Skip to main content
Log in

Moving GeoPQL: a pictorial language towards spatio-temporal queries

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Nowadays, two of the main challenges involving spatio-temporal databases concern the integration of their spatial and temporal features to store and query spatial objects changing over time, and the development of a simple and friendly language to query spatio-temporal data. In this paper we gather these two challenges by proposing Moving GeoPQL, a language defined in order to express spatio-temporal queries, extending the Geographical Pictorial Query language (GeoPQL). The proposed evolution is based on the concept of temporal layer that allows specifying the spatial configuration of moving objects in a time interval. More layers allow representing changes in terms of spatial configurations. Some examples of query formulation and system operation are described in the article. Finally, an experiment has been carried out for evaluating the usability of the Moving GeoPQL system. Results of this experiment showed that it facilitates the spatio-temporal query formulation since it is more user-friendly and ease to use compared to textual query languages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The path of a moving point ψ is specified by an oriented polyline, representing the start_point, start_time, the end_point and the end_time of ψ.

References

  1. Abraham T, Roddick JF (1999) Survey of spatio-temporal databases. GeoInformatica 3(1):61–99

    Article  Google Scholar 

  2. Allen JF, Ferguson G (1994) Actions and events in interval temporal logic, Technical Report 521

  3. Aufaure-Portier M-A, Bonhomme C (1999) A high level visual language for spatial data management, 3rd International Conference on Visual Information Systems (Visual’99), Amsterdam, The Netherlands, 2–4 June

  4. Barnum CM (2002) Usability testing and research. Longman, New York

    Google Scholar 

  5. Blaser AD, Egenhofer MJ (2000) A visual tool for querying geographic databases. Advanced Visual Interfaces – AVI 2000. ACM Press, Palermo, pp 211–216

    Google Scholar 

  6. Bonhomme C, Aufaure-Portier M-A, Trépied C (2000) Metaphors for visual querying spatio-temporal databases. Proceedings of the 4th International Conference on Advances in Visual Information Systems, pp 140–153

  7. Calcinelli D, Mainguenaud M (1994) Cigales, a visual language for geographical information system: the user interface. J Vis Lang Comput 5(2):113–132

    Article  Google Scholar 

  8. Downey LL (2007) Group usability testing: evolution in usability techniques. Journal of Usability Studies 2(3):133–144

    Google Scholar 

  9. D’Ulizia A, Ferri F, Formica A, Grifoni P (2009) Approximating geographical queries. J Comput Sci Tech 24(6):1109–1124

    Article  Google Scholar 

  10. Eden B (2005) 3D visualization techniques: 2D and 3D information visualization resources, applications, and future. Library Technical Reports, 41, no. 1

  11. Egenhofer MJ (1997) Query processing in spatial-query-by-sketch. J Vis Lang Comput 8(4):403–424

    Article  Google Scholar 

  12. Egenhofer MJ, Richards JR (1993) Exploratory access to geographic data based on the map-overlay metaphor. J Vis Lang Comput 4:105–125

    Article  Google Scholar 

  13. Erwig M, Güting RH, Schneider M, Vazirgiannis M (1999) Spatio-temporal data types: an approach to modeling and querying moving objects in databases. GeoInformatica 3(3):269–296

    Article  Google Scholar 

  14. Erwig M, Schneider M (2000) Query-by-Trace: visual predicate specification in spatio-temporal databases. In: Arisawa H, Catarci T (eds) Advances in visual information management—visual database systems. Kluwer, Boston, pp 199–218

    Google Scholar 

  15. Erwig M, Schneider M (2003) A visual language for the evolution of spatial relationships and its translation into a spatio-temporal calculus. J Vis Lang Comput 14:181–211, Elsevier

    Article  Google Scholar 

  16. Ferri F, Rafanelli M (2005) GeoPQL: a geographical pictorial query language that resolves ambiguities in query interpretation. Journal of Data Semantics, Springer-Verlag Publ., LNCS n. 3534, pp 50–80

  17. Ferri F, Massari F, Rafanelli M (1999) A pictorial query language for geographic features in an object-oriented environment. J Vis Lang Comput 10(6):641–671

    Article  Google Scholar 

  18. Güting RH, Bohlen M, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM Trans Database Syst 25(1):1–42

    Article  Google Scholar 

  19. Güting RH, de Almeida VT, Ansorge D, Behr T, Ding Z, Höse T, Hoffmann F, Spiekermann M, Telle U (2005) Secondo: an extensible dbms platform for research prototyping and teaching. In ICDE, pp 1115–1116

  20. Güting RH (1988) Geo-Relational algebra: a model and query language for geometric database systems. Workshop on Computational Geometry’1988, pp 90–96

  21. Güting RH (1989) Gral: an extensible relational database system for geometric applications. VLDB’1989. pp 33–44

  22. Kaushik S, Rundensteiner EA (1998) SVIQUEL: a spatial visual query and exploration language, 9th International Conference on Database and Expert Systems Applications (DEXA’98), LNCS N. 1460, pp 290–299

  23. Langran G (1988) A framework for temporal geographic information systems. Cartographica 25(3)

  24. Langran G (1992) Time in geographical information systems, ed. Taylor & Francis, London

  25. Lee YC, Chin F (1995) An iconic query language for topological relationship in GIS. Int J Geogr Inform Syst 9(1):25–46

    Article  Google Scholar 

  26. Lin FT (1998) Many sorted algebraic data models for GIS. Int J Geogr Inform Sci 12:765–788

    Article  Google Scholar 

  27. Meyer B (1992) Beyond icons: towards new metaphors for visual query languages for spatial information systems. In: Cooper R (ed) Proceedings of the first international workshop on interfaces to database systems. Springer-Verlag 1993, Glasgow, UK, pp 113–135

  28. Papadias D, Sellis T (1995) A pictorial query-by-example language. J Vis Lang Comput 6(1):53–72

    Article  Google Scholar 

  29. Pelekis N, Theodoulidis B, Kopanakis I, Theodoridis Y (2004) Literature review of spatio-temporal database models. Knowl Eng Rev 19:235–274

    Article  Google Scholar 

  30. Peuquet D, Wentz E (1994) An approach for time-based spatial analysis of spatio-temporaldata, Advances in GIS Research, Proceedings 1. pp 489–504

  31. Rahman SA, Bhalla S, Hashimoto T (2005) Query-By-Object interface for information requirement elicitation implementation. Fourth International Conference on Mobile Business (ICMB2005). IEEE Computer Society, Sydney, Australia, pp 667–670

  32. Sistla P, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. Proceedings of the 13th International Conference on Data Engineering (ICDE13), Birmingham, UK

  33. Sourina O (2007) Visual spatio-temporal function-based querying. The Visual Computer 23(5):335–346

    Article  Google Scholar 

  34. St John M, Cowen MB, Smallman HS, Oonk HM (2001) The use of 2D and 3D displays for shape-understanding versus relative-position tasks. Hum Factors 43(1):79–98

    Article  Google Scholar 

  35. Tory M, Kirkpatrick AE, Atkins MS, Möller T (2006) Visualization task performance with 2D, 3D, and combination displays. IEEE Trans Vis Comput Graph 12(1):2–13

    Article  Google Scholar 

  36. Tryfona N, Jensen CS (1999) Conceptual data modeling for spatiotemporal applications. GeoInformatica 3:245–268

    Article  Google Scholar 

  37. Vakaloudis A, Theodoulidis B (1999) Modelling, querying and developing spatiotemporal applications based on VRML. Proceedings of the 7th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media (WSCG’99), Vol. III, Univ.of West Bohemia Press

  38. Wessel M, Haarslev V (1998) VISCO: bringing visual spatial querying to reality. Proceedings of the IEEE symposium on visual languages. EEE Computer Society, Halifax, pp 170–179

    Google Scholar 

  39. Worboys MF (1992) A model for spatio-temporal information. Proceedings of the 5th International Symposium on Spatial Data Handling, Vol. 2, pp 602–611

  40. Worboys MF (1994) Object-oriented approaches to geo-referenced information. Int J Geogr Inform Syst 8:385–399

    Article  Google Scholar 

  41. Yuan M (1997) Use of a three-domain representation to enhance GIS support for complex spatio-temporal queries, Transactions in GIS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ferri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ulizia, A., Ferri, F. & Grifoni, P. Moving GeoPQL: a pictorial language towards spatio-temporal queries. Geoinformatica 16, 357–389 (2012). https://doi.org/10.1007/s10707-011-0135-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-011-0135-6

Keywords

Navigation