Skip to main content
Log in

Feasibility analysis for robustness quantification by symbolic model checking

  • Published:
Formal Methods in System Design Aims and scope Submit manuscript

Abstract

We propose and investigate a robustness evaluation procedure for sequential circuits subject to particle strikes inducing bit-flips in memory elements. We define a general fault model, a parametric reparation model and quantitative measures reflecting the robustness capability of the circuit with respect to these fault and reparation models. We provide algorithms to compute these metrics and show how they can be interpreted in order to better understand the robustness capability of several circuits (a simple circuit coming from the VIS distribution, circuits from the itc-99 benchmarks and a CAN-Bus interface).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abke J, Bohl E, Henno C (1998) Emulation based real time testing of automotive applications. In: Proc of 4th IEEE international on-line testing workshop, pp 28–31

    Google Scholar 

  2. Baarir S, Braunstein C, Clavel R, Encrenaz E, Ilié J-M, Leveugle R, Mounier I, Pierre L, Poitrenaud D (2009) Complementary formal approaches for dependability analysis. In: Proc international symposium on defect and fault tolerance in VLSI systems. IEEE Comput Soc, Los Alamitos, pp 331–339

    Google Scholar 

  3. Bidgoli H (2006) Handbook of information security, vol 3. Wiley, New York

    Google Scholar 

  4. Biere A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic model checking without BDDs. In: Proc international conference on tools and algorithms for construction and analysis of systems. Lecture notes in computer science, vol 1579. Springer, Berlin, pp 193–207

    Chapter  Google Scholar 

  5. Birnbaum E, Lozinskii EL (1999) The good old Davis-Putnam procedure helps counting models. J Artif Intell Res 10:457–477

    MathSciNet  MATH  Google Scholar 

  6. Church A (1957) Application of recursive arithmetic to the problem of circuit synthesis. In: Summaries of talks presented at the summer institute for symbolic logic. Princeton. Communications Research Division, Institute for Defense Analyses, Princeton, pp 3–50

    Google Scholar 

  7. Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans Program Lang Syst 8(2):244–263

    Article  MATH  Google Scholar 

  8. Corno F, Sonza Reorda M, Squillero G (2000) RT-level ITC 99 benchmarks and first ATPG results. IEEE Des Test Comput 17(3):44–53

    Article  Google Scholar 

  9. Daveau J-M, Blampey A, Gasiot G, Bulone J, Roche P (2009) An industrial fault injection platform for soft-error dependability analysis and hardening of complex system-on-a-chip. In: IEEE RPS-CDR 47th annu int reliability physics symp, Montreal, Canada. IEEE Press, New York

    Google Scholar 

  10. Davis RI, Burns A, Bril R, Lukkien J (2007) Controller area network (can) schedulability analysis: Refuted, revisited and revised. Real-Time Syst 35(3):239–272

    Article  Google Scholar 

  11. Dijkstra EW (1974) Self-stabilization systems in spite of distributed control. Commun ACM 17:643–644

    Article  MATH  Google Scholar 

  12. Dolev S (2000) Self-stabilization. MIT Press, Cambridge

    MATH  Google Scholar 

  13. Fey G, Drechsler R (2008) A basis for formal robustness checking. In: Proc IEEE international symposium on quality electronic design. IEEE Comput Soc, Los Alamitos, pp 784–789

    Google Scholar 

  14. Fey G, Sülflow A, Drechsler R (2009) Computing bounds for fault tolerance using formal techniques. In: Proc design automation conference. ACM, New York, pp 190–195

    Google Scholar 

  15. Garcia-Valderas M, Portela-Garcia M, Lopez-Ongil C, Entrena L (2010) Extensive SEU impact analysis of a pic microprocessor for selective hardening. IEEE Trans Nucl Sci 57(4)

  16. Hopcroft JE, Motwani R, Ullman JD (2006) Introduction to automata theory, languages, and computation (3rd edn.). Addison-Wesley/Longman, Boston

    Google Scholar 

  17. ISO technical committees TC22/SC3 (2003) Road vehicles—controller area networks—parts 1 to 5. International Organization for Standardization, Geneva

    Google Scholar 

  18. Jenn E, Arlat J, Rimen R, Ohlsson J, Karlsson J (1994) Fault injection into VHDL models: the MEPHISTO tool. In: Proc of 24th symposium on fault-tolerant computing (FTCS), pp 66–75

    Chapter  Google Scholar 

  19. Krautz U, Pflanz M, Jacobi C, Tast H, Weber K, Vierhaus H (2006) Evaluating coverage of error detection logic for soft errors using formal methods. In: Proc conference on design, automation and test in Europe. European Design and Automation Association, pp 176–181

  20. Krishnaswamy S, Viamontes GF, Markov IL, Hayes J (2008) Probabilistic transfert matrices in symbolic reliability analysis of logic circuits for reliability evaluation of logic circuits. Trans Des Autom Electron Syst 13(1)

  21. Leveugle R (2005) A new approach for early dependability evaluation based on formal property checking and controlled mutation. In: Proc IEEE international on-line testing symposium. IEEE Comput Soc, Los Alamitos, pp 260–265

    Chapter  Google Scholar 

  22. Leveugle R, Hadjiat K (2003) Multi-level fault injections in VHDL descriptions: alternative approaches and experiments. J Electron Test Theory Appl. 19(5):559–575

    Article  Google Scholar 

  23. Leveugle R, Calvez A, Maistri P, Vanhauwaert P (2009) Statistical fault injection: quantified error and confidence. In: Proc of design, automation and test in Europe conference (DATE), pp 502–506

    Google Scholar 

  24. Lopez-Ongil C, Garcia-Valderas M, Portela-Garcia M, Entrena L (2007) Autonomous fast emulation: a new FPGA-based acceleration system for hardness evaluation. IEEE Trans Nucl Sci 54(1)

  25. Naviner L, Naviner JF, Franco D, Vasconcelos M (2008) Signal probability for reliability evaluation of logic circuits. Microelectron Reliab J 48

  26. Naviner L, Naviner JF, Goncalves dos Santos G Jr, Crespo Marques E (2010) Using error tolerance of target application for efficient reliability improvement of digital circuits. Microelectron Reliab J 50(9–11)

    Google Scholar 

  27. Polian I, Hayes JP, Sudhakar MR, Becker B (2010) Modeling and mitigating transient errors in logic circuits. IEEE Trans Dependable and Secure Comput 99(PrePrints)

  28. Seshia S, Li W, Mitra S (2007) Verification-guided soft error resilience. In: Proc conference on design, automation and test in Europe. EDA Consortium, San Jose, pp 1442–1447

    Google Scholar 

  29. Shtrichman O (2000) Tuning SAT checkers for bounded model checking. In: Proc international conference on computer aided verification. Lecture notes in computer science, vol 1855. Springer, Berlin, pp 480–494

    Chapter  Google Scholar 

  30. The VIS group (1996) VIS: a system for verification and synthesis. In: Proc international conference on computer aided verification. Lecture notes in computer science, vol 1102. Springer, Berlin, pp 428–432

    Google Scholar 

  31. Thurley M (2006) sharpSAT—counting models with advanced component caching and implicit BCP. In: Theory and applications of satisfiability testing (SAT’06). Lecture notes in computer science, vol 4121. Seattle, WA, USA, August 2006. Springer, Berlin, pp 424–429

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souheib Baarir.

Additional information

This work was supported in part by French Research Founding managed by the French National Research Agency ANR in the frame of the project FME3 (ANR-07-SESU-006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baarir, S., Braunstein, C., Encrenaz, E. et al. Feasibility analysis for robustness quantification by symbolic model checking. Form Methods Syst Des 39, 165–184 (2011). https://doi.org/10.1007/s10703-011-0121-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10703-011-0121-5

Keywords

Navigation