Skip to main content
Log in

A Learning Algorithm for Level Sets Weights in Weighted Level-based Averaging Method

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

The method which we call the Weighted Averaging Based on Levels (WABL) can be used to calculate the average representative of a fuzzy number. It utilizes weight coefficients for the level sets as well as the sides of a fuzzy number. We have developed an algorithm to obtain these coefficients. The most remarkable feature of this algorithm is that it makes use of the decision maker’s (DM) aggregation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • M.S. Bazaraa C.M. Shetty (1979) Nonlinear programming Theory and Algorithms John Wiley and Sons New York

    Google Scholar 

  • T. Calvo R. Mesiar (2001) ArticleTitle“Generalized medians etc” Fuzzy Sets and Systems 124 59–64 Occurrence Handle10.1016/S0165-0114(00)00071-3

    Article  Google Scholar 

  • M.-G. Chung (2001) ArticleTitle“A Similarity-based Bi-directional Approximate Reasoning Method for Decision-making Systems” Fuzzy Sets and Systems 117 269–278 Occurrence Handle10.1016/S0165-0114(99)00093-7

    Article  Google Scholar 

  • L.M. DeCampos Ibanez A. Gonzalez Munoz (1989) ArticleTitle“A Subjective Approach for Ranking Fuzzy Numbers” Fuzzy Sets and Systems 29 145–153 Occurrence Handle10.1016/0165-0114(89)90188-7

    Article  Google Scholar 

  • D. Dubois H. Prade (1980) Fuzzy Sets and Systems. Theory and Applications Academic Press New York

    Google Scholar 

  • D. Dubois H. Prade (1987) ArticleTitle“The Mean Value of a Fuzzy Number” Fuzzy Sets and Systems 24 279–300 Occurrence Handle10.1016/0165-0114(87)90028-5

    Article  Google Scholar 

  • D. Filev R. Yager (1993) ArticleTitle“An Adaptive Approach to Defuzzification Based on Level Sets” Fuzzy Sets and Systems 54 355–360 Occurrence Handle10.1016/0165-0114(93)90383-S

    Article  Google Scholar 

  • L. Godo T. Vicenc (2000) ArticleTitle“On Aggregation Operators for Ordinal Qualitative Information” IEEE Trans. Fuzzy Systems 8 143–154 Occurrence Handle10.1109/91.842149

    Article  Google Scholar 

  • Hsu Hsi-Mei Chen-Tung Chen (1996) ArticleTitle“Aggregation of Fuzzy Opinions Under Group Decision Making” Fuzzy Sets and Systems 79 279–285 Occurrence Handle10.1016/0165-0114(95)00185-9

    Article  Google Scholar 

  • G.J. Kliz J. Bo (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  • M. Ma A. Kandel M. Friedman (2000) ArticleTitle“A New Approach for Defuzzification” Fuzzy Sets and Systems 111 351–356 Occurrence Handle10.1016/S0165-0114(98)00176-6 Occurrence HandleMR1748552

    Article  MathSciNet  Google Scholar 

  • E.N. Nasibov (1989) ArticleTitle“To Linear Transformations with Fuzzy Arguments” Transacations of Academy of Sciences of Azerbaijan, Series of Physical-technical and Mathematical Sciences 6 164–169

    Google Scholar 

  • E.N. Nasibov (1999) ArticleTitle“Some Numerical Characteristics of Fuzzy Sets” Transac of Academy of Sciences of Azerbaijan, Series of Physical-Technical and Mathematical Sciences 3–4 157–160

    Google Scholar 

  • E.N. Nasibov (2000) Methods for Processing of Fuzzy Information in Decision-making Problems Elm Publ Baku

    Google Scholar 

  • E.N. Nasibov (2002a) ArticleTitle“Certain Integral Characteristics of Fuzzy Numbers and a Visual-interactive Method for Choosing the Strategy of their Calculation” Journal of Computer and Systems Sciences International 41 IssueID4 584–590

    Google Scholar 

  • E.N. Nasibov (2002b) ArticleTitle“Identification of States of Complex Systems with Estimation of Admissible Measurements Errors on the Basis of Fuzzy Information” Cybernetics and Systems Analysis 38 IssueID1 53–59 Occurrence Handle10.1023/A:1015540015031 Occurrence HandleMR1930434

    Article  MathSciNet  Google Scholar 

  • E.N. Nasibov (2003) ArticleTitle“Aggregation of Fuzzy Values in Linear Programming Problems” Automatic Control and Computer Sciences 37 IssueID2 1–11

    Google Scholar 

  • E.N. Nasibov R.Yu. Shikhlinskaya (2003) ArticleTitle“Adjustment of the Parameters of WABL-aggregation for Locating the Center of Gravity of a Polynomial-type Fuzzy Number” Automatic Control and Computer Sciences 37 IssueID6 34–42

    Google Scholar 

  • J.V. Oliveira (1995) ArticleTitle“A Set-theoretical Defuzzification Method” Fuzzy Sets and Systems 76 63–71 Occurrence Handle10.1016/0165-0114(95)00002-3

    Article  Google Scholar 

  • Pedrycz W., Gomide F. (1998) An Introduction to Fuzzy Sets/Analysis and Design. A Bradford Book. The MIT Press

  • Ross T. J. (1995). Fuzzy Logic with Engineering Applications. McGraw-Hill, Inc

  • J.J. Saade H. Schwarzlander (1992) ArticleTitle“Ordering Fuzzy Sets Over the Real Line: An Approach Based on Decision Making under Uncertainly” Fuzzy Sets and Systems 50 237–246 Occurrence Handle10.1016/0165-0114(92)90222-P

    Article  Google Scholar 

  • J.J. Saade (1996) ArticleTitle“A Unifying Approach to Defuzzification and Comparison of the Outputs of Fuzzy Controllers” IEEE Transactions Fuzzy Systems 4 IssueID3 227–237 Occurrence Handle10.1109/91.531767

    Article  Google Scholar 

  • R. Yager D. Filev (1993) ArticleTitle“On the Issue of Defuzzification and Selection Based on a Fuzzy Set” Fuzzy Sets and Systems 55 222–271 Occurrence Handle10.1016/0165-0114(93)90252-D

    Article  Google Scholar 

  • R.R. Yager (1996) ArticleTitle“Knowledge-based Defuzzification” Fuzzy Sets and Systems 80 177–185 Occurrence Handle10.1016/0165-0114(95)00191-3

    Article  Google Scholar 

  • R.R. Yager (2002) ArticleTitle“Heavy OWA Operators” Fuzzy Optimization and Decision Making 1 379–397 Occurrence Handle10.1023/A:1020959313432 Occurrence HandleMR1942677

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efendi N. Nasibov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasibov, E.N., Baskan, O. & Mert, A. A Learning Algorithm for Level Sets Weights in Weighted Level-based Averaging Method. Fuzzy Optim Decis Making 4, 279–291 (2005). https://doi.org/10.1007/s10700-005-3664-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-005-3664-3

Key words