Skip to main content
Log in

How to achieve consistency for 3D city models

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Consistency is a crucial prerequisite for a large number of relevant applications of 3D city models, which have become more and more important in GIS. Users need efficient and reliable consistency checking tools in order to be able to assess the suitability of spatial data for their applications. In this paper we provide the theoretical foundations for such tools by defining an axiomatic characterization of 3D city models. These axioms are effective and efficiently supported by recent spatial database management systems and methods of Computational Geometry or Computer Graphics. They are equivalent to the topological concept of the 3D city model presented in this paper, thereby guaranteeing the reliability of the method. Hence, each error is detected by the axioms, and each violation of the axioms is in fact an error. This property, which is proven formally, is not guaranteed by existing approaches. The efficiency of the method stems from its locality: in most cases, consistency checks can safely be restricted to single components, which are defined topologically. We show how a 3D city model can be decomposed into such components which are either topologically equivalent to a disk, a sphere, or a torus, enabling the modeling of the terrain, of buildings and other constructions, and of bridges and tunnels, which are handles from a mathematical point of view. This enables a modular design of the axioms by defining axioms for each topological component and for the aggregation of the components. Finally, a sound, consistent concept for aggregating features, i.e. semantical objects like buildings or rooms, to complex features is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Geometrically, a surface embedded in \( {\mathbb{R}^3} \) is a continuous, differentiable mapping from \( {\mathbb{R}^2} \) to \( {\mathbb{R}^3} \).

  2. The notion of “closed” as used throughout this paper [1, 24] should not be mixed up with the other point set topological notion of “closed” meaning that the boundary points of a point set belong to that set [1, 2].

  3. The focus of the concepts in [20] was the tessellation property; hence these axioms differ slightly from the axioms presented in this paper. Particularly, the umbrella axiom (axiom 3 in Table 1) ensuring the 2-manifold-property was not discussed in [20]. The 2.8D maps in [20] are topologically equivalent to a disk. In this paper, a more general notion of 2.8D maps is presented, which may be generalized to allow handles. Orientability (axiom 14 in Table 1)—in combination with other axioms—is a simple method to check whether the outer boundary of the map is homeomorphic to the boundary of a disk. Axiom 11 (uniqueness of the unbounded face OUT) is a clarification, which is implied by axiom 9 in [20].

  4. Below-surface solids are unique and bounded partially by 2.8D maps; they differ from solids representing below earth surface features [10], which are bounded completely.

References

  1. Aleksandroff PS (1961) Elementary concepts of topology. Dover, New York

    Google Scholar 

  2. Armstrong MA (2005) Basic topology, 1st edn. Springer, New York

    Google Scholar 

  3. Bungartz HJ, Griebel M, Zenger C (2002) Einführung in die Computergraphik. Grundlagen, Geometrische Modellierung, Algorithmen. 2nd edn, Vieweg, (in German)

  4. Booch G, Rumbaugh J, Jacobson I (1997) Unified modeling language user guide. Addison-Wesley, Reading

    Google Scholar 

  5. Coors V (2003) 3D-GIS in networking environments. Comput Environ Urban Syst 27(4):345–357. doi:10.1016/S0198-9715(02)00035-2

    Article  Google Scholar 

  6. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Math 1:269–271. doi:10.1007/BF01386390

    Article  Google Scholar 

  7. ECMA (2005) Universal 3D File Format, Standard ECMA-363, 2nd edn. http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-363.pdf

  8. Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5(2):161–174. doi:10.1080/02693799108927841

    Article  Google Scholar 

  9. Ellul C, Haklay M (2006) Requirements for topology in 3D GIS. Trans GIS 10(2):157–175. doi:10.1111/j.1467-9671.2006.00251.x

    Article  Google Scholar 

  10. Emgård L, Zlatanova S (2008) Implementation alternatives for an integrated 3D Information Model. In: van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in 3D geoinformation systems, Lecture Notes in Geoinformation and Cartography, Chapter 17. Springer, pp 313–329

  11. Flick S (1999) Konzeption eines adaptiven frameworks für 3D-GIS. PhD thesis. Fraunhofer IRB Verlag, Stuttgart. (in German)

  12. Foley A, van Dam A, Feiner S, Hughes J (1995) Computer graphics: principles and practice, 2nd edn. Addison Wesley Longman, Reading

    Google Scholar 

  13. Frank AU (2001) Tiers of ontology and consistency constraints in geographic information systems. Int J Geogr Inf Sci 15(7). doi:10.1080/13658810110061144

  14. Gold C (2003) But is it GIS? J Geospatial Eng 5(2):11–26

    Google Scholar 

  15. Gröger G (2000) Modellierung raumbezogener Objekte und Datenintegrität in GIS, Wichmann, (in German)

  16. Gröger G (2006) Konsistente Modellierung virtueller Städte und Regionen. Habilitation Thesis, University of Bonn, (in German)

  17. Gröger G, Kolbe TH, Czerwinski A, Nagel C (2008) OpenGIS city geography markup language (CityGML), Implementation Specification, Version 1.0.0, Implementation Specification, OGC Doc. No. 08-007r1

  18. Gröger G, Plümer L (1997) Provably correct and complete transaction rules for GIS. In: Laurini R, Bergougnoux P, Pissinou N (eds) Proc of the 5th Int. ACM Workshop on Advances in Geographic Information Systems (ACM-GIS’97), Las Vegas, ACM Press

    Google Scholar 

  19. Gröger G, Plümer L (2003) Exploiting 2D concepts to achieve consistency in 3D GIS applications. In: Hoel E, Rigaux P (eds) Proc. of the 11th Int. Symposium on Advances in Geographic Information Systems (ACM-GIS’03), November 7–8, New Orleans, ACM Press

    Google Scholar 

  20. Gröger G, Plümer L (2005) How to get 3-D for the price of 2-D—topology and consistency of 3-D urban GIS. Geoinformatica 9(2):139–158 Springer

    Article  Google Scholar 

  21. Google (2005) Google Earth Keyhole Markup Language KML 2.0. http://www.keyhole.com/kml/docs/Google_Earth_KML.pdf

  22. Harary F (1969) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  23. Hatcher A (2001) Algebraic topology. Cambridge University Press, Cambridge

    Google Scholar 

  24. Herring J (ed) (2001) The OpenGIS abstract specification, topic 1: feature geometry (ISO 19107 Spatial Schema), Version 5. OGC Document Number 01-101

  25. Herring J (ed) (2006a) OpenGIS implementation specification for geographic information—simple feature access—part 1: common architecture. Version: 1.2.0 Doc. No. OGC 06-103r3

  26. Herring J (ed) (2006b) OpenGIS Implementation specification for geographic information—simple feature access—part 1: SQL option. Version: 1.2.0 Doc. No. OGC 06-104r3

  27. ISO TC 211, ISO/FDIS 19109 (2005) Geographic information—rules for application schema. Final Draft International Standard. International Organization for Standardization, Technical Committee 211

  28. Jungnickel D (2004) Graphs, networks and algorithms, 2nd edn. Springer, New York

    Google Scholar 

  29. Kainz W (1995) Logical consistency. In: Guptill SC, Morrison JL (eds) Elements of spatial data quality. Elsevier, Oxford

    Google Scholar 

  30. Kolbe TH, Gröger G, Plümer L (2005) CityGML—interoperable access to 3D city models. In: van Oosterom P, Zlatanova S, Fendel EM (eds) Geo-information for disaster management. Proc. of the 1st International Symposium on Geo-information for Disaster Management, Delft. Springer

    Google Scholar 

  31. Kolbe TH, Plümer L (2004) Bridging the Gap between GIS and CAAD. GIM International 18(7):12–15

    Google Scholar 

  32. Kuhn W (2007) An image-schematic account of spatial categories. Spatial Information Theory, 8th International Conference, COSIT 2007. Melbourne, Australia. Lecture Notes in Computer Science 4736. Springer, pp 152–168

  33. Löwner M-O (2005) Semantische Modellierung von steilen Hangbereichen in einem Geoinformationssystem unter besonderer Berücksichtigung von Wänden und steilen Hangbereichen. PhD thesis, University of Bonn, (in German)

  34. Mäntylä M (1988) An introduction to solid modeling. Computer Science, Rockville

    Google Scholar 

  35. Molenaar M (1992) A topology for 3D vector maps. ITC Journal 1992, No 1. The International Institute for Aerospace Survey and Earth Sciences, The Netherlands, pp. 25–33

  36. Molenaar M (1991) Formal data structures, object dynamics and consistency rules. In: Ebner H, Fritsch D, Heipke C (eds) Digital photogrammetric systems, Wichmann, Karlsruhe, pp 262–273

  37. Mortenson M (1997) Geometric modeling, 2nd edn. Wiley, New York

    Google Scholar 

  38. Okabe A, Boots B, Sugihara K (1992) Spatial tessellations. Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  39. Oracle (2009) Oracle spatial Developers Guide 11g release 1 (11.1). Oracle. http://www.oracle.com/pls/db111/to_pdf?pathname=appdev.111/b28400.pdf

  40. Penninga F, van Oosterom P (2007) A compact topological DBMS data structure for 3D topography. In: Fabrikant S, Wachowicz M (eds) Proceedings of the Geographic Information Science and Systems in Europe, Agile Conference. Lecture notes in geoinformation and cartography. Springer, New York, pp 455–471

  41. Pilouk M (1996) Integrated modelling for 3D GIS. PhD Thesis, ITC Publication Series No. 40, Enschede, The Netherlands

  42. Plümer L, Gröger G (1996) Nested maps—a formal, provably correct object model for spatial aggregates. Proc. of the fourth ACM Workshop on Advances in Geographic Information Systems. Rockville, Maryland, pp 77–84, November 15–16, 1996. ACM

  43. Plümer L, Gröger G (1997) Achieving integrity in geographic information systems—maps and nested maps. GeoInformatica 1(4):345–366. doi:10.1023/A:1009706411129

    Article  Google Scholar 

  44. Portele C (2007) OpenGIS Geography Markup Language (GML) encoding standard, version 3.2.1, OGC Doc. No. 07-036

  45. Preparata FP, Shamos MI (1985) Computational geometry. Springer, Berlin

    Google Scholar 

  46. Seifert H, Threlfall WA (1980) Textbook of topology. Academic, New York

    Google Scholar 

  47. Staab S, Studer R (2004) Handbook on ontologies. Springer, Berlin

    Google Scholar 

  48. Tse ROC, Gold C (2002) TIN meets CAD—extending the TIN concept to GIS. In: Sloot PMA et al. (eds) Computational Science - ICCS 2002, Lecture Notes in Computer Science 2331, pp 135–143. doi:10.1007/3-540-47789-6

  49. van Oosterom P, Stoter J, Jansen E (2006) Bridging the worlds of CAD and GIS. In: Zlatanova S, Prosperi D (eds) Large-scale 3D data integration: challenges and opportunities. CRC, Boca Raton, pp 9–36

    Google Scholar 

  50. VRML97 (1997) Information technology—computer graphics and image processing—the Virtual Reality Modeling Language (VRML)—part 1: functional specification and UTF-8 encoding. Part 1 of ISO/IEC Standard 14772-1

  51. Weiler K (1988) The radial edge data structure: a topological representation for non-manifold geometric boundary modeling. In: Encarnacao JL, Wozny MJ, McLaughlin HW (eds) Geometric modeling for CAD applications. Elsevier Science, Amsterdam, pp 3–36

    Google Scholar 

  52. Web3D (2005) X3D international specification standards. http://www.web3d.org/x3d/specifications/x3d_specification.html

  53. Zlatanova S, van Oosterom P (2004) GIS/CAD integration. GIM International 11(11):51–53

    Google Scholar 

  54. Zlatanova S (2000) 3D-GIS for urban environments. PhD thesis, ITC publication 69, Enschede, the Netherlands, The International Institute for Aerospace Survey and Earth Sciences

Download references

Acknowledgements

We thank Gerrit Kowatsch for assistance in preparing the illustrations and Jan Prinz for proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröger, G., Plümer, L. How to achieve consistency for 3D city models. Geoinformatica 15, 137–165 (2011). https://doi.org/10.1007/s10707-009-0091-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-009-0091-6

Keywords

Navigation