Skip to main content
Log in

A new equivalent transformation for interval inequality constraints of interval linear programming

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

In this paper, we have introduced a new approach to solve a class of interval linear programming (ILP) problems. Firstly, the novel concept of an interval ordering relation is further developed to make desired solution feasible. Secondly, according to the 3\(\upsigma \) law of normal distribution, a new equivalent transformation for constraints with the interval-valued coefficients of ILP is justified. Accordingly, the uncertainty stemmed from interval number could be replaced by the uncertainty of random variables. Consequently, the classical methodology of stochastic linear programming, a chance constrained programming model based on normal distribution is designed to work out the equivalent form of the original problem. This is because it allows us to carry out the optimization operation with a certain calibrated probability. A typical numerical example is given to illustrate how to apply equivalent transformation in order to realize ILP. Finally, we conclude this paper by elaborated comparisons among our method and selected existing solutions to advance our confidence of our research results as to their correctness and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alefeld, G., & Herzberger, J. (1984). Introduction to interval computation. London: Academic press.

    MATH  Google Scholar 

  • Allahdadi, M., & Nehi, H. M. (2013). The optimal solution set of the interval linear programming problems. Optimization Letters, 7(8), 1893–1911.

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management Science, 6(1), 73–79.

  • Charnes, A., Granot, F., & Phillips, F. (1977). Algorithm for solving interval linear-programming problems. Operations Research, 25(4), 688–695.

    Article  MathSciNet  MATH  Google Scholar 

  • Chinneck, J. W., & Ramadan, K. (2000). Linear programming with interval coefficients. Journal of the Operational Research Society, 51(2), 209–220.

    Article  MATH  Google Scholar 

  • Delgado, M., Verdegay, J. L., & Vila, M. A. (1989). A general model for fuzzy linear programming. Fuzzy Sets and Systems, 29(1), 21–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., & Zimmermann, K. (2006). Linear optimization problems with inexact data. New York: Springer.

    MATH  Google Scholar 

  • Guo, J. P., & Wu, Y. H. (2003). Standard form of interval linear programming and its solution. System Engineering, 3, 79–82.

    Google Scholar 

  • Hladık, M. (2012). Interval linear programming: A survey. In Linear programming-new frontiers in theory and applications (chap. 2, pp. 85–120), New York: Nova Science Publishers.

  • Huang, G. H. (1996). IPWM: An interval parameter water quality management model. Engineering Optimization, 26(2), 79–103.

    Article  Google Scholar 

  • Inuiguchi, M., Higashitani, H., & Tanino, T. (1999). On computation methods of the minimax regret solution for linear programming problems with uncertain objective function coefficients. In Proceedings of the IEEE international conference on systems, man, and cybernetics, pp. 979–984.

  • Inuiguchi, M., & Sakawa, M. (1995). Minimax regret solution to linear programming problems with an interval objective function. European Journal of Operational Research, 86(3), 526–536.

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibuchi, H., & Tanaka, H. (1990). Multi-objective programming in optimization of the interval objective function. European Journal of Operational Research, 48(2), 219–225.

    Article  MATH  Google Scholar 

  • Kall, P., & Wallace, S. W. (1994). Stochastic programming. New York: Wiley.

    MATH  Google Scholar 

  • Li, Y., Huang, G., Nie, S., & Huang, Y. (2006). IFTSIP: Interval fuzzy two-stage stochastic mixed-integer linear programming: A case study for environmental management and planning. Civil Engineering and Environmental Systems, 23(2), 73–99.

    Article  Google Scholar 

  • Liu, B. (2009). Theory and practice of uncertain programming. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Moore, R. E. (1979). Methods and applications of interval analysis. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Oettli, W., & Prager, W. (1964). Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numerische Mathematik, 6(1), 405–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveira, C., Antunes, C. H., & Barrico, C. (2014). An enumerative algorithm for computing all possibly optimal solutions to an interval LP. TOP, 22(2), 530–542.

    Article  MathSciNet  MATH  Google Scholar 

  • Qin, X. S., Huang, G. H., Zeng, G. M., Chakma, A., & Huang, Y. F. (2007). An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research, 180(3), 1331–1357.

    Article  MATH  Google Scholar 

  • Sengupta, A., Pal, T. K., & Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and Systems, 119(1), 129–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Shaocheng, T. (1994). Interval number and fuzzy number linear programmings. Fuzzy Sets and Systems, 66(3), 301–306.

    Article  MathSciNet  Google Scholar 

  • Xu, Y., Huang, G. H., Qin, X. S., & Huang, Y. (2009). SRFILP: A stochastic robust fuzzy interval linear programming model for municipal solid waste management under uncertainty. Journal of Environmental Informatics, 14(2), 72–82. doi:10.3808/jei.200900155.

    Article  Google Scholar 

  • Zhou, F., Huang, G. H., Chen, G. X., & Guo, H. C. (2009). Enhanced-interval linear programming. European Journal of Operational Research, 199(2), 323–333.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the Industrial Guidance Project of Fujian Province (No. 2015H0020), China Scholarship Council and the NSF Grant of USA (No. 1115564), as well as NCDOT Research Grant (No. 2013-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, SG., Wang, P.P. et al. A new equivalent transformation for interval inequality constraints of interval linear programming. Fuzzy Optim Decis Making 15, 155–175 (2016). https://doi.org/10.1007/s10700-015-9219-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-015-9219-3

Keywords

Navigation