
Noname manuscript No.
(will be inserted by the editor)

When Conversations Turn Into Work: A Taxonomy
of Converted Discussions and Issues in GitHub

Dong Wang � · Masanari Kondo ·
Yasutaka Kamei · Raula Gaikovina
Kula · Naoyasu Ubayashi

Received: date / Accepted: date

Abstract Popular and large contemporary open-source projects now embrace
a diverse set of documentation for communication channels. Examples include
contribution guidelines (i.e., commit message guidelines, coding rules, sub-
mission guidelines), code of conduct (i.e., rules and behavior expectations),
governance policies, and Q&A forum. In 2020, GitHub released Discussion to
distinguish between communication and collaboration. However, it remains
unclear how developers maintain these channels, how trivial it is, and whether
deciding on conversion takes time. We conducted an empirical study on 259
NPM and 148 PyPI repositories, devising two taxonomies of reasons for con-
verting discussions into issues and vice-versa. The most frequent conversion
from a discussion to an issue is when developers request a contributor to
clarify their idea into an issue (Reporting a Clarification Request –35.1% and
34.7%, respectively), while agreeing that having non actionable topic (QA,
ideas, feature requests –55.0% and 42.0%, respectively) is the most frequent
reason of converting an issue into a discussion. Furthermore, we show that
not all reasons for conversion are trivial (e.g., not a bug), and raising a con-
version intent potentially takes time (i.e., a median of 15.2 and 35.1 hours,
respectively, taken from issues to discussions). Our work contributes to com-
plementing the GitHub guidelines and helping developers effectively utilize the
Issue and Discussion communication channels to maintain their collaboration.

Keywords Communication Channels, GitHub Discussion, Empirical Study

� Corresponding author - Dong Wang
Dong Wang, Masanari Kondo, Yasutaka Kamei, Naoyasu Ubayashi
Kyushu University, Japan
E-mail: {d.wang, kondo,kamei, ubayashi}@ait.kyushu-u.ac.jp

Raula Gaikovina Kula
Nara Institute of Science and Technology, Japan
E-mail: raula-k@is.naist.jp

ar
X

iv
:2

30
7.

07
11

7v
1

 [
cs

.S
E

]
 1

4
Ju

l 2
02

3

2 Dong Wang � et al.

1 Introduction

Contemporary open-source projects nowadays employ a plethora of commu-
nication channels to facilitate knowledge sharing and sustain the community
around them (Storey et al., 2016). Complementary studies have shown that
GitHub projects tend to adopt multiple communication channels and they are
used to both capture new knowledge and update existing knowledge (Tan-
tisuwankul et al., 2019; Vale et al., 2020). As part of a community, the man-
agement of communication and collaboration channels has led to the increase
in the sophistication of documentation standards such as contribution guide-
lines (e.g., commit message guidelines, coding rules, submission guidelines),
code of conduct (e.g., rules and behavior expectations), governance policies,
and Q&A forum.

Launched in 20201, GitHub Discussion is a community forum that serves
as an asynchronous communication channel. The intended usage is for open-
source communities, developer teams, and companies to ask questions, share
ideas, and build connections with each other, all within the same GitHub plat-
form. The first exploratory study by Hata et al. (2022) showed that Discussion
is considered useful by developers and plays a crucial role in advancing the de-
velopment of projects, uncovering several reasons for using GitHub Discussion
mentioned in initial discussions (e.g., question-answering, community engage-
ment, etc.). Formally, Discussion is designed as a tool to share questions, ideas,
conversations, requests for comment (RFC), resource planning, and commu-
nity engagement. This is different from the more traditional bug and code
review systems such as GitHub Issue, which tracks executable pieces of work
with a defined start and end point, including new features, fixing bugs, general
updates, and tracking for epics and sprints, among other things. Used together,
GitHub claims that one benefit is that a developer can reference a Discussion
in an issue as background and context for a piece of work, while converting an
issue into a discussion could be due to the lack of information and decisions
needed to complete a task. Although GitHub provides guidelines2, it remains
unclear how developers maintain this intertwine between communication and
actionable collaboration, how trivial is the conversion, and whether or not it
takes time to decide on a conversion.

In this paper, we investigate the maintenance between communication and
actionable collaboration by analyzing how developers decide between Discus-
sion and Issue in real-world projects. Hence, we conduct an empirical study to
mine the conversions between them from 259 NPM repositories and 148 PyPI
repositories. Three research questions are formulated to guide this study:

– RQ1: What is the reason of converting a discussion to an issue?
Motivation: Although the prior work (Hata et al., 2022) explored the adop-
tion of GitHub Discussion in terms of the usage and perception by devel-

1 https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-\

github-discussions-securing-code-in-private-repositories-and-more/
2 https://resources.github.com/devops/process/planning/discussions/

https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-\github-discussions-securing-code-in-private-repositories-and-more/
https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-\github-discussions-securing-code-in-private-repositories-and-more/

Title Suppressed Due to Excessive Length 3

opers, it is still unclear how contributors choose between the two commu-
nication channels. Specifically, Hata et al. studied the appearance of issue
links and demonstrated that GitHub Discussions play a role in moving de-
velopment forward by triggering new issues, but the intentions behind such
triggers are not yet revealed. Answering this RQ would help the project
to better maintain the communication channel and mentor newcomers to
find a way to make contributions.
Results: Four reasons for suggesting a transition from discussions to is-
sues are identified from a manual classification of a total of 331 samples,
including Reporting a Bug, External Repository, Reporting a Clarifica-
tion Request, and Reporting an Enhancement. Reporting a Clarification
Request is the most common reason, with 35.1% and 34.7% of instances
being classified for the NPM and the PyPI, respectively.

– RQ2: What is the reason of converting an issue to a discussion?
Motivation: As one strategy for moderating discussions, developers are al-
lowed to convert an issue to a discussion. Hata et al. (2022) shows that
around 18% of discussions are converted from issues. However, the rea-
son behind this conversion is not widely explored. Answering this RQ
would help contributors further understand the proper position of the issue
tracker system and avoid unnecessary burdens for engineering developers.
Results: Through a manual classification of a total of 433 samples, seven
reasons are identified for converting issues to discussions. Non actionable
topic is the most frequent reason, with 55.0% and 42.0% of instances being
classified for the NPM and the PyPI, separately. Furthermore, Question-
answering is the main non actionable topic.

– RQ3: How long does it take to raise a conversion intent?
Motivation: We would like to explore whether deciding on a conversion
from discussions to issues and vice versa takes time or not (i.e., discussion
length and spent time). Answering this RQ would provide a potential future
venue for the automatic classifier proposal to identify the appropriate topics
between GitHub Issue and Discussion.
Results: The quantitative analysis shows that few posts are involved until
the conversion intent is raised, i.e., mostly the median is one in both studied
conversion kinds. However, raising the conversion intent could potentially
take time. For instance, 15.2 hours and 35.1 hours (median) are taken until
the conversion intent is raised from issues to discussions for the NPM and
the PyPI, respectively.

Based on our empirical study results, we provide the following implications
for the stakeholders. For maintainers and contributors, we find that our de-
vised taxonomy complements the GitHub guidelines and further helps them
decide when to contribute to each channel and reduce unnecessary conver-
sions. Meanwhile, Discussion could be considered as a means to attract, and
onboard potential new contributors. We recommend that project maintainers
should clearly state the submission rules in their README or contribution
guidelines to avoid the inconsistent use of communication channels. We also

4 Dong Wang � et al.

Fig. 1 GitHub issue is converted into Discussion thread (pixijs #7680).

suggest contributors, especially newcomers, to start from the Discussion for
the uncertainty problem (e.g., reporting potential bugs). For researchers, we
provide the future direction of automatic classifier needs, including the de-
tection of duplication between Issue and Discussion, the identification of non
actionable topics from Issue, and bug-related topics from Discussion.

The remainder of this paper is organized as follows: Section 2 illustrates
an example to motivate this study. Section 3 describes the repository selection
and the discussion extraction. Section 4 presents the approach to the proposed
questions. Section 5 shows the research results. Section 6 discusses the insights
from our findings. Section 7 discloses the threats to validity and Section 8
presents the related work. Finally, we conclude the paper in Section 9.

2 Motivating Example

As pointed out by the survey feedback in the work of Hata et al. (2022), de-
velopers face the problem of topic duplication between Discussions and Issues.

Title Suppressed Due to Excessive Length 5

GitHub
Repository
Selection

Discussion
Extraction

Discussion
Metadata

Discussions
Converted from

Issues
Dataset I Dataset II

Web Scape

Fig. 2 The overview of dataset preparation.

Inspired by their work, we searched for some anecdotal evidence to understand
the conversion process from Discussion to Issue and vice-versa.

Figure 1 shows an example from pixijs #7680 where a GitHub issue was
converted into the Discussion channel. As shown in the figure, the issue was
initially entitled as process interactive bug on hover. To further confirm the
bug or not, the author additionally provided the error message screenshot and
the environment. Then, a conversation consisting of 22 posts was taken be-
tween four developers. During the half-conversation, three developers tried to
investigate the causes and claimed that they found a way to resolve the raised
issues. At the same time, they raised another potential problem around the
pre-issue “the issue seems to be bound to our codebase, not reproducible on a
clean project” and they further discussed this regarding the conflict of package
versions. At the end of this conversation, the maintainer suggested that this
issue had turned more into support and raised an intention of converting it to
a discussion thread. In total, around two days were taken for this conversion
process between the issue creation time (5 Aug 2021) and the conversion time
(7 Aug 2021). Although the work of Hata et al. (2022) highlighted the chal-
lenge of choosing appropriate channels from the survey view, it is still unclear
and lacks in-depth empirical analysis to reveal how the developers are using
this new feature in real life. Inspired by this example, we hypothesize that (i)
the conversion process between Issue and Discussion may not be trivial, and
(ii) the conversion process may take a long period in terms of discussion length
and time.

3 Studied Datasets

In this section, we describe the process of preparing studied datasets, including
repository selection and discussion extraction.

6 Dong Wang � et al.

Repository Selection. To answer our proposed RQs, we perform an empir-
ical study on the NPM package and PyPI ecosystems. We selected the NPM
and PyPI package ecosystems as (I) they are two of the largest package collec-
tions that are hosted on the GitHub platform and have been widely studied
in the recent studies (Abdalkareem et al., 2017; Cogo et al., 2019; Chinthanet
et al., 2021), (II) inspired by the work of Hata et al. (2022), 38% of web libraries
and frameworks (i.e., the highest proportion) have adopted the discussion beta
feature. Similar to the previous work (Chinthanet et al., 2021), we refer to the
listing of NPM packages from the NPM registry and then matched them to
the projects that are available in GitHub. For the PyPI ecosystem, we rely on
the open-source discovery service Libraries.io3 and the PyPI registry listing.
We assume that the more active and well-maintained package repositories are
more likely to adopt the discussion feature. Thus, we filtered and collected the
repositories based on their contributor number (i.e., the number of contribu-
tors is larger than 100), resulting in 1,255 and 510 distinct repositories from the
NPM and the PyPI, respectively. Then, we use GraphQL API4 to determine
whether or not these repositories have already adopted the Discussion feature.
In the end, 263 NPM package repositories and 148 PyPI package repositories
have introduced the GitHub Discussion, by the end of March 2022.

Discussion Extraction. For the remaining 411 repositories, we then used
GraphQL API to retrieve all discussions, including metadata such as discus-
sion title, body, author, created time, and whether the discussion has selected
answer or not. For each post inside the discussion, we collected its body text,
author, timestamp, and whether the post is an answer or not. Moreover, for
each post, we as well collected its nested replies, including reply body, reply
time, and reply author. After this, we were able to obtain 33,716 discussions
from 259 NPM repositories (the rest of the four repositories have the Discus-
sion feature but no discussions) with 68,695 individual posts and 69,593 replies
in these posts, by April 2022. For the PyPI ecosystem, 12,662 discussions were
retrieved from 148 repositories with 28,753 individual posts and their 29,001
replies. We regard this dataset as Dataset I, as shown in Figure 2. Since we
would like to understand the characteristics and reasons of those discussion
threads that are converted from the issues, we rely on the custom web scraper5

provided by Hata et al. (2022) to determine whether the discussion thread was
converted from an existing Issue. Specifically, we provide the standard input
as required (repository names and their owners) and the scraper (i.e., HTML
parser) would automatically output the related attributes of discussion threads
including the information of whether the thread was converted in the form of
binary values. Table 1 shows the statistic summary of our studied datasets.
As shown in the table, 5,689 discussion threads (16.8%) and 3,337 discussion
threads (26.4%) are converted from the existing issues for the NPM and the
PyPI, separately, denoted as Dataset II.

3 https://libraries.io/
4 https://graphql.org/
5 https://github.com/sbaltes/github-retriever/

Title Suppressed Due to Excessive Length 7

Table 1 Summary of Studied Datasets.

NPM PyPI

Studied period ∼ 2022.04
Package repositories 259 148
Discussion threads 33,716 12,622
Avg. Discussion threads per repositories 130 85
Discussion posts 68,695 28,753
Discussion threads converted from Issues 5,689 (16.8%) 3,337 (26.4%)
Avg. Discussion threads converted from Issues 22 23

4 Approach

In this section, we will describe the approach of our proposed RQs.

4.1 RQ1 Analysis

To answer RQ1: What is the reason of converting a discussion to an issue?, we
analyze a discussion that is suggested to be converted into an issue by look-
ing at what is the conversion reason, using content analysis (one of the most
broadly used qualitative data analysis methods) (Stemler, 2000).

Identifying discussions that are converted to issues. Since there are
no available datasets and tools or classifiers that were provided in the litera-
ture to be used, we first have to identify discussions that are suggested to be
converted to issues. To do so, we applied a semi-automatic method to identify
such discussions from 46,388 discussion threads (33,716 and 12,622 discussion
threads for the NPM and PyPI, respectively) and their posts (Dataset I),
using a list of keywords. To ensure the keyword is sufficient, we first man-
ually inspected a group of 100 discussions that contain issue related links
and picked up the potential indicator words. Based on the observations and
our knowledge, we refined the keyword and came up with the following key-
word list: <open, move, convert, create, please, transfer, submit,

file, bug, issue>, by taking case sensitive into account. Then we used
this keyword list to match the discussion posts, resulting in 15,126 discussion
threads (7,751 and 7,375 discussion threads for the NPM and PyPI, respec-
tively) that at least contained one keyword in their posts. Next, the first author
manually validated these posts to identify the true positives where the discus-
sion thread is suggested to be converted to an issue. Finally, 595 discussion
threads (374 and 221 discussion threads for the NPM and the PyPI, respec-
tively) were collected as shown in Table 2.

Representative dataset construction. Similar to the prior work (Wang
et al., 2021c; Chouchen et al., 2021), we then drew a statistically representative
sample and the required sample size was calculated so that our conclusions

8 Dong Wang � et al.

Table 2 Summary of Representative Dataset. # of validated Dis. refers to the number
of the discussions that are retrieved from the keyword list. # of satisfied Dis. denotes the
number of discussions that satisfy the criteria after the manual validation.

Dis. from issues (RQ1) Dis. into issues (RQ2)

NPM PyPI NPM PyPI

validated Discussions 7,751 7,375 1,156 523
satisfied Discussions 374 221 562 438
representative samples 190 141 228 205

Total 331 433

about the reasons of converted discussion threads would be generalized to all
discussion threads in the same bucket with a confidence level of 95% and a
confidence interval of 5. 6 Thus, we randomly selected 190 and 141 discussion
threads from the NPM and the PyPI that are suggested to be converted into
issues to conduct the subsequent analysis, as shown in Table 2.

Manually Coding Reasons. We performed a manual analysis to investi-
gate the reasons behind those discussions that are suggested to be filed as
issues. The manual analysis was conducted in multiple rounds, similar to the
prior work (Hata et al., 2019). In the first round, the first two authors opened
a round-table discussion on classifying twenty randomly selected discussion
threads from the sample, and constructed an initial coding guide. Note that
to classify the reasons, we not only relied on the specific discussion comments,
but also referred to the context of the whole discussion threads and some-
times tracked back to the opened issues, in order to obtain a comprehensive
understanding. To validate the coding guide and ensure that if there exist any
missing codes, in the second round, the first two authors independently coded
another twenty discussion threads. After this round, we found that the con-
structed coding guide can fit the sample and no new codes occurred. Similar
to prior work (Wang et al., 2021c; Chouchen et al., 2021), we then calculated
the Kappa agreement of this iteration between two authors across four codes
for these twenty discussions. The score of the Free-marginal Kappa agreement
is 0.80, implied as nearly perfect (McHugh, 2012). Based on the encouraging
results, the first author then coded the rest of the samples.

4.2 RQ2 Analysis

To answer RQ2: What is the reason of converting an issue to a discussion?, we
analyze a discussion that is converted from an issue in terms of the reasons
behind such conversion, through content analysis same to RQ1.

6 https://www.surveysystem.com/sscalc.htm

Title Suppressed Due to Excessive Length 9

Representative dataset construction. To understand what is the reason of
this kind of discussion conversion, similar to RQ1, we perform a manual analy-
sis on a statistically representative sample of our discussion dataset (Dataset
II) where the discussion threads are automatically identified as converted from
issues or not by the crawler tool. Through an exploration of ten randomly se-
lected samples, we observed that around 70% of these discussions do not imply
explicit reasons from their post context. However, our study interest is to find
the reasons and we would like to avoid the potential subjective threat. Thus,
we then applied a filter to retrieve those discussion threads that could proba-
bly provide the reasons. To do so, we used the keyword discussion to narrow
the data scope since we assume that the keyword discussion could indicate
the discussion feature, resulting in 1,156 and 523 discussion threads for the
NPM and the PyPI, separately. Then, the first author manually inspected
these discussion threads to validate whether or not their comments imply the
conversion between discussions and issues. We noticed that existing old issues
can also be converted into discussion threads. We argue that these existing old
issues are out of our scope, as we are interested in the instances where issues
are converted due to the adoption of the Discussion feature. Therefore, we
further excluded the converted issues that were submitted before the GitHub
Discussion feature was firstly introduced (i.e., May 2020). In the end, 562 and
438 discussion threads from the NPM and the PyPI satisfied the criteria.

To be consistent with the manual analysis in RQ1, we drew a statistically
representative sample. To reach the confidence level of 95% and a confidence
interval of 5, we then randomly sampled 433 discussion threads (228 and 205
threads for the NPM and the PyPI, respectively) from the bucket. Table 2
shows the summary of the studied dataset in RQ2.

Manually Coding Reasons. We classify the reasons of converting issues to
discussions, using statistically representative samples (433 discussion threads).
Our initial codes were informed by taxonomy to understand the reasons for
using GitHub Discussions mentioned in initial discussions, such as question-
answering, idea sharing, information resource building, and so on (Hata et al.,
2022). We refer to their taxonomy since it is closely relevant to our study
scope, and the taxonomy is validated by the systematic process.

To test whether or not the existing taxonomy can fit our cases, in the
first iteration, we randomly selected twenty samples and classified them into
the available codes between the first two authors. After the classification, an
open discussion was conducted between the two authors and we observed that
the existing taxonomy cannot fit well. We then refined the coding schema
by modifying certain codes and adding new codes. To validate our refined
coding schema, another twenty samples were selected and the first two authors
independently classified the samples. After the second iteration, we found that
there existed new codes that were not covered in our coding schema. Then, an
open discussion was held to discuss these new codes and further polish up our
coding schema by emerging new codes. To assure that there was no new code
and further evaluated the coding schema, in the third iteration, we selected

10 Dong Wang � et al.

another twenty samples, and the first two authors independently coded them
again. After the third iteration, no new codes occurred and we found that
the coding schema can fit well the samples. In total, 60 samples were used to
establish our coding schema of reasons of converting issues to discussions. Note
that our annotation is based on the whole issue conversation and the guidelines
do not allow for multiple categories. We then evaluated the inter-rater level
of agreement between two raters across nine reasons, relying on the Kappa
agreement. The Kappa agreement score is 0.72 (i.e., substantial agreement).
Encouraged by this result, the first author then manually coded the rest of the
374 samples. We classify those instances that do not fit the above codes into
Others. Then the above codes were merged into cohesive groups that can be
represented by a similar subcategory (i.e., Question-answering, Idea sharing,
and Feature request are merged into Non Actionable Topic), by conducting an
open discussion among the four authors of this paper.

4.3 RQ3 Analysis

To answer RQ3: How long does it take to raise a conversion intent?, we per-
form a quantitative analysis on the manually labeled representative samples
that are constructed from RQ1 and RQ2.

We define two metrics to conduct our statistical analysis, to understand
the process of raising a conversion intent from discussion to issues and vice
versa, as shown below:

– Raising time (# hours): The duration that is from the time when the
discussion or issue is submitted to the time when the post firstly suggests
that the discussion or issue should be converted.

– Number of posts until the raising time: The number of posts that are sub-
mitted until the first conversion intent is raised. Note that it includes the
post in which the conversion suggestion is provided. For instance, in the
motivating example presented in Section 2, the twenty-second post sug-
gests that the issue topic should be converted to a discussion. Thus, in this
case, we count Number of posts until the raising time as 22.

To assure that the post firstly raises the conversion intent, the first author
manually validated 1,243 posts (740 and 503 posts for the NPM and the PyPI,
respectively) and 1,938 posts (892 and 1046 posts for the NPM and the PyPI,
respectively) from the studied discussions that are suggested to convert into
issues (i.e., 331 samples in RQ1) or the discussions that are converted from
issues (i.e., 433 samples in RQ2). We then measure these two metrics for those
labeled discussion threads that are either converted from issues or converted
to issues.

Meanwhile, to further understand the effect of different reasons, we pro-
pose a null hypothesis that ‘Raising time and the number of posts until the
conversion intent are significantly different among reasons of the conversion’.
To statistically confirm the significant differences, we use the Kruskal-Wallis H

Title Suppressed Due to Excessive Length 11

test (Kruskal and Wallis, 1952). This is a non-parametric statistical test to be
used when comparing two or more than two categories. In our study, there are
four and seven main categories for RQ1 and RQ2, separately. The advantage
of applying non-parametric statistical methods is that they make no assump-
tions about the distribution of the data (Hecke, 2012). In addition, we invoke
a Mann-Whitney test (Mann and Whitney, 1947) to examine any significant
difference in each pair category between NPM and PyPI ecosystems.

5 Results

In this section, we present the results of the empirical study.

5.1 Conversion from Discussions to Issues (RQ1)

To answer RQ1, we analyze (I) the reasons of converting discussions to issues,
and (II) the frequency of these reasons across our studied samples. Below, we
first provide representative examples for each reason type, and then we discuss
the result of the frequency of reasons (Table 3 and Table 4).

Taxonomy of Reasons. Four reasons of converting discussions to issues
are classified through our qualitative analysis, which is described in Section 4.1:

(I) Reporting a Bug. This category refers to the reason where the discus-
sion post indicates that the discussion topic describes a bug. In this category,
the keyword “bug” is usually left on the post, suggesting that the submitted
post is explicitly related to the bug. For instance, in the Ex 17, one collabora-
tor pointed out that the discussion topic (entitled as “prisma generates creates
a package-lock.json”) was indeed a bug and encouraged the author to open an
issue in the repository, along with a directory structure sharing.

Ex 1
Collaborator: This doesn’t sound right and it’s definitely a bug.
Could you please open an issue and share your directory structure
in the monorepo and which directory you are running prisma gener-
ate from? Ideally, even a Git repository with minimal example that
mimics your monorepo layout and triggers this bug. Thanks!

(II) External Repository. This category emerges by grouping discussion
threads in which the post indicates that the discussion topic should not be in
the current repository, instead should be opened as an issue in another reposi-
tory. We observe that in this category, the appropriate repository that should
be referred is always specifically provided by the collaborator. As shown in the
Ex 28, a collaborator from the docusaurus repository posted a comment to
make the author aware that the openapi plugin faces the incompatible issues

7 https://github.com/prisma/prisma/discussions/10488
8 https://github.com/facebook/docusaurus/discussions/6099

12 Dong Wang � et al.

with the latest chance, and suggested the author to open an issue in plugin
related repository.

Ex 2
Collaborator: Hi, it seems the openapi plugin is using the do-
cusaurus internals which is not compatible with the latest change.
Please open an issue in their repo telling them that the constants
have been moved to @docusaurusutils.

(III) Reporting an Enhancement. This category denotes the reason where
the post indicates that the idea or feature request or any warning that should
be highlighted in the issue to be aware. For example, in the Ex 39, an au-
thor submited a discussion to ask questions regarding prefer-destructuring
undestructurable. One collaborator suggested the author to use slint-disabl,
and also encouraged the author to file an issue to enhance this (i.e., ignore
these cases by default).

Ex 3
Collaborator: you can just use eslint-disable. :) it sounds a reason-
able enhancement to ignore these cases by default (or behind an
option). can you file an issue, thanks!

(IV) Reporting a Clarification Request. We define this category as the post
indicates that the topic stated in the discussion thread is not clear or lacks of
details, and an issue is suggested in order to better understand the problem
(e.g., add reproduce examples) or better track the progress how the problem
evolves. We show the following two representative examples to describe this
reason. In the Ex 410, the collaborator was unsure about the proposed error
message. To further clarify this, the collaborator suggested the author to create
an issue with a small reproduction. In another example Ex 511, to investigate
the problem reason, resulting from the mixed versions or not, the collaborator
encouraged the author to open an issue.

Ex 4
Collaborator: i’m unsure if we can get a better error message but
could you maybe create an issue with a small reproduction?

Ex 5
Collaborator: please open an issue and follow the issue template.
it looks like you might have mixed versions of mongoose and mon-
godb.

Frequency of Reasons. We now examine what is the common reason
of converting discussions to issues. Table 4 presents the distribution of the
reason category in our studied NPM and PyPI repositories. We observe that

9 https://github.com/eslint/eslint/discussions/14669
10 https://github.com/gatsbyjs/gatsby/discussions/32147
11 https://github.com/Automattic/mongoose/discussions/10516

Title Suppressed Due to Excessive Length 13

Table 3 Descriptions of reasons for converting discussions to issues.

Category Description

(I) Reporting a Bug The comment indicates that the discussion
topic describes a bug.

(II) External Repository The comment indicates that the discussion
topic should not be reported in the current
repository, instead should be reported in an-
other repository (e.g., dependent repository).

(III) Reporting an Enhancement The comment indicates that an idea or a fea-
ture request or any warning is needed to be
highlighted in the issue.

(IV) Reporting a Clarification Request The comment indicates that to trigger more
details and further confirm the problems (e.g.,
potential bugs), an issue is needed to follow up
the discussion.

Table 4 Frequency of reasons for converting discussions to issues.

NPM PyPI

(I) Reporting a Bug 44 (23.4%) 32 (22.7%)

(II) External Repository 44 (23.4%) 22 (15.6%)

(III) Reporting an Enhancement 34 (18.1%) 38 (26.9%)

(IV) Reporting a Clarification Request 66 (35.1%) 49 (34.7%)

Reporting a Clarification Request is the most common reason for both package
ecosystems, with 66 (35.1%) and 49 (34.7%) discussion threads being classi-
fied, separately. Such a result indicates that the discussions that should be
converted to issues are more likely to result from uncertain discussion top-
ics (e.g., potential bugs), which request further clarification from the issue
tracker support. The following two reasons are the second most popular for
the NPM repositories, i.e., Reporting a Bug and External Repository. 44 dis-
cussion threads were manually classified for both cases, accounting for 23.4%
of instances. While, for the PyPI repositories, the following frequent reason is
Reporting an Enhancement, with 26.9% of instances being classified.

RQ1 Summary

Four reasons are classified behind converting discussions to issues, in-
cluding Reporting a Bug, External Repository, Reporting a Clarifica-
tion Request, and Reporting an Enhancement. Reporting a Clarifica-
tion Request is the most common reason for the two studied ecosystems
(NPM and PyPI), accounting for 35.1% and 34.7% of instances, respec-
tively.

14 Dong Wang � et al.

5.2 Conversion from Issues to Discussions (RQ2)

To answer RQ2, we analyze (I) the reasons of converting issues to discussions,
and (II) the popularity of the classified reasons. We now illustrate the reasons
using representative instances and discuss the frequency results (Table 5 and
Table 6).

Taxonomy of Reasons. Nine reasons of converting issues to discussions
are classified through our qualitative analysis, which is described in Section 4.2:

(I) Non Actionable Topic. This category relates to the reason where the
topic proposed in the issue is not actionable and does not fit the issue scope.
The category includes three sub-codes: Question-answering, Feature requests,
and Idea sharing. For example, in the Ex 112, the author submitted an issue to
ask for “DataStore: How to handle a partial sync up to AppSync?”. While the
maintainer left the comment and considered this topic was more of a general
question that should be in the discussion area. Thus, we classify its reason
into Question-answering. In another example Ex 213, the author proposed an
issue to report a problem regarding query result sharing (i.e., Unable to select
Query X in pane), attached with the screenshots showing unexpected results.
However, a collaborator pointed out that this issue should be converted into
the discussion as a feature request.

Ex 1
Maintainer: Hey Thanks for raising this! After reading over this
issue, it appears to be more of a general question or topic for
discussion and will be labeled as such. This is to differentiate it from
the other types of issues and make sure it receives the attention it
deserves.
...

Ex 2
Collaborator: Hello @<username>, thanks for reporting this. The
feature is working as intended as it allows to share all the results in
a panel, also as described in the docs. I do agree however that it may
be an interesting feature. I’m converting this to a discussion where
we track feature requests.

(II) Invalid Issues. This category is merged by two cohesive codes (i.e.,
Lack of description information, Not follow the template), referring to the
reason where the reported issue lacks of sufficient information for other devel-
opers to investigate. The example Ex 314 illustrates a scenario regarding Lack
of description information. As we can see, the maintainer can not understand
the issue fully with only provided code and suggested the author to create a
minimal live example. Furthermore, this issue was then moved to discussion
due to its invalidity.

12 https://github.com/aws-amplify/amplify-js/discussions/8106
13 https://github.com/grafana/grafana/discussions/46356
14 https://github.com/logaretm/vee-validate/discussions/3723

Title Suppressed Due to Excessive Length 15

Ex 3
Maintainer: Please create a minimal live example on codesand-
box, I can’t guess the issue from this code alone. Also moved this to
discussions since this doesn’t satisfy an “issue” report.

(III) Not a Bug. This denotes the reason where the author proposes a bug
report, while the developer does not agree that it should be a bug. For instance,
in the example Ex 415, the author followed the issue template including un-
expected behavior and reproduction steps to report a potential bug related to
password reset. However, the maintainer did not agree with this and argued
that this was not a bug, instead due to design and changed it to a discussion.

Ex 4
Maintainer: Changing this to a discussion as this is not a bug and
is by design.
Recover password is used in scenarios when a user has forgotten the
password, as such should not invalidate other sessions. In fact that
is pretty common practice. If a user suspect the account has been
compromised they will update the credentials through the account
console, which gives the option to logout existing sessions.

(IV) Further Discussion. This category refers to the reason where the issue
requires further confirmation or additional feedback from GitHub Discussion.
As shown in the Ex 516, to further validate the problem cause of “Serial-
Port.write(): callback never called”, the maintainer moved the issue to the
discussion system.

Ex 5
Maintainer: I’m going to convert this to our new discussion system
until we confirm some sort of bug

(V) Already Fixed. This category denotes the reason where the comment
indicates that the issue has already been raised in either the issue lists or the
discussion thread. As shown in the Ex 617, the maintainer suggested that the
pitfalls related to build has been addressed by adding a doc page and then
converted the existing issue into a discussion thread.

Ex 6
Maintainer: Since we added a doc page about these pitfalls and
there’s nothing to “fix” here I’ll move this to discussion :)

(VI) External Repository. This reason refers to the case where the com-
ments indicate that the issue is not raised in the appropriate place. For in-
stance, in the Ex 718, the author proposed an issue concerning task tracker
app in the create-react-app repository. However, the collaborator considered
that the issue was from CRA tool and further this issue was converted.

15 https://github.com/keycloak/keycloak/discussions/8988
16 https://github.com/serialport/node-serialport/discussions/2287
17 https://github.com/gatsbyjs/gatsby/discussions/31283
18 https://github.com/facebook/create-react-app/discussions/11405

16 Dong Wang � et al.

Table 5 Descriptions of reasons for converting issues to discussions.

Category Description

(I) Non Actionable Topic
The comment indicates that the topic
proposed in the issue is not actionable
and does not fit the issue scope.

Question-answering
Idea sharing
Feature request

(II) Invalid Issues The comment indicates that the reported
issue lacks of sufficient information for the
developers to investigate.

Lack of description
Not follow the template

(III) Not a Bug The comment indicates that the bug proposed by
the author does not get recognized by developers.

(IV) Further Discussion The comment indicates that the issue requires
further confirmation or additional feedback from
GitHub discussion.

(V) Already Fixed The comment indicates that the issue has already
been raised in either the issue lists or the discussion
thread.

(VI) External Repository The comment indicates that the discussion topic
should not be reported in the current repository,
but instead should be reported in another reposi-
tory (e.g., dependent repository)

(VII) Information Storage The comment indicates that the issue contents
should be kept as a reference for the community.

Table 6 Frequency of reasons for converting issues to discussions.

NPM PyPI

(I) Non Actionable Topic 121 (55.0%) 86 (42.0%)
Question-answering 76 (34.5%) 51 (24.8%)
Idea sharing 24 (10.9%) 20 (9.8%)
Feature request 21 (9.5%) 15 (7.3%)

(II) Invalid Issues 19 (8.6%) 34 (16.6%)
Lack of description 17 (7.7%) 32 (15.5%)
Not follow the template 2 (0.9%) 2 (1.0%)

(III) Not a Bug 45 (20.5%) 38 (18.4%)

(IV) Further Discussion 10 (4.5%) 17 (8.3%)

(V) Already Fixed 7 (3.1%) 6 (2.9%)

(VI) External Repository 13 (5.9%) 7 (3.4%)

(VII) Information Storage 5 (2.2) 17 (8.3%)

Ex 7
Collaborator: Hi @<username>, I converted this issue into an dis-
cussion as the issues are more for CRA tooling internal issues.

(VII) Information Storage. It means that the issue is converted since the
comment indicates that the existing issue should be kept as a reference for the

Title Suppressed Due to Excessive Length 17

community. For example, in the Ex 819, the author raised a problem regarding
react-native formatting and seeked for the solution. One collaborator provided
a couple of solutions and later moved this issue into a discussion for other
developers to find it easily.

Ex 8
Collaborator: Going to move this to a discussion so it’s easier for
people to find.

Frequency of Reasons. Table 6 shows the reason frequency of converting
issues to discussions. As shown in the table, we observe that Non actionable
topic is the most common reason category within two studied package ecosys-
tems, with 121 instances (55.0%) and 86 instances (42.0%) being classified
for the NPM and the PyPI, separately. Upon closer look, Question-answering
is the main non actionable topic, accounting for 34.5% and 24.8% of the oc-
currences of the Not actionable topic category for the NPM and the PyPI,
respectively. The second most frequently occurring reason category is Not a
bug (20.5% and 18.4% for the NPM and PyPI, respectively), where the identi-
fied bug by the author is not recognized by other developers. Least frequently
occurring pattern includes the Already fixed reason, with 3.1% and 2.9% of
instances being classified for two ecosystems.

RQ2 Summary

Seven reasons are identified for converting issues to discussions. Non
actionable topic is the most frequent reason, with 55.0% and 42.0%
of instances being classified for the NPM and the PyPI, separately.
Furthermore, Question-answering is the main non actionable topic.

5.3 Analysis of the Conversion Process (RQ3)

To answer RQ3, we analyze the process of the conversion from discussion to
issues and vice versa, in terms of the following two aspects: (I) the raising
time of conversion intent and (II) the number of post until the raising time.
We below present the two metric related results (Figure 3 and Figure 4) with
regard to two conversion kinds.

(I) Conversion from discussion to issue. Figure 3 presents the results
of the computed metrics for the discussions that are suggested to be con-
verted into issues. As shown in Figure 3 (a), on the one hand, we find that two
ecosystems share a similar raising time in terms of categories Reporting an En-
hancement and Reporting a Bug. For example, we observe that Reporting an
Enhancement category takes a relatively long time (i.e., the medians of raising
time are 74 hours and 67.8 hours for the NPM and the PyPI, respectively)
when the conversion intent is raised when compared to the other three reason

19 https://github.com/date-fns/date-fns/discussions/2841

18 Dong Wang � et al.

0 200 400 600 800 1000
Time (Hours)

(I) Reporting a Bug

(II) External Repository

(III) Reporting an Enhancement

(IV) Reporting a Clarification Request NPM
PyPI

(a) Raising time of the conversion intent.

1 2 3 4 5 6 7 8
Number of Posts

(I) Reporting a Bug

(II) External Repository

(III) Reporting an Enhancement

(IV) Reporting a Clarification Request NPM
PyPI

(b) Number of posts until the raising time.

Fig. 3 Discussions that are converted into issues: (I) raising time and (II) number of posts
until the raising time.

categories. Such a result indicates that it may take time for developers to dis-
cuss and reach a consensus to propose an enhancement in the issue tracker.
On the other hand, significantly large differences across two ecosystems are
observed in terms of categories External Repository and Reporting a Clarifi-
cation Request, validated by the Mann-Whitney test with p-value < 0.05. For
instance, External Repository category takes the least time to be identified for
the NPM, i.e., the median of raising time is 3.9 hours. While, for the PyPI, it
takes almost a median of 69.5 hours to be notified of the external repository.
One possible reason is that the NPM packages are less likely to be isolated
when compared to the PyPI ones (Decan et al., 2016). For the metric related
to the number of posts, as shown in Figure 4 (b), the median posts of Reporting
an Enhancement category for both ecosystems are two which are larger than
another three reason categories, suggesting that more discussions are likely to
be involved in this instance. However, the Mann-Whitney test suggests that
there is no significant difference for all the paired categories between the NPM
and the PyPI.

Title Suppressed Due to Excessive Length 19

0 500 1000 1500 2000
Time (Hours)

(I) Non Actionable Topic

(II) Invalid Issues

(III) Not a Bug

(IV) Further Discussion PyPI
NPM

(a) Raising time of the conversion intent.

2 4 6 8 10
Number of Posts

(I) Non Actionable Topic

(II) Invalid Issues

(III) Not a Bug

(IV) Further Discussion PyPI
NPM

(b) Number of posts until the raising time.

Fig. 4 Discussions that are converted from issues: (I) raising time and (II) number of posts
until the raising time.

For the statistical test, Kruskal-Wallis H tests confirm that the hypothesis
‘Raising time and the number of posts until the conversion intent are signif-
icantly different among reasons of the conversion’ is established in terms of
the conversion from discussions to issues, with p-value < 0.001 for the Raising
time and p-value < 0.05 for the Number of posts for the NPM repositories.
However, the hypothesis is not supported for both raising time and the number
of posts within the PyPI repositories.

(II) Conversion from issue to discussion. Figure 4 shows the results
of the computed metrics for the discussions that are suggested to be converted
from issues. Note that we only analyze the relatively frequent reasons for the
two studied ecosystems (i.e., those instances whose frequencies are greater than
10 in Table 5). As shown in Figure 4 (a), we observe that it takes relatively
a long time to receive the convention intent, i.e., the median is around 15.2
hours and 35.1 hours for all reason codes within the NPM and the PyPI, sepa-

20 Dong Wang � et al.

rately. More specifically, 17.5 hours and 24.5 hours (median) are taken for Non
Actionable Topic for the NPM and the PyPI, respectively. At the same time,
we observe that there exists a significant difference via the Mann-Whitney
test in terms of the category Invalid Issues between the two ecosystems. It
takes a much longer time for developers to raise this intent in the PyPI, i.e.,
a median of 79 hours. On the other hand, as shown in Figure 4 (b), few posts
are involved until the conversion intent of Non Actionable Topic is raised, with
the median being one for both ecosystems. This result suggests that this con-
version intent is likely to be raised in the first post of an issue. Unsurprisingly,
Further Discussion category involves the most posts (i.e., the median is four
for two ecosystems). Furthermore, the Mann-Whitney test confirms that there
is a significant difference in categories Non Actionable Topic and Invalid Issues
between the NPM and the PyPI. This suggests that relatively more posts are
submitted to decide these two conversions with the PyPI.

For the statistical test, Kruskal-Wallis H tests confirm that the hypoth-
esis ‘Raising time and the number of posts until the conversion intent are
significantly different among reasons of the conversion’ is established for the
NPM repositories in terms of the conversion from issues to discussions, with
p-value < 0.05 for both the Raising time and the Number of posts. For the
PyPI repositories, a significant difference is observed for the Number of posts
but is not observed for the Raising time.

RQ3 Summary

Our results show that there are few posts involved until the conversion
intent is raised, i.e., mostly the median is one in both studied con-
version kinds. However, we observe that deciding on a conversion may
potentially take time. For instance, the median time of the conversion
from issues to discussions is 15.2 hours and 35.1 hours for the NPM
and the PyPI ecosystem, respectively.

6 Implications

Based on the results of our RQs, we now discuss the implications of the study
and provide suggestions accordingly.

Reduce unnecessary conversion in the first place. Findings from the
study illustrate a variety of reasons behind conversions, i.e., four reasons of
converting discussion to issues (RQ1) and seven reasons of converting issues
to discussions (RQ2). GitHub guidelines pointed out the hint that the topics
like questions and ideas should be raised in the GitHub Discussion. While,
we also find that other reasons exist, for instance, invalid issues and not a
bug. These findings could complement the GitHub Discussion guidelines to
guide those repositories that intend to adopt the GitHub Discussion feature.
To maintain these channels, our constructed taxonomy can help maintainers
and contributors decide when to contribute to each channel.

Title Suppressed Due to Excessive Length 21

We further performed an additional analysis to investigate whether or not
the inconsistent use of these two channels exists. In the context of feature re-
quests (between Reporting an Enhancement and Non Actionable Topic), first,
we observe that inconsistency does exist in the specific repositories. For ex-
ample, within a repository namely next.js, on the one hand, a discussion20

that requested adding custom attributes was suggested to be opened as an
issue. On the other hand, an issue that requested a configuration setting was
converted into a discussion and the author expressed confusion “Hey team,
why did a feature request become a discussion?...”. Similarly, another author
from the discussion21 doubted “Is it normal that feature requests are moved
to a discussion?”. Second, we notice that different repositories tend to have
their own rules. For example, a collaborator from the superset repository left a
comment22 “Moving this feature request to Github Discussions so we can keep
Issues focused on bugs!”, while another repository ant-design allows feature
requests to be proposed as one maintainer suggested in a discussion23 “Since
this not a bug or feature request. Move to discussion instead.”. Such incon-
sistent use is also observed in the cases where issues should be created until
enough information is provided or not (between Reporting a Clarification Re-
quest and Invalid Issues). Given the ecosystem PyPI, we observe that 28 out
of 32 instances classified into Invalid Issues are from the airflow project. This
may indicate that this project could use discussions as a gatekeeping mecha-
nism. At the same time, we also notice that inconsistent use of two different
channels did exist in the airflow project. For example, in this instance24, the
contributor suggested the author to open an issue from the discussion thread
with some replication information (i.g., DAG). Based on these insights, to
relieve the confusion for contributors and improve the user experience, we
suggest that project maintainers should clearly state the submission rules in
their project README or contribution guidelines.

A side-effect of keeping separate channels is duplication. Our empirical
observations are align with the survey insights where the developers face the
challenge of the duplication (Hata et al., 2022). We find that duplication indeed
exists either between GitHub Discussions, or between GitHub Discussions and
Issues. In terms of duplication between GitHub Discussions and Issues, for
example, in this discussion 25, the maintainer left the post and pointed out that
“Already tracking here #4283 - please check issues first”. Duplicate software
artifacts have been proven to cause additionally unnecessary efforts and reduce
efficiency. Many techniques are proposed to detect duplicate artifacts using
information retrieval, such as issue report (Nguyen et al., 2012; Hindle et al.,
2016), pull request (Li et al., 2017; Wang et al., 2019) on GitHub. We notice
that the latest work has started to explore the related posts (duplicate or

20 https://github.com/vercel/next.js/discussions/12325
21 https://github.com/vercel/next.js/discussions/27756
22 https://github.com/apache/superset/discussions/19185
23 https://github.com/ant-design/ant-design/discussions/29818
24 https://github.com/apache/airflow/discussions/14315
25 https://github.com/invertase/react-native-firebase/discussions/4290

22 Dong Wang � et al.

near duplicate) in GitHub Discussions and proposes an approach based on a
SentenceBERT pre-trained model (Lima et al., 2022). Hence, another challenge
would be the detection and removal of such duplication between these different
channels.

Furthermore, the study shows evidence that GitHub Discussion not only
facilitates communication but also can lead to actionable contributions to the
project. For instance, our manual classification in RQ1 shows that these con-
tributions are also significant, i.e., 76.6% of samples being classified for Report-
ing a Clarification Request, Reporting a Bug, and Reporting an Enhancement
reason categories for the NPM ecosystem (Table 3). We point out that main-
tainers may consider Discussion as a means to attract and onboard potential
new contributors, as Discussion can be acted as an incubation for those un-
certain problems (e.g., potential bugs). After the evaluation by the project
developers, these initial discussions have opportunities to be converted into
actionable contributions.

Conversion is not trivial. Through the manual analysis of RQ2, our results
show that some conversions may not be trivial to be decided. For instance, we
observe that Not a Bug reason category accounts for up to 20.5% and 18.4%
for the two ecosystems (Table 5). This indicates that the bug proposed by the
contributor is not true from the engineering developer’s perspective and thus
it is converted into a discussion. We argue that such a type of conversion is
not trivial and would take up time and pipeline for the developers to investi-
gate the real causes. For instance, in the example26, the contributor originally
submitted an issue (including bug description and bug related logs). While,
after the confirmation, the maintainer commented that “This is not a bug.
It’s working as intended. Please open a discussion first. Maybe we can allow
this as a feature request.”. Based on this insight, we suggest the contributor,
especially those newcomers, to start from the GitHub Discussion for the un-
certainty problem. At the same time, one potential future research direction
would include the tendency analysis of non-trivial conversions. Some conver-
sions would be converted back and forth, thus it is valuable to know what
kinds of discussions or issues are difficult to get a consensus, especially bug
related topics. In addition, the fact exists that invalid issues could be closed
while they are not converted to Discussion. Hence, another direction for re-
searchers is to investigate how common it is and the reasons behind this fact,
which would gain a deeper insight into the maintenance of channels.

Raising conversion intent potentially takes time. In RQ3, a quantita-
tive analysis was conducted to look at the conversion process. Although few
discussions are involved, the time to receive the conversion intent is relatively
long (Figure 3 and Figure 4). On the one hand, for those non-trivial reasons
(e.g., Reporting an Enhancement and Not a Bug), we argue that such a long
process would not be avoidable since these discussion/issue topics may require
time and conversations to confirm their significance and correctness, regard-
less of the channel it happens on. Thus, we recommend developers that they

26 https://github.com/renovatebot/renovate/discussions/14457

Title Suppressed Due to Excessive Length 23

should accommodate the development pipeline of the contributed projects.
On the other hand, for those trivial reasons (e.g., Non Actionable Topic and
External Repository), we find that it still takes almost 17.5 hours and 24.5
hours for the issues related to non actionable topics to be converted into dis-
cussions for the NPM and the PyPI. One potential reason could be that these
topics are not being paid attention to by the community members. Hence, a
future direction for the researchers is to investigate whether the authorships
of discussions or issues play a role in the conversion process. Interestingly, our
statistical tests indicate that raising conversion intent within the PyPI likely
takes a longer time and involves more posts than the NPM in some specific
categories, e.g., External Repository, Invalid Issues. Therefore, we encourage
researchers to further explore how the nature of the ecosystem will affect the
conversion process. Meanwhile, we argue that such a long process of trivial
ones could be wasteful, hence another direction is to call for a promising clas-
sifier that is able to identify these non actionable topics effectively to make
the issue tracker lighter and save the developers’ efforts.

7 Threads to Validity

Below, we describe the threats to the validity of this study:

External validity. External validity is with regard to the ability to gener-
alize based on our results. In this study, we conduct a case study of NPM
package repositories (web libraries) that adopt the Discussion feature. Thus,
the observations based on this case study may not be generalized to other
kinds of repositories (e.g., system software). However, our goal is not to build
a theory to fit all repositories, but rather to shed light on the challenge
that developers face during the choice between GitHub Issue and Discussion.
Nonetheless, additional replication studies would help to generalize our ob-
servations in other repository domains, such as software tools, application
software, and Non-web libraries and frameworks. Thus, to encourage future
replication studies, we disclose our research materials and provide a replica-
tion package online, including raw NPM repository discussion data, manually
labeled data, and the script to retrieve the discussions. The package is avail-
able: https://github.com/posl/GitHub_Discussion_Conversion.

Construct validity. Construct validity refers to the degree to which our
measurements capture what we aim to study. During the data collection of
those discussions that should be converted into issues, we rely on the heuristic
approach using a list of keywords (e.g., open, transfer, convert, and so on) to
filter the discussion posts. The threat may occur due to the incompleteness of
the initialized keyword list. To mitigate this threat, we manually explored the
random 100 discussion posts, and inspected the potential keywords that were
highly frequent. At the same time, the goal is not to retrieve all these kinds
of discussions, instead, we aim to get insights from a sufficient sample size.

https://github.com/posl/GitHub_Discussion_Conversion

24 Dong Wang � et al.

Thus, we believe that our sample size is sufficient enough to provide insightful
observations.

Internal validity. Internal validity denotes the approximate truth about in-
ferences regarding cause-effect or causal relationships. Three threats are sum-
marized. First of all, to understand the reasons behind the conversion, we
performed a manual analysis, which may be mislabeled due to its subjective
nature. To relieve such a threat, we conducted the manual coding in multi-
ple iterations with two authors and calculated the Kappa agreement scores
to ensure the quality. Once the scores suggested nearly perfect or substantial
agreement, the first author then coded the rest of the samples. Additionally, to
separate category Reporting a Bug and category Reporting a Clarification Re-
quest, we refer to whether the possibility-related word is given in a comment.
This is likely to introduce a bias due to the natural usage of English words.
The second threat occurs in the metric computation (RQ3). Since there is no
automatic method to identify the exact time of the conversion, we rely on the
post time when the conversion intent is raised. The third threat may exist in
the selection of statistical tests. To test the significance of the studied metrics
among different conversion reasons (RQ3), we use the Kruskal-Wallis H test.
The cause-effect may differ from the other statistical tests. We are however
confident, as the selected test is widely used in the prior study (Chinthanet
et al., 2021; Wang et al., 2021a).

8 Related Work

In this section, we position our work with respect to the literature on question
and answer forum, developer communication in software development, and
barrier for newcomers in OSS projects.

8.1 Question & Answer Community

Developers often turn to programming question and answer (Q&A) commu-
nities to seek for help with their codes. Stack Overflow, as one of the most
popular Q&A communities (Wang et al., 2023), has become a gold mine for
software engineering research and is found to be useful for software devel-
opment. Treude et al. (2011), as a pioneer work, categorized the kinds of
questions that are asked, and explored which questions are answered well and
which ones remain unanswered. Vasilescu et al. (2012) provided a quantita-
tive study of the phenomenon, in order to assess the representation and social
impact of gender in Stack Overflow. Treude and Robillard (2017) conducted a
survey-based study to understand developers’ information needs as they relate
to code fragments. A large body of studies targets the knowledge extraction
and challenges of specific topics from Stack Overflow. To facilitate program
repair, Liu and Zhong (2018) proposed an approach to extract code samples

Title Suppressed Due to Excessive Length 25

from Stack Overflow, and mined repair patterns from extracted code samples.
Wan et al. (2021) used Stack Overflow to understand the challenges and needs
amongst blockchain developers by applying Balanced LDA. Bangash et al.
(2019) studied the machine learning related posts and found that some ma-
chine learning topics are significantly more discussed than others, and others
need more attention.

To brainstorm feature ideas, help new users get their bearings, and fur-
ther improve collaboration, GitHub released Discussion in 2020. Hata et al.
(2022) took a first look at the early adoption of GitHub Discussion from sev-
eral aspects. For instance, they found that errors, unexpected behavior, and
code reviews are prevalent discussion categories. Specifically, the perception
from the developer survey pointed out that developers consider GitHub Dis-
cussions useful but face the problem of topic duplication between Discussions
and Issues. Motivated by their survey insight, we conduct an empirical study
on NPM repositories to understand how developers maintain these channels,
so as to complement the knowledge gap and provide empirical suggestions for
the practitioners on how to select the appropriate channel.

8.2 Developer Communication in Software Development

Developer communication plays a significant role in software development,
such as code review process (Wang et al., 2021b). Bacchelli and Bird (2013)
stated that developers have need of richer communication than comments an-
notating the changed code when reviewing. Pascarella et al. (2018) found that
during reviews, reviewers often request additional information about correct
understanding, alternative solution, to improve patch quality. Recent work
cited that reviewers suffer from confusion due to a lack of information about
the intention of a patch (Ebert et al., 2019). Wang et al. (2021c) observed
that developers are likely to share links during review discussions with seven
intentions to fulfill information needs. Meanwhile, Hirao et al. (2019) reported
that the patch linkage (i.e., posting a patch link to another patch) is used to
indicate patch dependency, competing solutions, or provide broader context.
In addition to code reviews, nowadays interactive communication channels are
available to support development. Stray and Moe (2020) conducted a longi-
tudinal study on coordination to understand the use of meetings and Slack
and found that collaboration tools increase awareness and informal communi-
cation. Parra et al. (2022) presented a comparative study of developer com-
munications on Slack and Gitter. Raglianti et al. (2022) proposed a tool using
Discord conversations to aid program comprehension. With the official release
of GitHub Discussion, it would gradually become a popular centre for develop-
ers to communicate and share ideas during their software development. Hence,
one potential benefit of our study is to improve the communication efficiency
between GitHub Discussion and Issue.

26 Dong Wang � et al.

8.3 Barriers for Newcomers in OSS Projects

Newcomers are significant to the survival, long-term success, and continu-
ity of OSS projects (Kula and Robles, 2019). However, literature pointed
out that newcomers face many challenges in their initiative activities in OSS
projects (Steinmacher et al., 2014). For instance, Lee et al. (2017) reported
that newcomers lack the necessary domain knowledge and programming skills.
In addition, some non-technical also affect newcomers’ onboarding process,
such as communication and social interaction (Tan and Zhou, 2019; Rehman
et al., 2022). In the recent work, Mendez et al. (2018) studied newcomer bar-
riers and gender through a new perspective, i.e., the usage of OSS tools and
infrastructure. To facilitate the newcomers’ onboarding process, a series of the-
ories and strategies have been proposed. Steinmacher et al. (2018) provided
guidelines for both OSS communities interested in receiving more external
contributions, and newcomers who want to contribute to OSS projects. Tan
et al. (2020) discovered the criteria to identify good first issues (GFIs) that
may make GFIs more likely to be solved by newcomers. In the following study,
Xiao et al. (2022) proposed RECGFI, an effective practical approach for the
recommendation of good first issues to newcomers. With the introduction of a
new feature (i.e., GitHub Discussion), the newcomers may also face the barrier
of choosing proper communication channels when asking questions or raising
issues. Especially for those uncertain problems (i.e., whether they are real is-
sues or not), our results suggest that it would be appropriate for newcomers
to start from the Discussion channel.

9 Conclusion

With the adoption of the GitHub Discussion feature, it becomes challenging
for developers to appropriately choose or maintain between GitHub Discussion
and Issue. In this work, we conducted an empirical study on 259 NPM and
148 PyPI repositories to understand the reasons behind converting Discus-
sion to Issue and vice versa, and to investigate whether or not the conversion
requires additional effort. Our empirical results show that reporting a clarifi-
cation request is the most common reason of converting discussions to issues
(35.1% and 34.7%, respectively), while having non actionable topic is the most
frequent reason of converting issues to discussions (55.0% and 42.0%, respec-
tively). Moreover, we observe that it potentially takes time to raise a con-
version intent. This study contributes to helping developers effectively utilize
these different communication channels, and also provides the future direc-
tion on the automatic classifier needs such as duplication detection between
GitHub Discussion and Issue, and identification of non actionable topics from
Issue.

Title Suppressed Due to Excessive Length 27

Acknowledgement

This work is supported by Japanese Society for the Promotion of Science
(JSPS) KAKENHI grants (JP20K19774, JP20H05706, JP22K17874, JP21H04877,
JP23K16864), and JSPS and SNSF for the project “SENSOR” (JPJSJRP20191502).

Declarations

Conflict of Interest

The authors declare that Raula Gaikovina Kula and Yasutaka Kamei are mem-
bers of the EMSE Editorial Board. All co-authors have seen and agree with
the contents of the manuscript and there is no financial interest to report.

Data Availability Statements

The datasets generated during and/or analysed during the current study are
available in the https://github.com/posl/GitHub_Discussion_Conversion.

References

Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why
do developers use trivial packages? an empirical case study on npm. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ACM, ESEC/FSE 2017, p 385–395

Bacchelli A, Bird C (2013) Expectations, Outcomes, and Challenges of Mod-
ern Code Review. In: Proceedings of the 35th International Conference on
Software Engineering, pp 712–721

Bangash AA, Sahar H, Chowdhury S, Wong AW, Hindle A, Ali K (2019)
What do developers know about machine learning: a study of ml discussions
on stackoverflow. In: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), IEEE, pp 260–264

Chinthanet B, Kula RG, McIntosh S, Ishio T, Ihara A, Matsumoto K (2021)
Lags in the release, adoption, and propagation of npm vulnerability fixes.
Empirical Software Engineering pp 1–28

Chouchen M, Ouni A, Kula RG, Wang D, Thongtanunam P, Mkaouer MW,
Matsumoto K (2021) Anti-patterns in modern code review: Symptoms and
prevalence. In: 2021 IEEE international conference on software analysis,
evolution and reengineering (SANER), IEEE, pp 531–535

Cogo FR, Oliva GA, Hassan AE (2019) An empirical study of dependency
downgrades in the npm ecosystem. IEEE Transactions on Software Engi-
neering pp 1–1

https://github.com/posl/GitHub_Discussion_Conversion

28 Dong Wang � et al.

Decan A, Mens T, Claes M (2016) On the topology of package dependency net-
works: A comparison of three programming language ecosystems. In: Proc-
cedings of the 10th European Conference on Software Architecture Work-
shops, pp 1–4

Ebert F, Castor F, Novielli N, Serebrenik A (2019) Confusion in code reviews:
Reasons, impacts, and coping strategies. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pp 49–60

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 Million Links in Source Code
Comments: Purpose, Evolution, and Decay. In: Proceedings of the 41st In-
ternational Conference on Software Engineering, p 1211–1221

Hata H, Novielli N, Baltes S, Kula RG, Treude C (2022) Github discussions:
An exploratory study of early adoption. Empir Softw Eng 27:3

Hecke TV (2012) Power study of anova versus kruskal-wallis test. Journal of
Statistics and Management Systems 15(2-3):241–247

Hindle A, Alipour A, Stroulia E (2016) A contextual approach towards more
accurate duplicate bug report detection and ranking. Empirical Software
Engineering 21(2):368–410

Hirao T, McIntosh S, Ihara A, Matsumoto K (2019) The Review Linkage
Graph for Code Review Analytics: A Recovery Approach and Empirical
Study. In: Proc. of the International Symposium on the Foundations of
Software Engineering (FSE), p 578–589

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association pp 583–621

Kula RG, Robles G (2019) The Life and Death of Software Ecosystems,
Springer, pp 97–105

Lee A, Carver JC, Bosu A (2017) Understanding the impressions, motivations,
and barriers of one time code contributors to floss projects: a survey. In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE),
IEEE, pp 187–197

Li Z, Yin G, Yu Y, Wang T, Wang H (2017) Detecting duplicate pull-requests
in github. In: Proceedings of the 9th Asia-Pacific Symposium on Internet-
ware, pp 1–6

Lima M, Steinmacher I, Ford D, Liu E, Vorreuter G, Conte T, Gadelha B
(2022) Looking for related discussions on github discussions. arXiv preprint
arXiv:220611971

Liu X, Zhong H (2018) Mining stackoverflow for program repair. In: 2018 IEEE
25th international conference on software analysis, evolution and reengineer-
ing (SANER), IEEE, pp 118–129

Mann HB, Whitney DR (1947) The Annals of Mathematical Statistics 18:50–
60

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia med-
ica 22(3):276–282

Mendez C, Padala HS, Steine-Hanson Z, Hilderbrand C, Horvath A, Hill C,
Simpson L, Patil N, Sarma A, Burnett M (2018) Open source barriers to
entry, revisited: A sociotechnical perspective. In: Proceedings of the 40th

Title Suppressed Due to Excessive Length 29

International conference on software engineering, pp 1004–1015
Nguyen AT, Nguyen TT, Nguyen TN, Lo D, Sun C (2012) Duplicate bug report
detection with a combination of information retrieval and topic modeling.
In: 2012 Proceedings of the 27th IEEE/ACM international conference on
automated software engineering, IEEE, pp 70–79

Parra E, Alahmadi M, Ellis A, Haiduc S (2022) A comparative study and
analysis of developer communications on slack and gitter. Empirical Soft-
ware Engineering 27(2):1–33

Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018) Informa-
tion Needs in Contemporary Code Review. Proceedings of the ACM Con-
ference on Computer Supported Cooperative Work 2:135:1–135:27

Rehman I, Wang D, Kula RG, Ishio T, Matsumoto K (2022) Newcomer oss-
candidates: Characterizing contributions of novice developers to github. Em-
pirical Software Engineering 27(5):1–20

Steinmacher I, Gerosa MA, Redmiles D (2014) Attracting, onboarding, and
retaining newcomer developers in open source software projects. In: CSCW

Steinmacher I, Treude C, Gerosa MA (2018) Let me in: Guidelines for the
successful onboarding of newcomers to open source projects. IEEE Software
36(4):41–49

Stemler S (2000) An overview of content analysis. Practical assessment, re-
search, and evaluation 7(1):17

Storey MA, Zagalsky A, Figueira Filho F, Singer L, German DM (2016) How
social and communication channels shape and challenge a participatory cul-
ture in software development. IEEE Transactions on Software Engineering
43(2):185–204

Stray V, Moe NB (2020) Understanding coordination in global software engi-
neering: A mixed-methods study on the use of meetings and slack. Journal
of Systems and Software 170:110717

Tan X, Zhou M (2019) How to communicate when submitting patches: An
empirical study of the linux kernel. Proceedings of the ACM on Human-
Computer Interaction 3(CSCW):1–26

Tan X, Zhou M, Sun Z (2020) A First Look at Good First Issues on GitHub,
Association for Computing Machinery, New York, NY, USA, p 398–409.
URL https://doi.org/10.1145/3368089.3409746

Tantisuwankul J, Nugroho YS, Kula RG, Hata H, Rungsawang A, Leelaprute
P, Matsumoto K (2019) A topological analysis of communication channels
for knowledge sharing in contemporary github projects. Journal of Systems
and Software 158:110416

Treude C, Robillard MP (2017) Understanding stack overflow code fragments.
In: 2017 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), IEEE, pp 509–513

Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer
questions on the web? (nier track). In: Proceedings of the 33rd International
Conference on Software Engineering, Association for Computing Machinery,
New York, NY, USA, ICSE ’11, p 804–807

https://doi.org/10.1145/3368089.3409746

30 Dong Wang � et al.

Vale G, Schmid A, Santos AR, De Almeida ES, Apel S (2020) On the rela-
tion between github communication activity and merge conflicts. Empirical
Software Engineering 25(1):402–433

Vasilescu B, Capiluppi A, Serebrenik A (2012) Gender, representation and
online participation: A quantitative study of stackoverflow. In: 2012 Inter-
national Conference on Social Informatics, IEEE, pp 332–338

Wan Z, Xia X, Hassan AE (2021) What do programmers discuss about
blockchain? a case study on the use of balanced lda and the reference archi-
tecture of a domain to capture online discussions about blockchain platforms
across stack exchange communities. IEEE Transactions on Software Engi-
neering pp 1331–1349

Wang D, Kula RG, Ishio T, Matsumoto K (2021a) Automatic patch linkage
detection in code review using textual content and file location features.
Information and Software Technology 139:106637

Wang D, Ueda Y, Kula RG, Ishio T, Matsumoto K (2021b) Can we benchmark
code review studies? a systematic mapping study of methodology, dataset,
and metric. Journal of Systems and Software 180:111009

Wang D, Xiao T, Thongtanunam P, Kula RG, Matsumoto K (2021c) Un-
derstanding shared links and their intentions to meet information needs in
modern code review. Empir Softw Eng 26(5):96

Wang D, Xiao T, Treude C, Kula RG, Hata H, Kamei Y (2023) Understanding
the role of images on stack overflow. arXiv preprint arXiv:230315684

Wang Q, Xu B, Xia X, Wang T, Li S (2019) Duplicate pull request detection:
When time matters. In: Proceedings of the 11th Asia-Pacific Symposium on
Internetware, pp 1–10

Xiao W, He H, Xu W, Tan X, Dong J, Zhou M (2022) Recommending good
first issues in github oss projects. In: 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), IEEE, pp 1830–1842

	Introduction
	Motivating Example
	Studied Datasets
	Approach
	Results
	Implications
	Threads to Validity
	Related Work
	Conclusion

