Skip to main content

Advertisement

Log in

Hardness and inapproximability of minimizing adaptive distinguishing sequences

  • Published:
Formal Methods in System Design Aims and scope Submit manuscript

Abstract

An adaptive distinguishing sequence (ADS) can be used for identifying an unknown initial state of a finite state machine (FSM). It has been long known that checking the existence of an ADS for an FSM, and finding an ADS for an FSM when one exists, can be performed in polynomial time. However, the problem of finding a minimum ADS has not been studied so far. Generating a minimum ADS is especially motivated when such an ADS is used repeatedly, e.g. for the construction of a test sequence. We introduce a number of metrics to define a minimum ADS and show that the problem of generating a minimum ADS with respect to these metrics is NP-complete. In addition, we provide inapproximability results for these hard problems and show that not only deciding but also approximating such a minimum ADS is a hard problem. We modify the only polynomial time ADS generation algorithm existing, and experimentally show that these modifications construct reduced ADSs. We also validate the motivation of ADS minimization by presenting experimental results on the effect of using reduced ADSs to generate test sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. ADS is also known with the name Distinguishing Set [8, 17].

  2. Most FSM based test methods apply to deterministic FSMs [32, 34, 51, 58].

    Table 1 Complexity of problems related to HS, SS, UIO, PDS, and ADS
  3. Nondeterministic or incompletely specified FSMs are not considered in this paper.

  4. MinDT problem is referred to as 2-UDT problem in [12, 13].

  5. Since the proof of correctness of LY algorithm is out of scope of this paper, we refer the reader to [43] to see why such nodes have to exist in the partial ST.

  6. Note that operators \(\text {argmin}\)/\(\text {argmax}\) return the set of arguments achieving the optimum value.

  7. FSM specification Ex4 is partially specified. We complete the missing transitions by adding self looping transitions with a special output symbol, and do not use these inputs for ADS construction.

References

  1. Adelson-Velskii G, Landis E (1962) An algorithm for the organization of information. In: Doklady Akademii Nauk USSR, vol 146, no 2, pp 263–266

  2. Adler M, Heeringa B (2008) Approximating optimal binary decision trees. In: Proceedings of the 11th international workshop, APPROX 2008, and 12th international workshop, RANDOM 2008 on approximation, randomization and combinatorial optimization: algorithms and techniques, Springer, Berlin, APPROX ’08 / RANDOM ’08, pp 1–9

  3. Aho AV, Dahbura AT, Lee D, Uyar MÜ (1991) An optimization technique for protocol conformance test generation based on UIO sequences and rural Chinese postman tours. IEEE Trans Commun 39(11):1604–1615. doi:10.1109/26.111442

    Google Scholar 

  4. Alur R, Courcoubetis C, Yannakakis M (1995) Distinguishing tests for nondeterministic and probabilistic machines. In: Leighton FT, Borodin A (eds) Proceedings of the twenty-seventh annual ACM symposium on theory of computing. ACM, Las Vegas, Nevada, USA, STOC’95, pp 363–372, 29 May–1 June 1995. doi:10.1145/225058.225161

  5. Betin-Can A, Bultan T (2004) Verifiable concurrent programming using concurrency controllers. In: Proceedings of the 19th IEEE international conference on automated software engineering, IEEE Computer Society, pp 248–257

  6. Binder RV (1999) Testing object-oriented systems: models, patterns, and tools. Addison-Wesley, Reading

    Google Scholar 

  7. Bochmann G, Petrenko A (1994) Protocol testing: review of methods and relevance for software testing. In: ACM international symposium on software testing and analysis, Seattle, USA, pp 109–123

  8. Boute RT (1974) Distinguishing sets for optimal state identification in checking experiments. IEEE Trans Comput 23:874–877

    Article  Google Scholar 

  9. Brglez F (1996) ACM/SIGMOD benchmark dataset. Available online at http://www.cbl.ncsu.edu/benchmarks/Benchmarks-upto-1996.html. Accessed 13 Feb 2014

  10. Brinksma E (1988) A theory for the derivation of tests. In: Proceedings of protocol specification, testing, and verification VIII, North-Holland, Atlantic City, pp 63–74

  11. Broy M, Jonsson B, Katoen JP, Leucker M, Pretschner A (eds) (2005) Model-based testing of reactive systems: advanced lectures. In: Lecture notes in Computer Science, vol 3472. Springer, Berlin

  12. Chakaravarthy VT, Pandit V, Roy S, Awasthi P, Mohania M (2007) Decision trees for entity identification: approximation algorithms and hardness results. In: Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, ACM, PODS ’07, pp 53–62

  13. Chakaravarthy VT, Pandit V, Roy S, Awasthi P, Mohania MK (2011) Decision trees for entity identification: approximation algorithms and hardness results. ACM Trans Algorithms 7(2):15:1–15:22. doi:10.1145/1921659.1921661

    Article  MathSciNet  Google Scholar 

  14. Chan WYL, Vuong CT, Otp MR (1989) An improved protocol test generation procedure based on UIOS. SIGCOMM Comput Commun Rev 19(4):283–294. doi:10.1145/75247.75274

    Article  Google Scholar 

  15. Chen J, Hierons R, Ural H, Yenigun H (2005) Eliminating redundant tests in a checking sequence. In: Khendek F, Dssouli R (eds) Testing of communicating systems. Lecture notes in Computer Science, vol 3502. Springer, Berlin, pp 371–371. doi:10.1007/11430230_11

  16. Chow TS (1978) Testing software design modelled by finite state machines. IEEE Trans Softw Eng 4:178–187

    Article  MATH  Google Scholar 

  17. da Silva Simão A, Petrenko A (2008) Generating checking sequences for partial reduced finite state machines. In: TestCom/FATES, pp 153–168

  18. da Silva Simão A, Petrenko A (2010) Checking completeness of tests for finite state machines. IEEE Trans Comput 59(8):1023–1032

    Article  MathSciNet  Google Scholar 

  19. da Silva Simão A, Petrenko A, Yevtushenko N (2012) On reducing test length for fsms with extra states. Softw Test Verif Reliab 22(6):435–454

    Article  Google Scholar 

  20. Dahbura A, Sabnani K, Uyar M (1990) Formal methods for generating protocol conformance test sequences. Proc IEEE 78(8):1317–1326

    Article  Google Scholar 

  21. Dinçtürk ME (2009) A two phase approach for checking sequence generation. Master’s thesis, Sabanci University

  22. Dorofeeva R, El-Fakih K, Maag S, Cavalli AR, Yevtushenko N (2010) FSM-based conformance testing methods: a survey annotated with experimental evaluation. Inf Softw Technol 52(12):1286–1297. doi:10.1016/j.infsof.2010.07.001

    Article  Google Scholar 

  23. Eppstein D (1990) Reset sequences for monotonic automata. SIAM J Comput 19(3):500–510

    Article  MATH  MathSciNet  Google Scholar 

  24. Friedman A, Menon P (1971) Fault detection in digital circuits. Computer applications in electrical engineering series. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  25. Fujiwara S, v Bochmann G, Khendek F, Amalou M, Ghedamsi A (1991) Test selection based on finite state models. IEEE Trans Softw Eng 17(6):591–603

    Article  Google Scholar 

  26. Garey MR, Johnson DS (1979) Computers and intractability. W. H. Freeman and Company, New York

    MATH  Google Scholar 

  27. Gill A (1962) Introduction to the theory of finite state machines. McGraw-Hill, New York

    MATH  Google Scholar 

  28. Gonenc G (1970) A method for the design of fault detection experiments. IEEE Trans Comput 19:551–558

    Article  Google Scholar 

  29. Güniçen C, Türker UC, Ural H, Yeniün H (2011) Generating preset distinguishing sequences using SAT. In: Gelenbe E, Lent R, Sakellari G (eds) Proceedings of 26th international symposium on Computer and information sciences II. Springer, London, UK, ISCIS ’11, p 487–493, 26–28 Sept 2011. doi:10.1007/978-1-4471-2155-8_62

  30. Haydar M, Petrenko A, Sahraoui H (2004) Formal verification of web applications modeled by communicating automata. In: Formal techniques for networked and distributed systems (FORTE 2004), Springer Lecture Notes in Computer Science, vol 3235. Springer, Madrid, pp 115–132

  31. Hennie FC (1964) Fault-detecting experiments for sequential circuits. In: Proceedings of fifth annual symposium on switching circuit theory and logical design, Princeton, NJ, pp 95–110

  32. Hierons RM, Ural H (2002) Reduced length checking sequences. IEEE Trans Comput 51(9):1111–1117

    Article  MathSciNet  Google Scholar 

  33. Hierons RM, Ural H (2006) Optimizing the length of checking sequences. IEEE Trans Comput 55:618–629

    Article  Google Scholar 

  34. Hierons RM, Jourdan GV, Ural H, Yenigun H (2009) Checking sequence construction using adaptive and preset distinguishing sequences. In: Proceedings of the 2009 seventh IEEE international conference on software engineering and formal methods, IEEE Computer Society, Washington, DC, USA, SEFM ’09, pp 157–166. doi:10.1109/SEFM.2009.12

  35. Holzmann GJ (1991) Design and validation of computer protocols. Prentice-Hall software series. Prentice Hall, Englewood Cliffs

    Google Scholar 

  36. Hopcroft JE (1971) An n log n algorithm for minimizing the states in a finite automaton. In: Kohavi Z (ed) The theory of machines and computation. Academic Press, New York, pp 189–196

    Google Scholar 

  37. Hyafil L, Rivest RL (1976) Constructing optimal binary decision trees is NP-complete. Inf Process Lett 5:15–17

    Article  MATH  MathSciNet  Google Scholar 

  38. Jourdan GV, Ural H, Yenigun H, Zhang J (2010) Lower bounds on lengths of checking sequences. Form Asp Comput 22(6):667–679

    Article  MATH  Google Scholar 

  39. Kohavi Z (1978) Switching and finite state Automata theory. McGraw-Hill, New York

    Google Scholar 

  40. Kushik N, El-Fakih K, Yevtushenko N (2013) Adaptive homing and distinguishing experiments for nondeterministic finite state machines. In: Yenigun H, Yilmaz C, Ulrich A (eds) Testing software and systems. Lecture Notes in Computer Science, vol 8254. Springer, Berlin, pp 33–48

  41. Laber ES, Nogueira LT (2004) On the hardness of the minimum height decision tree problem. Discret Appl Math 144(1–2):209–212. doi:10.1016/j.dam.2004.06.002

    Article  MATH  MathSciNet  Google Scholar 

  42. Lai R (2002) A survey of communication protocol testing. J Syst Softw 62(1):21–46. doi:10.1016/S0164-1212(01)00132-7

    Article  Google Scholar 

  43. Lee D, Yannakakis M (1994) Testing finite-state machines: state identification and verification. IEEE Trans Comput 43(3):306–320

    Article  MathSciNet  Google Scholar 

  44. Lee D, Yannakakis M (1996) Principles and methods of testing finite-state machines—a survey. Proc IEEE 84(8):1089–1123

    Article  Google Scholar 

  45. Lee D, Sabnani K, Kristol D, Paul S (1996) Conformance testing of protocols specified as communicating finite state machines-a guided random walk based approach. IEEE Trans Commun 44(5):631–640. doi:10.1109/26.494307

    Article  Google Scholar 

  46. Low S (1993) Probabilistic conformance testing of protocols with unobservable transitions. In: Proceedings of the international conference on network protocols, pp 368–375. doi:10.1109/ICNP.1993.340890

  47. Mihail M, Papadimitriou CH (1994) On the random walk method for protocol testing. In: Proceedings of computer-aided verification (CAV 1994). Lecture notes in Computer Science, vol 818. Springer, Berlin, pp 132–141

  48. Moore EP (1956) Gedanken-experiments. In: Shannon C, McCarthy J (eds) Automata studies. Princeton University Press, Princeton

    Google Scholar 

  49. Petrenko A, Yevtushenko N (2005) Testing from partial deterministic FSM specifications. IEEE Trans Comput 54(9):1154–1165

    Article  Google Scholar 

  50. Pomeranz I, Reddy SM (1997) Test generation for multiple state-table faults in finite-state machines. IEEE Trans Comput 46(7):783–794

    Article  Google Scholar 

  51. Sabnani K, Dahbura A (1988) A protocol test generation procedure. Comput Netw 15(4):285–297

    Google Scholar 

  52. Sidhu DP, Leung TK (1989) Formal methods for protocol testing: a detailed study. IEEE Trans Softw Eng 15(4):413–426

    Article  Google Scholar 

  53. Sokolovskii MN (1971) Diagnostic experiments with automata. Cybern Syst Anal 7:988–994. doi:10.1007/BF01068822

    Google Scholar 

  54. Stowell S (2012) Instant R: an introduction to R for statistical analysis. Jotunheim Publishing. URL http://www.instantr.com/book

  55. Teetor P (2011) R Cookbook, 1st edn. O’Reilly. URL http://oreilly.com/catalog/9780596809157

  56. Türker UC, Yenigün H (2012) Hardness and inapproximability results for minimum verification set and minimum path decision tree problems. Technical Report 19826, Sabancı University, Istanbul, Turkey. URL http://research.sabanciuniv.edu/19826/

  57. Ural H, Zhu K (1993) Optimal length test sequence generation using distinguishing sequences. IEEE/ACM Trans Netw 1(3):358–371

    Article  Google Scholar 

  58. Ural H, Wu X, Zhang F (1997) On minimizing the lengths of checking sequences. IEEE Trans Comput 46(1):93–99

    Article  Google Scholar 

  59. Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-based testing approaches. Softw Test Verif Reliab 22(5):297–312

    Article  Google Scholar 

  60. Vasilevskii MP (1973) Failure diagnosis of automata. Cybern Sys Anal 9:653–665. doi:10.1007/BF01068590

    Article  Google Scholar 

  61. Vuong ST, Chan WWL, Ito MR (1989) The UIOv-method for protocol test sequence generation. In: The 2nd international workshop on protocol test systems, Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüsnü Yenigün.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Türker, U.C., Yenigün, H. Hardness and inapproximability of minimizing adaptive distinguishing sequences. Form Methods Syst Des 44, 264–294 (2014). https://doi.org/10.1007/s10703-014-0205-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10703-014-0205-0

Keywords