataset using a
sliding window of four years that we move forward one year at a time. This results in five
consecutive periods of four years, i.e., 2011-2015, 2012-2016, ... until 2015-2019. In each
window, we perform a separate survival analysis considering only the contributors who had
their first contributions in that window. The duration of each contributor’s activity in a given
window is calculated as the time elapsed from the first contributed patch set recorded in P
until the last contributed patch set in the full observation period (June 2020). We compare
the survival curves (Tufano et al. 2017) for contributor activity in each four-year window
along two different dimensions:
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— junior versus senior: junior contributors have provided their first contribution within the
last year of the considered 4-year time window; while seniors have made contributions
in earlier years of that time window.

— individual versus collaborative: individual contributors were never involved in micro-
collaboration in OpenStack, while collaborative ones have been active in micro-
collaboration.

To clarify this, we consider a concrete example for the time window 07/2013 to 06/2017.
The contributors who contributed from July 2016 until June 2017 are considered as juniors,
while the ones who contributed from July 2013 until June 2016 are seniors. The sliding
window technique allows to compare the longevity of junior contributors in each time win-
dow as there is no overlap between the juniors in different time windows (juniors in one
time window become seniors in the next time window). The two dimensions of contributor
classification yield four different survival curves per time window for all possible pairwise
combinations, shown in Fig. 4 with 99% confidence intervals.

1.0 1.0
—— Collaborative Juniors —— Collaborative Juniors
Individual Juniors

Individual Juniors

.08 ) ) .08 ! )
2 —— Collaborative Seniors = —— Collaborative Seniors
° —— Individual Seniors ° —— Individual Seniors
206 206
[S [S
o o
So04 So4
< <
2 2

0.2 0.2

0.0 0.0

0 20 40 60 80 100 0 20 40 60 80 100

activity duration for contributors joining during 07/2011-06/2015  activity duration for contributors joining during 07/2012-06/2016

1.0 1.0

—— Collaborative Juniors —— Collaborative Juniors
Individual Juniors Individual Juniors

.08 ) ) .08 ! )
) —— Collaborative Seniors ) —— Collaborative Seniors
e — Individual Seniors e —— Individual Seniors
0 0.6 2 0.6
o o
o [=}
goa4 0.4
= 2
2 2

0.2 0.2

0.0 0.0

0 20 40 60 80 0 10 20 30 40 50 60

activity duration for contributors joining during 07/2013-06/2017  activity duration for contributors joining during 07/2014-06/2018

1.0
—— Collaborative Juniors

0.8 Individual Juniors
> 0. . .
= —— Collaborative Seniors
% —— Individual Seniors
0 0.6
S
[}
204
e
a

0.2

0.0

0 10 20 30 40 50 60
activity duration for contributors joining during 07/2015-06/2019

Fig. 4 Kaplan-Meier survival curves with 99% confidence interval (shaded areas) for sliding windows of

4-year periods, for junior/senior OpenStack contributors according to their collaboration status. The activity
duration is measured in months

@ Springer



120 Page 30 of 55 Empir Software Eng (2022) 27: 120

Table 11 The presence of bug

inducing changes (BIC) in Observed Count Expected Count
collaborative versus individual
coding BIC Non BIC  BIC Non BIC
collaborative 2,320 13,678 5,542.15 10,455.85
(14.5%)  (85.5%) (34.6%) (65.4%)
individual 315,690 586,282 312,467.85  589,504.15
x2(1, N = 917,970) = 2916.21, (35.0%)  (65.0%)  (34.6%) (65.4%)
p < 0.001

We observe that collaborative contributors (blue/green) are active significantly longer in
OpenStack than individual contributors (red/orange). This is visually confirmed by the non-
overlapping confidence intervals, and statistically confirmed through log-rank tests with
p < .001 (after Bonferroni correction to adjust for family-wise error rate) for all periods.

Note that the maximum longevity of junior contributors is decreasing in more recent time
windows as the end of the full observation period is June 2020, thus limiting the time they
could have been active. To account for multiple comparisons of juniors in one time window
participating as seniors in follow-up time windows, we tested all statistical hypotheses after
adjusting p-values with Bonferroni correction; the statistical differences were confirmed
with adjusted p < 2.8e — 5.

We also observe that collaborative stakeholders have at least a 15% probability of sur-
viving during the entire studied period, with collaborative seniors usually having a higher
survival probability than juniors until June 2017. The survival probability of individual con-
tributors drops below 20% after approximately 12 months, decreasing until close to 0%
towards the end of the studied period. Overall, our results show that micro-collaboration
correlates with developer engagement in OpenStack.

6.2.2 F6 Collaboration Improves Software Quality

To quantitatively validate whether micro-collaboration correlates with better software qual-
ity we performed (1) x?2 tests on the bug-introducing likelihood of micro-collaborative vs.
individual change sets, and (2) a multivariate SEM analysis on the latent variables for review
quality (reviewQuality) identified in Table 7. The latter analysis validates to what extent the
review process is different for micro-collaborative and individual change sets.

Micro-collaborative changes tend to have a significantly lower likelihood of intro-
ducing bugs than individual changes.

Using the approach of Section 5.4, we use a x 2-test across the dimensions of
micro-collaboration/individual coding style and BIC/non-BIC change set. Table 11 shows
the confusion matrix with observed and expected counts. Across the studied OpenStack
projects, 14.5% of micro-collaborative code changes are bug-introducing, compared to 35%
of individual code changes. The beanplot of Fig. 5 compares the distribution of BICs in
micro-collaborative versus individual changes across the studied projects. There is a high
median of 7,550 BICs for individual commits, compared to a low median of 24 BICs for
micro-collaborative contributors.

The x2-test indeed rejects the null hypothesis, signalling a significant difference
in proportion of BICs between micro-collaborative and individual contributions. Cliff’s
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delta (Cliff 1993; Hess and Kromrey 2004) confirmed a large effect size for this difference
(8=0.782).37

Table 12 compares the top 10 OpenStack projects in terms of their proportion of BICs
for collaborative and individual changes. We can indeed observe that the 10 most bug-
inducing projects that were collaborative only account for 0.18% of the total BICs, whereas
the corresponding top individual projects account for about 8.46% of the total BICs.

The SEM model indicates a significant, positive causal link between micro-
collaborative changes and review quality.

In order to interpret the SEM model for change-set level quality based on (1) in
Section 5.5, we consider the model’s path diagram (Fig. 6). This diagram represents the
latent variables (reviewQuality, sociallnteraction and automationEffort) as circles, observed
variables (e.g., gating and status) as rectangles, and SEM model loadings as solid, directed
edges between latent and observed variables. In the structural model, the loadings are
labeled with their path coefficient (Garson 2013), which is the standardized (B) regres-
sion coefficient?® that, similar to a traditional correlation coefficient, estimates the strength
of a regression path, with a magnitude in the range —1 < g < 1. The p-value indi-
cates statistical significance of this strength. Since the SEM model is multivariate, the path
diagram shows multiple regression relationships among the latent variables. A first regres-
sion relationship is a direct path that exists between the independent (exogenous) variable
automationEffort and the dependent (endogenous) variable reviewQuality, with 8 = 0.027,
while a second relationship exists along an indirect path that flows from automationEffort
to sociallnteraction (8 = 0.007), then to reviewQuality (8 = 0.768).

The path diagram in Fig. 6 shows how all paths/loadings are statistically significant
at p < 0.001. Furthermore, the SEM model reveals causal relationships between all

37According to Hess and Kromrey (2004) we interpret effect size as negligible (d < 0.147), small (0.147 <
d < 0.33), medium (0.33 < d < 0.474) or large (d > 0.474).
38https://www.statisticshowto.com/standardized- beta-coefficient/
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Table 12 Top 10 OpenStack projects most affected by bug-inducing changes (in terms of their proportion

and number)

Individual coding

Collaborative coding

project proportion (%)  #BIC project proportion (%)  #BIC
/project-config 2.016 19,400 tripleo-heat-templates 0.048 467
openstack-manuals 1.152 11,089 deb-nova 0.046 443
tripleo-heat-templates ~ 0.940 9,049 swift 0.019 190
releases 0.848 8,162 requirements 0.019 185
X/vmware-nsx 0.836 8,052 rally 0.009 96
tempest 0.715 6,885 tripleo-common 0.009 96
swift 0.495 4,764 trove 0.009 89
x/gantt 0.490 4,720 tempest 0.007 76
senlin 0.486 4,685 rally-openstack 0.007 74
placement 0.478 4,604 tacker 0.007 73
Total 8.456 81,410  Total 0.180 1,789

sociallnteraction

commenters

comments

workFlow

automationEffort

p-val: 0.00

0.027

gating status

0.387
-val: 0.00
reviewQuality
p-val: 0.00 / p-val: 0.00 p-val: 0.00
verified collabs juniorReviews coreReviewers

Fig.6 Path diagram showing the structural analysis for the quality SEM model. Factors are shown as circles,
observed variables as rectangles, and loadings as solid arrows
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three latent variables, suggesting that reviewQuality is explained by automationEffort and
sociallnteraction. Notably, the interaction between automationEffort and sociallnterac-
tion is essential for reviewQuality, with a combined S of 0.775 (0.768 4 0.007). Since
the focus of this work is on micro-collaboration, we observe that collab (i.e., whether a
change set was done in a micro-collaborative way) has a statistically significant relationship
with reviewQuality, while controlling for the other two latent variables (and their observed
variables). Furthermore, this relationship is positive, with more micro-collaboration cor-
relating with higher reviewQuality. The SEM model estimate 8 = 0.311 means that a
one-unit increase of collabs corresponds to a 0.311-unit increase of reviewQuality. That
said, the diagram also shows how collab only has the fourth out of five strongest relation-
ships with reviewQuality. Hence, although it is not the strongest (positive) explanation of
reviewQuality, there is a statistically significant relationship.

6.2.3 F7 Collaboration Improves Productivity

To validate the qualitative finding that micro-collaboration improves productivity, we ana-
lyze productivity of micro-collaborative contributors in terms of the amount of technical
contributions in C U P (co-authored commits, created change sets, and contributed patch
sets), the time required to complete such contributions, and a multivariate analysis (SEM
model) on the latent factors of Table 8 for review productivity.

Collaborative contributors produce more change sets, patch sets and commits. The
contribution size of collaborative change sets is larger compared to individual efforts
(but with small effect size).

To assess whether micro-collaborative contributors produce more change sets, patch sets
and commits, we compared the distributions of the number of created change sets, submitted
patch sets and commits between collaborative and individual contributors in Fig. 7. We con-
sidered contributors to be collaborative if they have had at least one collaborative activity.
Furthermore, for such collaborative contributors we took into account all their contributions
(including the ones they carried out individually).

Figure 7 suggests that there is an important difference in the number of contributions
between individual and collaborative contributors. We observe that collaborative contribu-
tors create more change sets and submit patch sets in P, and produce more commits in C
compared to individual contributors.

To confirm these visual observations with statistical hypothesis tests, we carried out non-
parametric Mann-Whitney U tests, as the assumption of normality is not met in neither C
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Fig.7 Overall productivity of collaborative vs non-collaborative contributors
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nor P. The null hypotheses state that there is no difference between collaborative and indi-
vidual contributors in the distribution of the number of created change sets, and commits.
These three hypotheses are rejected (p < 0.001) with large effect size for created change
sets (§ = —0.78), submitted patch sets (§ = —0.84) and commits (6 = —0.60).

As a result, we can conclude that micro-collaboration correlates with more change sets,
patch sets, and commits.

The experimental setting above takes into account all contributions of collaborative
contributors, including individual ones. However, individual efforts of collaborative con-
tributors might introduce bias in the reported results. To eliminate bias, we repeated the
experiment by comparing the distributions of the number of created change sets, submit-
ted patch sets and commits between individual and collaborative contributors, but by only
considering the collaborative activity of the latter.

The Gerrit findings persist, i.e., the two hypotheses are rejected with large effect size,
where differences in Cliff’s delta are observed for change sets (6 = —0.49 instead of —0.78)
and submitted patch sets (§ = —0.72 instead of —0.91). The results for commits, however,
differ, i.e., the null hypothesis is rejected, but individual contributors seem to have more
commits than collaborators (§ = 0.40 instead of —0.60 with a medium effect size). This
is observed because the collaborative activity attributed with trailers on git is scarce (see
Section 6.1) and therefore only a small portion of commits are considered for collaborators
(1.9% of collaborators’ commits are in fact collaborative based on commit trailers). This
result indicates that most collaborators’ activity is either individual, or collaborative without
attribution.

The latter observation is interesting, since the collaborative contributors seem to spend
substantial effort on creating reviews and submitting patch sets, but with few commits in git
to be marked as collaborative with trailers. Although the lack of collaboration attribution
with commit trailers is further investigated in Section 6.3, these results showcase the impli-
cation of not explicitly marking collaborative efforts, especially since collaboration tracking
is one of the top improvements requested by interviewees (see Section 4.3).

Another possible factor affecting developer productivity might be the actual size of the
contributions in individual and collaborative contributions. We investigate this factor with
a Mann-Whitney test, with Hp stating that there is no difference between the distribution
of churn of collaborative and individual change sets. We only use the code churn of the
last patch set submitted for each change set to avoid overestimating the contribution size.
The null hypothesis is rejected (p < 0.001), but with small effect size (6 = —0.27). This
result indicates that collaborative change sets consist of more churn, but the reliability of
this outcome is limited. This observation is in line with OpenStack’s divide-and-conquer
best practice recommending to split large patches into smaller blocks>?.

Quantitative evidence contradicts contributor perception: collaborative change sets
tend to require more time to finalise, and there is no evidence of a higher success rate.

According to the qualitative interviews, collaborative coding on Gerrit was perceived
to allow patch sets to be merged quicker, by allowing other contributors to create addi-
tional, improved patch sets on top of existing ones, enabling them to get merged more likely
and quicker into the code base. To quantitatively verify that collaboration allows to com-
plete code contributions faster, we compare the time (in days) needed for getting patch sets

3https://docs.openstack.org/contributors/code-and-documentation/patch- best- practices.html
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merged, between collaborative and individual patch sets. More specifically, we computed
for each change set, the number of days between the first patch set and closing of each
change set (either merged or abandoned).

Figure 8 presents the survival curves (with 99% confidence intervals) for the collab-
orative patch set contributions (orange line) and individual patch set contributions (blue
line), respectively. The quantitative results contradict the respondents’ perception, since we
observe that collaborative contributions are finalized slower, either by merging or abandon-
ing, compared to the individual ones. A log-rank test confirms this difference with statistical
significance (p < 0.001).

We performed a x? test to verify if micro-collaborative patch sets are more likely to be
accepted compared to individual patch sets. The null hypothesis, stating that collaboration
strategy is independent from the final outcome of the change set (merged or abandoned),
could not be rejected (p = 0.078). This suggests that the presence of collaboration is not
related to the final outcome of the review (80% of individual and 87% of collaborative
change sets are merged). Therefore, there is no quantitative evidence that collaboration is
related to a higher success rate in merging change sets.

The longer time taken to finalize collaborative code reviews does not depend on the
amount of code churn or number of changed files.

A possible explanation as to why collaborative contributions (change sets) might take
longer before they are merged might be due to the scope and size of the contributions.
Collaboration could allow to produce and address larger or more complex changes that
require more overall effort to produce one (larger) commit.

To verify this hypothesis, we categorize change sets based on the code churn (i.e., the
sum of added and deleted lines of code) of the last (i.e., accepted) patch set. We grouped
each change set into three distinct churn categories using 33% and 66% of code churn as
boundaries. By doing so, a small code churn corresponds to < 6 code lines, a medium churn
between 6 and 37 lines, and a large churn > 38 lines.

Figure 9 presents the survival curves corresponding to the time it took to finalize each
change set, grouped by churn category and collaboration practice. The figure suggests that
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Fig. 8 Kaplan-Meier survival curves (with 99% confidence intervals) for the time between the first and the
last patch set in a change set, focusing on the first year after initial patch submission
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Fig.9 Time (in days) to finalize change sets for different code churn categories

individual change sets take less time to finalize, regardless of the churn size category. This
was statistically confirmed through log-rank tests (p < 0.001). Similarly, Fig. 10 shows
that, the larger the churn, the longer it takes to finalize the change set, independent of
the individual or collaborative nature of a commit. The hypotheses were tested against the
adjusted p-values using the Bonferroni correction by considering all the tests performed
for churn categories (Fig. 9) and collaboration categories (Fig. 10). Using the adjusted
p < l.1e — 4, all null hypotheses are rejected.

A related analysis based on the number of changed files showed similar results. We
created three size categories. The small category contained change sets touching only one
file. According to the 80% quantile (compatible with the Pareto 80-20 rule), the medium
category contained change sets touching 2 to 4 files, and the large category all change sets
touching more than four files. Figure 11 presents the survival curves, per file size category,
corresponding to the time it took to finalize each change set for the different collaboration
practices (individual or collaborative). Figure 12 shows, per collaboration practice, the time
it takes to finalize change sets of different file size categories.

The results show that individual efforts take less time to finalize, while large change sets
take longer to finalize than smaller ones. The results are statistically confirmed with log-
rank tests and adjusted p-values using a Bonferroni correction (with adjusted p < 1.1e —4).
These findings are in line with the larger size of collaborative changes. Furthermore, by
definition of collaboration, collaborators need to communicate with each other, revise each
other’s patch sets, integrate their work, etc. While this allows collaborators to tackle more
complex changes using a divide-and-conquer strategy, it comes at the expense of taking
more time to produce a lower number of larger commits than individual contributions do.
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Fig. 10 Time (in days) to finalize change sets for different churn sizes
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Fig. 11 Time (in days) to finalize change sets for different file categories

There is a moderate correlation between the number of comments and the number of
developers posting comments, and the time it takes to finalize a change set. There-
fore, communication overhead only partially explains the increased time taken to
finalize collaborative contributions.

Another factor that may influence the time it takes to finalize collaborative contributions,
is the communication overhead that may affect collaborative activity. A Spearman correla-
tion tests the null hypothesis that there is no association between the time it takes to finalize
code reviews and the number of review comments in a change set. This is a lower-bound
measurement of communication overhead as we measure the actual number of comments
while finalizing any given collaborative change set, without accounting for possible multi-
way communication channels. The underlying assumption is that the more messages are
exchanged, the longer it tends to take to finalize a given change set. Although the null
hypothesis can be rejected, the correlation is moderate (p < 0.001, ry = 0.40). A second
Spearman correlation tests the null hypothesis that there is no association between the time
it takes to finalize code reviews and the number of developers posting comments in a change
set; this test accounts for the individuals involved when communicating. The second test
confirms the findings of the first test, since it reports a statistically significant but moderate
correlation (p < 0.001, rg = 0.40) between the two studied variables.

The SEM model indicates a significant, positive causal link between micro-
collaborative changes and review productivity.
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Fig. 12 Time (in days) to finalize change sets for different file sizes
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socialInteraction
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p-val: 0.00
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Fig. 13 Path diagram showing the structural analysis for the change-set level productivity SEM model.
Factors are shown as circles, observed variables as rectangles, and loadings as solid arrows

The SEM path analysis diagram in Fig. 13 again shows how all paths are statistically
significant (o < 0.001), this time for the productivity model (F7) showing the relationship
between reviewProductivity and sociallnteraction (2). We can see how the endogenous vari-
able reviewProductivity can be explained by the exogenous variable sociallnteraction with a
strong regression path with 8 = 0.779, showing that the former is a complex socio-technical
activity, which requires a multivariate analysis to understand how collaborative activities
with the observed variables such as collabs, commenters, and comments relate to the latent
variables reviewProductivity and sociallnteraction. Therefore both variables are positively
correlated and we claim strong support for F7: Collaboration improves productivity.

When focusing on collabs, we again notice a statistically significant, positive rela-
tionship, indicating that micro-collaboration has a positive effect on reviewProductivity.
Similar to before, collabs is not the strongest observed variable, with codeReviews and
workFlow having larger loading estimates. Still, a one-unit increase of collabs corre-
sponds to an increase of 0.332 units of reviewProductivity, hence we again conclude that
micro-collaboration plays a significant role w.r.t. reviewProductivity.

6.3 F8 Collaboration Enables Recognition and Accountability
The qualitative interviews with OpenStack practitioners revealed that OpenStack uses dif-

ferent mechanisms*? to accredit contributions, as it enables both individual recognition
and accountability (F8). To enable this, OpenStack’s governance team has implemented a

40nttps://superuser.openstack.org/articles/auc-community/
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number of scripts that automatically mine the various software repositories for people’s
technical contributions*!.

Since collaborative contributions are only explicitly marked for commits with co-author
trailers, implicit collaboration through Gerrit patch set contributions might not be captured by

those scripts. We therefore quantitatively assess to what extent due credit is actually recorded.

The low percentage (~12.9%) of git commits attributing co-authorship represents
only a fraction of the actual code collaboration through trailers and patch sets.

In particular, we looked at Gerrit change sets that became merged as git commits in
OpenStack’s repositories. We counted 497,442 such merged change sets, of which 55,794
were effectively micro-collaborative (see Section 6.1). Hence, 11.2% of all merged code that
was reviewed through Gerrit was actually collaborative. Of all these collaborative merged
change sets, only 7,184 change sets (corresponding to 5,983 change identifiers) were actu-
ally reported as being collaborative by means of a git commit co-author trailer message.
Hence, only 12.9% (7,184 out of 55,794) of the merged collaborative change sets through
Gerrit actually recognize that collaboration has taken place.

A high percentage (~80%) of the collaborative coding effort through Gerrit goes
unrecognised. In addition, less than half of these collaborative coders are actually
credited for their contributions.

In order to better interpret these findings, we quantified the volume of code changes and
number of contributors that were not accounted for through commit trailers. More specif-
ically, we computed the churn (number of added and deleted lines) of all git commits
corresponding to merged change sets. The total churn of all merged change sets was 12.5M
lines, while the churn of all change sets that were explicitly marked as collaborative (in
the commit trailer) was “only” 2.9M lines. In order words, only 19.3% of the collaborative
churn was actually recognized as being collaborative.

In a similar vein, we quantified the number of contributors that did not get any credit
for their collaboration. In total, we counted 5,953 distinct contributors having been active
as collaborators in patch sets that ultimately lead to merged change sets. As an under-
approximation, 3,560 (i.e., 59.8%) of those contributors did not get any credit with commit
trailers for their collaboration in any of the patch sets for which they were found to be col-
laborators. As an over-approximation, 5,613 (i.e., 94.3%) of the total number of distinct
contributors got only partial recognition, in the sense that they were marked as co-author
using git trailers for some, but not all of the merged change sets to which they had
collaborated on Gerrit.

7 Related Work
7.1 Collaboration

Young et al. (2021) identified four models for contributor attribution across open source
projects. The authors suggest that these models, ranging from technical platforms such as

4l https://opendev.org/openstack/governance/src/branch/master/tools
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GitHub to non-technical platforms such as the ad hoc model (e.g., for board members or
sales persons) could identify all possible types of software development contribution, which
usually have multiple dimensions. The authors used a standard “All Contributors” (AC)
model to analyze the entire lifecycle of thousands of open source projects, in order to cap-
ture a wide variety of contributions from diverse sources (outreach, finance, infrastructure,
and community management) and identify the differences with traditional ways of measur-
ing contribution. Their findings suggest that attribution systems that are designed with the
community in mind allow to make contributions more visible. The authors also claim that
models that require a more explicit attribution, in principle, discriminate against the moral-
ity of what is and what is not a contribution. Similar to Young et al., our work focuses
on micro-collaborative coding practices including contributor attribution. In line with the
previous claim, we provide quantitative evidence on contributions that OpenStack didn’t
explicitly attribute to contributors.

Zhang et al. (2020) studied how collaboration happens between large open source ecosys-
tems (including OpenStack) and contributing companies. Different clusters of collaboration
emerge among thousands of contributing companies and the OpenStack projects. This quali-
tative study identified four recurrent roadmaps, which contributing companies have adopted
as their business models to becoming dedicated contributors to OpenStack. Companies
could collaborate intentionally, passively or choose to stay committed in isolation. Based
on a collaborative network graph, thus, the authors show how the position of a company
correlates positively to productivity within the ecosystem. In addition, this work sheds light
on the complexities of collaboration within such a large ecosystem. In contrast to study-
ing collaboration at the company level, our study focuses on micro-collaboration between
individuals in code reviews.

Whitehead (2007) argues that software engineering is a collaborative process by nature,
requiring strong coordination among many software developers to release large-scale soft-
ware artifacts. The past two decades experienced a rise in web-based tools that advance
collaboration in software development. Despite this, there is a lack of empirical evidence
on the benefits of such collaborative tools and processes. Our work provided such empirical
evidence, for developer collaboration in the OpenStack ecosystem in particular.

Similar to Whitehead, Mens et al. (2019) reflected on the collaboration and coordination
are processes during social coding. They draw the attention of practitioners in large-scale
software development on the importance of constant communication and interaction. How-
ever, they do not provide concrete implications of or reasons for collaborative coding.
Our work fills in the gaps by providing both qualitative and quantitative evidence on
why and how developers carry out micro-collaborations in a large open source ecosystem,
OpenStack.

Avelino et al. (2017) investigated developer collaboration in the Linux kernel. They
found that a small portion of developers make significant contributions to the code base
and that authors with a high number of co-authored files tend to connect with others with
fewer connections. Avelino et al. consider as co-authorship instances cases where multi-
ple authors touch the same file. In contrast, our work focused on the two different kinds
of micro-collaboration instances (through co-authorship of git commits, or collaboration on
code reviews).

Overall, previous work on collaboration has focused either at a high-level view of col-
laboration between companies, or at attribution models and tools. This article investigates
collaboration on a fine-grained level and by doing so, uncovers potential challenges of
micro-collaboration in practice. We shed light on micro-collaboration benefits and draw-
backs for the development process, as well as for the tools supporting it. Future work should
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investigate how the collaboration practices that have shown to be beneficial to OpenStack
can be transferred to other communities, and how the difficulties due to current tool support
and lack of community awareness about micro-collaboration can be mitigated.

7.2 Developer Onboarding

Foundjem et al. (2021b) used a mixed-method analysis to understand the process, ben-
efits and drawbacks of OpenStack’s onboarding program. The authors highlighted that
onboarding comprises two levels: the ecosystem-level event (teaching overall processes
and practices) and the project-level (project-specific technology and practices) onboarding
process. They conducted an observational study to classify the ecosystem-level activi-
ties of 72 contributors aspiring to join OpenStack. The authors quantitatively validated
the perceived benefits by comparing diversity, productivity and quality measures of con-
tributors that participated in onboarding, and those that did not. Results showed that
onboarding correlates significantly with increasing gender diversity, productivity and code
quality. The authors also focused on project-level onboarding to verify whether collabora-
tive coding helps to improve the onboarding process. They found a statistically significant
correlation between micro-collaboration and prolonged activity, as well as evidence of
micro-collaboration practices between novices and experts. The current paper expands on
these results about project-level onboarding at OpenStack by examining the relationship
between micro-collaboration and other factors such as the quality and productivity of code
contributions.

Casalnuovo et al. (2015) mined git repositories for empirical evidence that prior social
communication with project developers facilitates project onboarding. Focusing on 1,274
developers with a long GitHub contribution history, the authors examined the development
history of 58,170 projects that these developers participated in. Pre-existing relationships
were found to strongly affect developer migration to projects. It should be noted that the
authors considered a single author per git commit, so they did not take into account possible
co-authorships (such as those expressed in git commit trailer messages).

Steinmacher et al. (2014) performed a systematic literature review on onboarding in
open source projects. They depict onboarding as a sustainability mechanism for open source
projects. They identified two categories of contributors and the major barriers that these
contributors face during onboarding. The most evidenced barriers were newcomers’ pre-
vious technical skills, receiving response from community, centrality of social contacts,
and finding the appropriate way to start contributing. While these barriers form a baseline,
Steinmacher et al. highlight that further empirical evidence on newcomer onboarding is
needed.

7.3 Code Review and Quality

Henley et al. (2018) carried out a mixed-method analysis on the documented challenges
and limitations that modern code review faces. The authors propose CFar, a tool to enhance
human collaboration during code review. The tool forms an integral part of the collabo-
rative software design process, incorporating an automated code review mechanism based
on program analysis to generate feedback to the reviewer. Through deploying CFar at var-
ious professional sites, the authors measured the tool’s effectiveness and reported that it
correlates with an improved communication, productivity, and review quality.

Mclntosh et al. (2014a) quantitatively studied code review coverage and participation in
the context of three software projects. They found significant correlation between software
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quality and code review coverage and participation. This provides empirical support to the
intuition that badly performed code review negatively correlates with software quality in siz-
able projects that use modern code review tools. Our own study also suggests that software
quality is a complex process with multiple facets to consider, moreover our SEM models
found positive relationships between micro-collaboration and both reviewProductivity and
reviewActivity.

7.4 Pair Programming

Pair programming has been advocated by the agile software development community as a
technique that can improve the productivity and transfer of knowledge within open source
projects. Plonka et al. (2015) highlight that knowledge transfer can happen at any level of
collaboration, but it is particularly valuable in a novice-expert configuration. The authors
carried out an observational study and interviews in four major software companies. Their
findings suggest that knowledge transfer exist within pair-programming in six teaching
strategies, ranging from incidental to straightforward suggestions.These strategies are an
abstraction of major teaching methods that are encouraged in a cognitive apprenticeship.
Cognitive apprenticeship is a concept that describe the knowledge transfer process where a
skilled master teaches his skills to an apprentice.

In a similar study, (Lui and Chan 2006) aimed at comparing the productivity between
novice—novice and expert—expert relations. The authors carried out a controlled experiment,
called repeat-programming, that aims at facilitating the socio-technical factors that human
beings experience with respect to efficacy. Experimental findings suggest that the produc-
tivity gain (in terms of time reduction and software quality improvement) is much higher for
novice—novice pairs (compared the baseline of novice individuals) than for expert—expert
pairs (compared to the baseline of expert individuals). The results align with prior studies,
suggested that pair programming is effective in increasing practitioner productivity, espe-
cially between novices, or experts that need to solve programming problems outside their
area of expertise.

Spohrer et al. (2013) examined pair programming and peer code review in collocated
teams of a global software firm. The authors performed on-site interviews to solicit information
about perceived patterns of team collaboration, specialization and knowledge coordina-
tion. They found that teams applied pair programming and code reviews in varying ways;
the team’s structure was theoretically linked to the structural properties of the technology
underlying the techniques. Similar to our work, they investigated collaboration practices,
but based on a quite different case study with different characteristics, and focused on the
communication in pair programming and code reviews. The micro-collaboration practices
investigated in this paper align with the ones investigated by Spohrer et al., and the findings
from our OpenStack case study enrich the body of knowledge on collaboration practices.

8 Discussion

8.1 The Good

This paper is the first case study of its kind focusing on the notion of micro-collaboration
in open-source development, as well as its relation to socio-technical factors such as

productivity, quality and developer retention. The recent mechanism of commit message
trailers allows to explicitly mark micro-collaborations, but it is used by less than 2% of
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the git commits in OpenStack. Micro-collaboration through Gerrit code changes is more
frequent, accounting for 11% of the code changes and increasing each year. Most of the
micro-collaborations involve only two contributors.

Despite the relative infrequence of micro-collaboration, our quantitative analysis was
able to validate a number of benefits and expectations expressed by the interviewed Open-
Stack community members. In particular, we found empirical evidence for the claims that:

— micro-collaboration correlates positively with onboarding and retention, both for junior
and senior micro-collaborating participants.

— micro-collaboration correlates with a lower likelihood of bug-introducing changes and
with higher review quality

— micro-collaborating contributors produce more and larger code reviews, patch sets and
commits

This highlights the value and importance of micro-collaboration practices, even in a
remote setting of geographically distributed development. Hence, it would we worthwhile
to invest in how to make this practice scale.

8.2 The Bad

However, we also identified disadvantages of micro-collaboration that contradict the expec-
tations of the interviewees:

— micro-collaboration requires more time, independent of the size of the contribution

— micro-collaboration does not increase the success rate in terms of merged code changes

— the majority of micro-collaboration, i.e., the 80% happening within Gerrit, are not
explicitly accounted for

The first two of these observations seem to indicate that activities involving micro-
collaboration tackle more challenging problems, which was suggested by qualitative finding
F9, but not quantitatively validated. These findings seem to reflect earlier findings on
the communication overhead involved with collaboration in software engineering (Brooks
1974), and on the scope of code changes (e.g., contributors with larger responsibilities, such
as architects, have been found to introduce more bugs due to the sheer complexity of their
changes D’ Ambros et al. 2012). Future work should quantitatively validate these notions in
the context of micro-collaboration.

The third observation is the most surprising since it implies that a non-negligible amount
of micro-collaborative contributions is not explicitly accounted for, which might have real
consequences, from lost recognition of developers’ contributions (which might lead to a loss
of “credits”) all the way to loss of accountability. If, for example, a vulnerability is reported
for which only one of the possible co-authors is known, precious time could be lost trying to
track down this one person as opposed to contacting the group of people responsible for it.

The root cause of this accountability problem is that most of the micro-collaborations can
only be identified implicitly by checking the patch set history of commits in the code review
environment. Before conducting our study, we were not even aware of such a mechanism
(and its prevalence), and neither did OpenStack’s community analytics tools, i.e., Stackalyt-
ics*2 and Governance*?. Given the importance of these micro-collaborations, future studies

https://www.stackalytics.com/
“https://opendev.org/openstack/governance/sre/branch/master/tools
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on micro-collaboration should incorporate both kinds of data (explicit recognition through
commit trailers and implicit collaboration through patch sets).

While, on the upside, OpenStack could adopt our identification heuristics of Gerrit col-
laboration to automatically recover these contributions in their statistics, even the best
heuristics to identify hidden micro-collaboration fail if the developers involved do not
bother to claim their contribution. This appears to be relatively common, as our interviews
revealed, since quite some senior developers forego adding their name to commit trail-
ers since they no longer need the OpenStack credits associated with contributions. If such
micro-collaboration is not visible in the Gerrit patch set history either, one ends up with a
complete loss of traceability.

This raises the question whether commit trailers —or other explicit mechanisms to tag
micro-collaboration— should be enforced, or whether it suffices to heavily raise aware-
ness about them in the developer documentation. Tool support could come at the rescue,
in the form of dedicated IDE support or hooks in the Gerrit review environment to flag
likely micro-collaborations that have not been marked through commit trailers. The popular
sourcetree git management tool at one point discussed such support, stating that trailers are
“quite cumbersome to add [...] on every commit™#4,

However, tool support for attributing micro-collaboration is not always straightforward.
For example, tools might lead to bots being attributed for automated work, or provide
incentive for contribution inflation (making many small contributions instead of fewer
significant ones). Nonetheless, we believe that accounting for such risks when designing
micro-collaboration tools can minimize their effect. More work is needed in this direction.

On the other hand, the limited usage of the existing commit trailer mechanism may reveal
underlying misconceptions of micro-collaboration. Change sets that have several contribu-
tors might lead to attribution of only a subset of those contributors. This indicates that there
might not be a clear answer to what contribution(s) suffice to be attributed with commit
trailers. Although every contribution is valuable, regardless of its size, it might be the case
that there is a consensus on which contributions need to be attributed. These criteria of attri-
bution, if present, should be explicitly part of the policy and of mentoring when onboarding
newcomers to raise their awareness.

Hence, these aspects show the need to better support micro-collaboration with tools, but
also to bring awareness of micro-collaboration attribution to the contributors. Overall, we
believe that more work is needed to find the right balance of tool support and community
awareness so as to enhance micro-collaboration.

8.3 The Uncertain

Perhaps another tricky issue requiring future work is the ability to copyright the contribu-
tions that have been made through micro-collaborations, and to assign the right license to
them. On the one hand, having multiple people responsible for a given commit, possibly
working for different employers, makes it more complicated to decide who to assign copy-
right and what license is compatible with the authors. On the other hand, in case the actual
micro-collaboration is hidden, only one of the co-authors might be assigned copyright and
might be consulted regarding licensing changes. Both situations highlight the importance of
explicitly marking and identifying micro-collaborations.

“https://jira.atlassian.com/browse/SRCTREE-5347
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Future work should also aim at quantitatively validating the expected relation between
micro-collaboration and learning/understanding, as well as the interaction between micro-
and macro-collaboration. Macro-collaboration concerns the combination of many individual
developers’ contributions, as is the common workflow using distributed version control sys-
tems like git to achieve a complex and long-lasting task. The benefits of such an implicit type
of collaboration might differ from the ones of a more explicit form of micro-collaboration
where contributors actually work fogether on shared fine-grained contributions such as code
commits.

Another way to view this distinction is by considering macro-collaboration as a kind
of asynchronous collaboration (where individual contributors make complementary code
changes), as opposed to a more synchronous kind of micro-collaboration where multi-
ple contributors work jointly on the same code change. It remains an open question if
there is some threshold in terms of feature complexity, project size or, perhaps, contributor
experience above which either of these collaboration types become more efficient.

The kind of communication channel (cf. Table 3) being used to give credit to micro- or
macro-collaboration may also play a role in how the value and benefits of such collabora-
tion are credited and perceived. If is therefore worthwhile to study the effect of the chosen
communication channel(s) on collaboration practices.

While we focused exclusively on OpenStack, one should consider replicating our study
on other software ecosystems, especially since the commit trailer micro-collaboration
mechanism used could be ecosystem-specific. Furthermore, different projects might put
more importance on awarding “credits” to their contributors (even though the need for
accountability is universal), might have a different code base size or a larger development
community.

Bogart et al. have shown that different ecosystems have different values, cultures, poli-
cies, practices and tools (Bogart et al. 2021). Hence, replicating the study on another
ecosystem might lead to different findings. However, there are also some encouraging
signals. In particular, the standardization attempts by GitHub and GitLab to use a com-
mon Co-Authored-By: trailer in commit messages, together with the elaborate collaboration
functionalities offered by such coding platforms (notably pull request reviews and issue
discussions) imply that future micro-collaborations in a majority of open-source projects
would at least use similar tools and infrastructure. Apart from simplifying the replica-
tion of our analyses on such projects, this might also lead to potential convergence of
micro-collaboration practices and processes in general.

8.4 Validation with OpenStack Experts

Since our quantitative analysis validates the qualitative results obtained through interviews
with the OpenStack community, we closed the loop by presenting our results to OpenStack
experts. For this, the first author arranged an online meeting with nine Technical Commit-
tee (TC) members. Five of them did not take part in the original interview, so as not to
introduce bias in the validation of our findings. During this meeting the study was sum-
marised, followed by an overview of the qualitative findings (Table 2) and quantitative
results in terms of prevalence, advantages and disadvantages of micro-collaboration. Based
on this information, the TC members were asked to validate the representativeness of the
findings and to provide feedback based on their knowledge of (micro-)collaboration in the
OpenStack ecosystem.
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TC members unanimously agreed that the qualitative and quantitative findings are
representative and meaningful.

The interaction between regular code review comments and actual micro-collaboration
was touched upon by four experts. Overall, the perceived goal of code reviews at OpenStack
is still the critical evaluation of submitted patch sets, not “taking over other’s patch sets”.
Another expert made a compelling case of how code review comments, patch-set-based
and commit trailer-based micro-collaboration all are practices across a common spectrum.
While code review comments provide suggestions to the initial patch author, patch set-
based micro-collaboration deals with fixes and changes that would take too long or be too
complicated to explain to the initial author. Finally, the explicit commit trailer-based micro-
collaboration would be geared towards more significant collaborations.

Going deeper into understanding what kinds of micro-collaboration are patch set-based
instead of commit-trailer-based, a number of suggestions were made. Two experts stated
that a “big part of these micro-collaborations are just related to rebases, so I don’t think that
we can really consider them as real collaborations that are worth mentioning in the commit
message”. In other words, such patch sets would correspond to “making minor fixups as
an immediate prelude to merging” in order to resolve merge conflicts that have popped up
during code review (typically after acceptance of the patch).

In contrast, another expert assumed “that one of the more common reasons for change
takeovers is reviewers reactivating orphaned patches, or restoring abandoned ones, because
the original author is no longer around or has otherwise ceased updating the change them-
selves”. This expert suggested us to study how often patch set-based micro-collaborations
involved patch sets by author A followed by patch sets by author B “with no back-and-forth,
and perhaps a significant delay between the two”.

Another factor the experts encouraged us to look at in future work is the fact that “col-
laboration deals with human factors like interpersonality and communication skills, and
not everyone has developed those skills”. Furthermore, the finding that more than 75% of
micro-collaborations involved two collaborators might “depend on the level of complexity,
the more contributors, the more complex the problem is”.

Finally, in terms of the overal usefulness of our study, the experts stated that “the results
are promising”, “may be useful for community feedback” and “can be valued feedback to
the OpenStack community”. Furthermore, the results confirmed suspicions about “a low
percentage of contributors using the git commit trailer. Especially for people who don’t
care about getting recognition for their job or community anymore”. As such, our findings
strengthened one expert’s belief that “OpenStack should reinforce this policy of using the
Co-Authored-By: trailer in each commit that has been co-authored”.

9 Threats to Validity

We discuss the main threats that may affect the validity of our findings, following the
structure recommended by Wohlin et al. (2012).

Threats to internal validity concern choices and factors internal to the study that could
influence the observations we made. We took a conservative approximation to quantify
collaboration practices. Any contributor that was found to collaborate, regardless of the size
of the contribution, was considered to be a micro-collaborator. We opted for this strategy
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since we believe that all collaborators should be acknowledged, even if their contributions
may be very limited in size (Forsgren et al. 2021). Our analysis strategy is supported by the
fact that OpenStack projects are known to frequently break drown complex problems into
smaller pieces to go under review (Rigby et al. 2008), thus making the size of follow-up
collaborative contributions small as well.

Furthermore, since some concepts like software quality and productivity concern com-
plex interactions of many socio-technical factors, we use multivariate techniques such as
Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural
Equation Model (SEM) to validate qualitative findings related to “(F6) Collaborative cod-
ing im- proves software quality” and “(F7) Collaborative coding improves productivity”.
For other concepts, we used univariate statistical tests and analyses, which do not consider
possible confounding factors, either because the preconditions of EFA/CFA/SEM were not
satisfied, or because no empirical data was available related to those factors.

Threats to conclusion validity concern the degree to which the conclusions we derived
from our data analysis are reasonable. The conclusions derived from our quantitative analy-
sis are supported by statistical tests with high confidence, so they are unlikely to be affected
by such threats. The conclusions derived from our qualitative analysis could have been
biased by the fact that we interviewed only 16 OpenStack contributors. We are confident
that this is not the case, since we continued soliciting more interviews until we reached a
point of saturation in the received responses (Fusch and Ness 2015a). Finally, except for
our SEM model analyses, our conclusions only revealed correlations between variables that
may play a role in micro-collaboration, and not causal relationships.

The findings derived from our multivariate analysis are supported by statistical analysis.
First, we did preliminary tests before deciding if we could do EFA. Second, EFA helped
us identify latent variables in order to reduce the risks of defining factors solely by our
intuitions. Next, we confirmed our factors with CFA, and we used multiple model fitness
indexes to validate our models before starting to interpret them.

Threats to external validity concern whether the results can be generalized outside the
scope of this study. Given that our findings are based on an exemplar case study of a single
ecosystem, namely OpenStack, our observations concern only projects within this ecosys-
tem. These findings might not generalise to projects belonging to other ecosystems. Even
if other large open source projects (e.g. Linux kernel, RedHat) adopt similar collabora-
tive practices, the findings for such projects might still differ. Indeed, different software
ecosystems have been shown to have different values, policies and practices (Bogart et al.
2021).

In a similar vein, future work should study the extent to which micro-collaboration occurs
within companies. While a substantial proportion of open-source projects was open-sourced
by or is backed by a company, this does not imply that those companies automatically
adopted the same micro-collaboration practices (even though OpenStack itself is backed and
developed by a consortium of companies). Perhaps one could study open-source projects to
which such companies have been contributing, and interview their contributors, to validate
the findings of our study in that context.

Threats to construct validity concern the relation between the theory behind the exper-
iment and the observed findings. A first such threat stems from the identification of
co-authorship attribution in commit message trailers. The trailer message was required to
include both substrings “author” and “:”. If either of the two terms did not exist, then
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co-authorship attribution was not recovered, possibly leading to an underestimation. The
strategy could also have lead to an overestimation since it may not have included non-
authorship related trailers that still contained both substrings. To mitigate the presence
of such under- or overestimations, the second author of the paper manually investigated
all distinct trailer types containing the substrings “author” and “:”. This allowed us to
identify and consider additional co-authorship trailers corresponding to either typos (e.g.,
“Co-authorioed-by”) or alternative trailers used to indicate authorship (e.g., “Co-Authored-
With”, “(Co-)Author”, “Author attribution”, “Also-Authored-By”). It also allowed us to
ignore false positives (e.g., “Authorization:”).

A second construct validity threat stems from our strategy for identifying collaboration
through Gerrit code reviews, which required that the collaborator must have uploaded the
contributed patch set, as Gerrit’s author field might still contain information of the initial
submitter if the patch set was uploaded by a follow-up contributor. This strategy may have
lead us to ignore some Gerrit collaborations. To quantify the extent of this threat, we tried
to identify collaboration with two additional strategies: (S1) by considering both the authors
of all patch sets and uploaders of follow-up patch sets; and (S2) by considering only the
authors of all patch sets. Strategy (S1) identifies only 286 additional change sets as col-
laborative, resulting in a risk of less than 1% of missed collaborations due to our original
strategy. Strategy (S2) would only identify only 2,793 change sets in total as collaborative,
since it ignores collaborators touching and uploading patches, thereby missing 96% of col-
laborative change sets. This meta-analysis increases our confidence in the adopted strategy
to identify and extract collaborations through Gerrit.

Another construct validity threat relates to the time granularity of our quantitative anal-
ysis. We opted for an annual analysis (periods July—June as described in Section 5.1).
We could alternatively have chosen finer-grained time intervals, aligned with OpenStack’s
release policy and release deadlines (twice per year according to OpenStack’s release
plan*). When repeated the temporal analyses for F1 and F4 by considering time inter-
vals based on release dates, the conclusions we could derive for both findings remained
the same.

Our quantitative analysis could have been threatened by including archived projects that
are no longer maintained. This threat was mitigated by excluding such retired projects from
our analysis. Some collaborations could have been overestimated if collaborators used mul-
tiple accounts to identify themselves on git or Gerrit. To minimize this threat, we carefully
merged such cases into a single identity by relying on a partially internal ground truth
data source of developer identities from OpenStack, containing a classified list of contrib-
utors and their associated email addresses. We also manually identified the presence of
bots and excluded their activity from our analysis in order to avoid such automated pro-
cesses being counted as attributing to inter-human collaboration. The same identity merging
was also used in our analysis of bug-inducing changes to find qualitative support for the
claim that collaboration improves software quality. To analyse this claim we relied on bug
reports to link bugs to code commits. We encountered the technical challenge that Open-
Stack started migrating® its issue tracker from LaunchPad to Storyboard since March 2015.
Since this migration process resulted in a certain amount of information loss, we mined
bug reports from both issue trackers and filtered out all duplicate cases that were found on
both platforms.

Hhttps://releases.openstack.org
46https://openstack.nimeyo.com/108658/openstack-operators-migration-to- storyboard

@ Springer


https://releases.openstack.org
https://openstack.nimeyo.com/108658/openstack-operators-migration-to-storyboard

Empir Software Eng (2022) 27: 120 Page 49 of 55 120

10 Conclusion

While pair-programming has been a staple of agile development for decades, the cor-
responding notion of co-authoring individual patches in a remote setting, i.e., micro-
collaboration, for a long time has lacked explicit coding practices. The advent of the commit
trailer mechanism as a new standard for tagging commits involving micro-collaboration
has enabled us to empirically study the prevalence, advantages and disadvantages of
micro-collaboration in the OpenStack ecosystem, using a mixed-methods approach.

Interviews with 16 OpenStack community members identified two major mechanisms
for micro-collaboration, i.e., commit trailers (the official mechanism) and Gerrit patch sets
(an implicit mechanism). Micro-collaboration was said to encourage teamwork, improve
onboarding/learning, software quality, productivity and dealing with software complexity.
While micro-collaboration was said to enable better recognition and accountability, the
interviewees did identify issues involving the tracking and awareness of joint contributions,
requiring better automation.

Our subsequent quantitative study on more than 900k git commits and more than 600k
Gerrit change sets surprisingly found that the implicit patch set-based micro-collaboration
(in Gerrit) was responsible for 80% of the micro-collaborative changes. Overall, patch set-
and commit trailer-based micro-collaboration together make up 19% of OpenStack’s yearly
change set volume (since 2017). We found how micro-collaboration correlated with longer
retention of contributors (both junior and senior), a lower likelihood of introducing bugs, a
higher review quality and a higher productivity in terms of the number of change sets, patch
sets and commits produced, and the size of contributions (small effect size). In contrast,
micro-collaboration did take more time, and did not have a significantly higher likelihood
of getting a contribution accepted.

The main take-home messages of this work are (1) the relatively common occur-
rence of micro-collaboration in remote development, and (2) the need to consider both
the explicitly visible (commit trailers in git) and implicitly hidden (patch sets in Gerrit)
micro-collaboration. Future work should delve deeper into the different kinds of patch set
micro-collaborations, as well as in a comparison between micro- and macro-collaboration
in remote development.

Appendix A: Questions for Guiding the OpenStack Interviews
on Co-Authoring

A.1 Demographics

This first set of questions allow us to determine the profile and role of each interviewee
within OpenStack.

How and why did you start to get involved in OpenStack?

What is your role in OpenStack? (And how did your role evolve over time?)

Which and how many OpenStack projects have you been involved in?

For how long have you been involved in OpenStack (and in these specific projects)?

bl e

A.2 Generic Questions

[These questions will be asked to each interviewee, regardless of his or her profile.]
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1. Which mechanisms are you aware of (or have personal experience with) for making
joint contributions to OpenStack projects with other persons?
[If the question is too unclear, provide concrete examples to the interviewee, e.g.,
internally visible branch, externally visible branch, emails, slack, same commit, IRC ...]

2. Are you aware of (or familiar with) the possibility to co-author commits in OpenStack
projects?

3. Ifyes:

—  Are co-authored commits common in the OpenStack projects you are involved in?

—  What value, if any, does commit co-authoring bring to the OpenStack projects your
are involved in?

—  What are the drawbacks, if any, commit co-authoring brings to the ecosystem?

— Did/does the practice of co-authored commits improve onboarding experience?
GotoClor D1

4. Ifno:

—  For Foundation members, continue at question C2.
—  For all other interviewees: end of interview.

A.3 Questions for OpenStack Foundation Members

[These questions will only be asked to OpenStack Foundation members. ]
1. If the interviewee is aware of the possibility to co-author commits:

(a) In general, why do co-authored commits happen in OpenStack?

(b) Does OpenStack actively encourage co-authored commits? Why (not)?

(c) Are OpenStack ecosystem members satisfied by the way in which co-authored
commits are supported process-wise or tool-wise? Do you see room for improve-
ment? How?

2. How is OpenStack (or the specific projects you are or have been involved in) dealing
with contributor onboarding, i.e., trying to attract and retain new contributors? Which
techniques and/or processes are used to support this?

3. How is OpenStack trying to reduce contributor turnover, and more specifically how is
it trying to avoid key contributors from abandoning?

4. Apart from the above issues, according to your personal experience, what are other
social, technical or organizational health problems OpenStack is confronted with,
including its community and its open source code base?

5. How are these problems being addressed? For those problems that are not addressed
yet, how should they be addressed?

A.4 Questions for OpenStack Practitioners

[These questions will only be asked to software developers involved in OpenStack projects. |

1. Have you yourself been involved in co-authoring commits? For which projects (within
and beyond OpenStack)?
2. Ifyes:

(a) How frequently have you co-authored commits?
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(b) What were the reasons for, and goals of, co-authoring the commits you were
involved in (as opposed to individually authoring them)?

(c) Are you aware of other reasons/goals of co-authored commits?

(d) How much experience did you have in OpenStack when you started co-authoring
commits?

(e) What were the characteristics of the persons you co-authored with (juniors, seniors,
experts in specific topics, ...)?

(f) What process do you use for co-authoring commits with other contributors
(communication, division of tasks, ...)?

(g) Who becomes the “principal author” (i.e., the author recorded in Git)?

(h) Do you explicitly mark your co-authored commits using “co-authored trailers” in
commit messages? Why (not)?

(i) Are you satisfied by the way in which co-authored commits are supported by
OpenStack, both process-wise or tool-wise? Do you see room for improvement?
How?

3. If not at all:

(a) Was it an explicit decision not to get involved in co-authoring?
(b) If yes, why?
(c) If not, do you see:

(1) any value that commit co-authoring could bring to you?
(i) any drawbacks that commit co-authoring could bring to you?
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