Skip to main content

Modeling vague spatial data warehouses using the VSCube conceptual model

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Although many real world phenomena are vague and characterized by having uncertain location or vague shape, existing spatial data warehouse models do not support spatial vagueness and then cannot properly represent these phenomena. In this paper, we propose the VSCube conceptual model to represent and manipulate shape vagueness in spatial data warehouses, allowing the analysis of business scores related to vague spatial data, and therefore improving the decision-making process. Our VSCube conceptual model is based on the cube metaphor and supports geometric shapes and the corresponding membership values, thus providing more expressiveness to represent vague spatial data. We also define vague spatial aggregation functions (e.g. vague spatial union) and vague spatial predicates to enable vague SOLAP queries (e.g. intersection range queries). Finally, we introduce the concept of vague SOLAP and its operations (e.g. drill-down and roll-up). We demonstrate the applicability of our model by describing an application concerning pest control in agriculture and by discussing the reuse of existing models in the VSCube conceptual model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Bédard Y, Han J (2009) Fundamentals of spatial data warehousing for geographic knowledge discovery. In: Geographic data mining and knowledge discovery, 2nd. Taylor & Francis

  2. Bejaoui L (2009) Qualitative topological relationships for objects with possibly vague shapes: implications on the specification of topological integrity constraints in transactional spatial databases and in spatial data warehouses. PhD Thesis, Université Laval, Québec

  3. Bejaoui L, Pinet F, Bédard Y, Schneider M (2009) Qualified topological relations between spatial objects with possible vague shape. IJGIS 23(7):877–921

    Google Scholar 

  4. Bejaoui L, Pinet F, Schneider M, Bédard Y (2010) OCL for formal modelling of topological constraints involving regions with broad boundaries. GeoInformatica 14(3):353–378

    Article  Google Scholar 

  5. Bimonte S, Kang M-A (2010) Towards a model for the multidimensional analysis of field data. In: ADBIS. pp 111–125

  6. Bimonte S, Tchounikine A, Miquel M, Pinet F (2010) When spatial analysis meets OLAP: multidimensional model and operators. IJDWM 6(4):33–60

    Google Scholar 

  7. Boulil K, Bimonte S, Mahboubi H (2010) Towards the definition of spatial data warehouses integrity constraints with spatial OCL. In: DOLAP. pp 31–35

  8. Burrough PA, Frank AU (eds) (1996) Geographic objects with indeterminate boundaries. GISDATA 2. Taylor & Francis

  9. California Department of Public Health. Agricultural pesticide use web mapping service. Available at: http://www.ehib.org/tool.jsp?tool_key=18. Visited: Mar 2013

  10. Ciferri C, Ciferri R, Gómez L, Schneider M, Vaisman A, Zimányi E (2013) Cube algebra: a generic user-centric model and query language for OLAP cubes. IJDWM 9(2):39–65

    Google Scholar 

  11. Clementini E, Di Felice P (1996) An algebraic model for spatial objects with indeterminate boundaries. In: Burrough PA, Frank AU. Geographic objects with indeterminate boundaries—GISDATA 2:155–169

  12. Clementini E, Di Felice P (1997) Approximate topological relations. Int J Approx Reason 16:173–204

    Article  Google Scholar 

  13. Cohn AG, Gotts NM (1996) The egg-yolk representation of regions with indeterminate boundaries. In: Burrough PA, Frank AU. Geographic objects with indeterminate boundaries—GISDATA 2:171–187

  14. Dilo A, Bos P, Kraipeerapun P, de By R (2006) Storage and manipulation of vague spatial objects using existing GIS functionality. In: Bordogna G, Psaila G. Flexible databases supporting imprecision and uncertainty. Springer, pp 293–321

  15. Dilo A, de By RA, Stein A (2007) A system of types and operators for handling vague spatial objects. IJGIS 21(4):397–426

    Google Scholar 

  16. Egenhofer MJ, Franzosa RD (1991) Point set topological relations. IJGIS 5(2):161–174

    Google Scholar 

  17. Elmasri R, Navathe S (2010) Fundamentals of database systems, 6th. Addison-Wesley

  18. Erwig M, Schneider M (1997) Vague regions. In: SSD, LNCS 1262. Springer Verlag, pp 298–320

  19. Hazarika S, Cohn A (2001) A taxonomy for spatial vagueness, an alternative egg-yolk interpretation. In: COSIT. pp 92–107

  20. Kanjilal V, Liu H, Schneider M (2010) Plateau regions: an implementation concept for fuzzy regions in spatial databases and GIS. In: IPMU, LNAI 6178:624–633

  21. Leonard R, Knisel W, Still D (1987) GLEAMS: groundwater loading effects of agricultural management systems. Trans ASAE 30(5):1403–1418

    Article  Google Scholar 

  22. Leung Y (1987) On the imprecision of boundaries. Geogr Anal 19(2):125–151

    Article  Google Scholar 

  23. Malinowski E, Zimányi E (2008) Advanced data warehouse design: from conventional to spatial and temporal applications. Springer

  24. Malinowski E, Zimányi E (2007) Logical representation of a conceptual model for spatial data warehouses. Geoinformatica 11(4):431–457

    Article  Google Scholar 

  25. Morris A, Kokhan S (eds) (2006) Geographic uncertainty in environmental security. Springer

  26. Nascimento SM, Tsuruda RM, Siqueira TLL, Times VC, Ciferri RR, Ciferri CDA (2011) The spatial star schema benchmark. In: Geoinfo. pp 73–84

  27. Neitsch S, Arnold J, Willians J (2011) Soil and water assessment tool: theoretical documentation. In: Texas A&M University TR-406

  28. Pauly A, Schneider M (2010) VASA: an algebra for vague spatial data in databases. Inf Syst 35(1):111–138

    Article  Google Scholar 

  29. Perez D, Somodevilla M, Pineda IH (2010) Fuzzy spatial data warehouse: a multidimensional model. In: Advances in decision support systems. Intech

  30. Pinet F, Schneider M (2010) Precise design of environmental data warehouses. Oper Res 10(3):349–369

    Google Scholar 

  31. Reis R, Egenhofer M, Matos J (2006) Topological relations using two models of uncertainty for lines. In: Accuracy. pp 286–295

  32. Salehi M (2009) Developing a model and a language to identify and specify the integrity constraints in spatial data cubes. PhD Thesis, Université Laval, Québec

  33. Silva J, Castro Vera AS, Oliveira AG, Fidalgo R, Salgado AC, Times VC (2007) Querying geographical data warehouses with GeoMDQL. In: SBBD. pp 223–237

  34. Schneider M (2008) Fuzzy spatial data types for spatial uncertainty management in databases. In: Handbook of research on fuzzy information processing in databases. IGI. pp 490–515

  35. Siqueira TLL, Ciferri CDA, Times VC, Ciferri RR (2011) The SB-index and the HSB-index: efficient indices for spatial data warehouses. Geoinformatica 16(1):165–205

    Article  Google Scholar 

  36. Shi Y, Zhang C, Liang A, Yuan H (2007) Fuzzy control of the spraying medicine control system. In: CCTA. pp 1087–1094

  37. Siqueira TLL, Ciferri RR, Times VC, Ciferri CDA (2012) Towards vague geographic data warehouses. In: GISCience. pp 173–186

  38. Siqueira TLL, Mateus RC, Ciferri RR, Times VC, Ciferri CDA (2011) Querying vague spatial information in geographic data warehouses. In: AGILE conference. pp 379–397

  39. Stefanovic N, Han J, Koperski K (2000) Object-based selective materialization for efficient implementation of spatial data cubes. TKDE 12(6):938–958

    Google Scholar 

  40. Tang X, Kainz W, Wang H (2010) Topological relations between fuzzy regions in a fuzzy topological space. Int J Appl Earth Obs Geoinf 12(2):S151–S165

    Article  Google Scholar 

  41. Thelin G, Gianessi L (2000) Method for estimating pesticide use for county areas of the conterminous United States. In: US Geological Survey

  42. Vaisman A, Zimányi E (2009) A multidimensional model representing continuous fields in spatial data warehouses. In: ACM GIS. pp 168–177

  43. Verstraete J, De Tré G, De Caluwe R, Hallez A (2005) Field based methods for the modeling of fuzzy spatial data. In: Petry F, Robinson V, Cobb M. Fuzzy modeling with spatial information for geographic problems. Springer, pp 42–69

  44. Verstraete J, De Tré G, Hallez A (2006) Bitmap based structures for the modeling of fuzzy entities. Control Cybern 35(1):147–164

    Google Scholar 

  45. Worboys M (1998) Imprecision in finite resolution spatial data. Geoinformatica 2:257–279

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the following Brazilian research agencies: FAPESP, CAPES, CNPq, INEP, and FINEP. The second author is funded by the grant #2011/23904-7, São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Rodrigues Ciferri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C. et al. Modeling vague spatial data warehouses using the VSCube conceptual model. Geoinformatica 18, 313–356 (2014). https://doi.org/10.1007/s10707-013-0186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-013-0186-y

Keywords