Skip to main content
Log in

Human mobility semantics analysis: a probabilistic and scalable approach

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

The popularity of smart mobile devices generated data, e.g., check-ins and geo-tagged status, offers new opportunity for better understanding human mobility regularity. Existing works on this problem usually resort to explicit frequency statistics models, such as association rules and sequential patterns, and rely on Euclidean distance to measure the spatial dependence. However, the noisiness and uncertainty natures of geospatial data hinder these methods’ application on human mobility in robust and intuitive way. Moreover, the mobility spatial data volume and accumulation speed challenge the traditional methods in efficiency, scalability, and time-space complexity aspects. In this context, we leverage full Bayesian sequential modeling, to revisit mobility regularity discovery from high level probabilistic semantic knowledge perspective, and to alleviate the inherent in mobility modeling and geo-data noisiness induced uncertainty. Specifically, the mobility semantics is embodied by virtue of underlying geospatial topics and topical transitions of mobility trajectories. A classic variational inference is derived to estimate posterior and predictive probabilities, and furthermore, the stochastic optimization is utilized to mitigate the costly computational overhead in message passing subroutine. The experimental results confirm that our approach not only reasonably recognizes the geospatial mobility semantic patterns, but also scales up well to embrace the massive spatial-temporal human mobility activity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://developer.foursquare.com/categorytree

References

  1. Albanna BH, Moawad IF, Moussa SM, Sakr MA (2015) Semantic Trajectories: a survey from modeling to application. Springer International Publishing, Cham, pp 59–76

    Google Scholar 

  2. Arase Y, Xie X, Hara T, Nishio S (2010) Mining people’s trips from large scale geo-tagged photos. In: Proceedings of the international conference on multimedia, MM ’10. ACM, New York, pp 133–142

  3. Asahara A, Maruyama K, Sato A, Seto K (2011) Pedestrian-movement prediction based on mixed markov-chain model. In: Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 25–33

  4. Assam R, Seidl T (2014) Context-based location clustering and prediction using conditional random fields. In: Proceedings of the 13th international conference on mobile and ubiquitous multimedia. ACM, pp 1–10

  5. Backstrom L, Sun E, Marlow C (2010) Find me if you can: Improving geographical prediction with social and spatial proximity. In: Proceedings of the 19th international conference on world wide web, WWW ’10. ACM, New York, pp 61–70

  6. Baratchi M, Meratnia N, Havinga PJ, Skidmore AK, Toxopeus BA (2014) A hierarchical hidden semi-markov model for modeling mobility data. In: Proceedings of the ACM international joint conference on pervasive and ubiquitous computing. ACM, p 2014

  7. Baumann P, Kleiminger W, Santini S (2013) The influence of temporal and spatial features on the performance of next-place prediction algorithms. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing. ACM, pp 449–45

  8. Bayir MA, Eagle N, Demirbas M (2009) Discovering spatiotemporal mobility profiles of cellphone users. In: Proceedings of the 10th IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM 2009), pp 1–9

  9. Beal MJ (2003) Variational algorithms for approximate Bayesian inference. PhD thesis, University of London

  10. Blei DM (2012) Probabilistic topic models. Commun ACM 55(4):77–84

    Article  Google Scholar 

  11. Blondel VD, Decuyper A, Krings G (2015) A survey of results on mobile phone datasets analysis. EPJ Data Sci 4(1):1

    Article  Google Scholar 

  12. Bogorny V, Kuijpers B, Alvares LO (2009) St-dmql: a semantic trajectory data mining query language. Int J Geogr Inf Sci 23(10):1245–1276

    Article  Google Scholar 

  13. Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Springer, pp 177–186

  14. Chang C-W, Fan Y-C, Wu K-C, Chen AL (2014) On the semantic annotation of daily places: a machine-learning approach. In: Proceedings of the 4th international workshop on location and the web. ACM, pp 3–8

  15. Chen M, Liu Y, Yu X (2014) Nlpmm: a next location predictor with markov modeling. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 186–197

  16. Cheng Z, Caverlee J, Lee K, Sui DZ (2011) Exploring millions of footprints in location sharing services. ICWSM 2011:81–88

    Google Scholar 

  17. Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1082–1090

  18. Crammer K, Singer Y (2001) On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2(Dec):265–292

    Google Scholar 

  19. Farrahi K, Gatica-Perez D (2011) Discovering routines from large-scale human locations using probabilistic topic models. ACM Trans Intell Syst Technol (TIST) 2 (1):3

    Google Scholar 

  20. Forney GD (1973) The viterbi algorithm. Proc IEEE 61(3):268–278

    Article  Google Scholar 

  21. Foti N, Xu J, Laird D, Fox E (2014) Stochastic variational inference for hidden Markov models. In: Advances in neural information processing systems, pp 3599–3607

  22. Gambs S, Killijian M-O, del Prado Cortez MN (2012) Next place prediction using mobility Markov chains. In: Proceedings of the first workshop on measurement, privacy, and mobility, MPM ’12. ACM, New York, pp 3:1–3:6

  23. Ganti R, Srivatsa M, Ranganathan A, Han J (2013) Inferring human mobility patterns from taxicab location traces. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing, UbiComp ’13. ACM, New York, pp 459–468

  24. Gelman A, Carlin JB, Stern HS, Rubin DB (2014) Bayesian data analysis, vol 2. Chapman & Hall/CRC Boca Raton, FL, USA

  25. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  Google Scholar 

  26. Han J, Pei J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M (2001) Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th international conference on data engineering, pp 215–224

  27. Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference. J Mach Learn Res 14(1):1303–1347

    Google Scholar 

  28. Hong L, Ahmed A, Gurumurthy S, Smola AJ, Tsioutsiouliklis K (2012) Discovering geographical topics in the twitter stream. In: Proceedings of the 21st international conference on world wide web, WWW ’12. ACM, New York, pp 769–778

  29. Hu B, Ester M (2013) Spatial topic modeling in online social media for location recommendation. In: Proceedings of the 7th ACM conference on recommender systems. ACM, pp 25–32

  30. Hu B, Jamali M, Ester M (2013) Spatio-temporal topic modeling in mobile social media for location recommendation. In: IEEE 13th international conference on data mining. IEEE, p 2013

  31. Hu DH, Zhang X-X, Yin J, Zheng VW, Yang Q (2009) Abnormal activity recognition based on hdp-hmm models. In: IJCAI, pp 1715–1720

  32. Johnson M, Willsky A (2014) Stochastic variational inference for bayesian time series models. In: Proceedings of the 31st international conference on machine learning (ICML-14), pp 1854–1862

  33. Jurdak R, Zhao K, Liu J, AbouJaoude M, Cameron M, D. Newth. (2015) Understanding human mobility from twitter. PLoS ONE 10(7):e0131469

    Article  Google Scholar 

  34. Kang C, Sobolevsky S, Liu Y, Ratti C (2013) Exploring human movements in Singapore: a comparative analysis based on mobile phone and taxicab usages. In: Proceedings of the 2nd ACM SIGKDD international workshop on urban computing, UrbComp ’13. ACM, New York, pp 1:1–1:8

  35. Khreich W, Granger E, Miri A, Sabourin R (2012) A survey of techniques for incremental learning of hmm parameters. Inf Sci 197:105–130

    Article  Google Scholar 

  36. Krumm J, Rouhana D, Chang M-W (2015) Placer++: Semantic place labels beyond the visit. In: 2015 IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp 11–19

  37. Kurashima T, Iwata T, Hoshide T, Takaya N, Fujimura K (2013) Geo topic model: joint modeling of user’s activity area and interests for location recommendation, ACM

  38. Kurashima T, Iwata T, Irie G, Fujimura K (2010) Travel route recommendation using geotags in photo sharing sites, ACM

  39. Kurashima T, Iwata T, Irie G, Fujimura K (2010) Travel route recommendation using geotags in photo sharing sites. ACM, New York, pp 579–588

    Google Scholar 

  40. Laurila JK, Gatica-Perez D, Aad I, Bornet O, Do T-M-T, Dousse O, Eberle J, Miettinen M, et al. (2012) The mobile data challenge: Big data for mobile computing research. In: Pervasive computing, number EPFL-CONF-192489

  41. Li Z, Wang J, Han J (2012) Mining event periodicity from incomplete observations. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM

  42. Liao L, Fox D, Kautz H (2007) Hierarchical conditional random fields for gps-based activity recognition. In: Robotics research. Springer, pp 487–506

  43. Long X, Jin L, Joshi J (2012) Exploring trajectory-driven local geographic topics in foursquare. In: Proceedings of the ACM conference on ubiquitous computing. ACM, p 2012

  44. Lovász L, Plummer MD (2009) Matching theory, vol 367. American Mathematical Soc.

  45. Lu X, Wetter E, Bharti N, Tatem AJ, Bengtsson L (2013) Approaching the limit of predictability in human mobility. Sci Rep 3

  46. Malmi E, Do TMT, Gatica-Perez D (2012) Checking in or checked in: comparing large-scale manual and automatic location disclosure patterns. In: Proceedings of the 11th international conference on mobile and ubiquitous multimedia. ACM, p 26

  47. Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University Press, New York

    Book  Google Scholar 

  48. Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 637–646

  49. Noulas A, Scellato S, Lathia N, Mascolo C (2012) Mining user mobility features for next place prediction in location-based services. In: 2012 IEEE 12th international conference on data mining. IEEE, pp 1038–1043

  50. Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V, Damiani ML, Gkoulalas-Divanis A, Macedo J, Pelekis N, et al. (2013) Semantic trajectories modeling and analysis. ACM Comput Surv (CSUR) 45(4):42

    Article  Google Scholar 

  51. Preoţiuc-Pietro D, Cohn T (2013) Mining user behaviours: a study of check-in patterns in location based social networks. In: Proceedings of the 5th annual ACM web science conference. ACM

  52. Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2)

  53. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat

  54. Scellato S, Noulas A, Lambiotte R, Mascolo C (2011) Socio-spatial properties of online location-based social networks. In: Adamic LA, Baeza-Yates RA, Counts S (eds) ICWSM. The AAAI Press

  55. Scott SL (2002) Bayesian methods for hidden Markov models. J Am Stat Assoc 97(457)

  56. Song C, Qu Z, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021

    Article  Google Scholar 

  57. Spaccapietra S, Parent C, Damiani ML, de Macedo JA, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65(1):126–146

  58. Vail DL, Veloso MM, Lafferty JD (2007) Conditional random fields for activity recognition, ACM

  59. Xiao X, Zheng Y, Luo Q, Xie X (2010) Finding similar users using category-based location history. ACM, New York, pp 442–445

    Google Scholar 

  60. Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: mobility data computation and annotation. ACM Trans Intell Syst Technol (TIST) 4(3):49

    Google Scholar 

  61. Yan Z, Macedo J, Parent C, Spaccapietra S (2008) Trajectory ontologies and queries. Trans GIS 12(s1):75–91

    Article  Google Scholar 

  62. Ye J, Zhu Z (2013) What your next move: user activity prediction in location-based social networks. In: Proceedings of the SIAM international conference on data mining siam. SIAM

  63. Ye M, Shou D, Lee W. -C., Yin P, Janowicz K (2011) On the semantic annotation of places in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 520–528

  64. Yin H, Cui B, Chen L, Hu Z, Zhang C (2015) Modeling location-based user rating profiles for personalized recommendation. ACM Trans Knowl Discov Data (TKDD) 9(3):19

    Google Scholar 

  65. Yin Z, Cao L, Han J, Zhai C, Huang T (2011) Geographical topic discovery and comparison. In: Proceedings of the 20th international conference on world wide web. ACM, pp 247–256

  66. Ying JJ-C, Lee W-C, Tseng VS (2014) Mining geographic-temporal-semantic patterns in trajectories for location prediction. ACM Trans Intell Syst Technol 5 (1):2:1–2:33

    Google Scholar 

  67. Ying JJ-C, Lee W-C, Weng T-C, Tseng VS (2011) Semantic trajectory mining for location prediction. In: Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 34–43

  68. Yuan J, Zheng Y, Xie X (2012) Discovering regions of different functions in a city using human mobility and pois. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 186–194

  69. Yuan Q, Cong G, Zhao K, Ma Z, Sun A (2015) Who, where, when, and what: a nonparametric Bayesian approach to context-aware recommendation and search for twitter users. ACM Trans Inf Syst (TOIS) 33(1):2

    Article  Google Scholar 

  70. Zahir Irani P, Elragal A, El-Gendy N (2013) Trajectory data mining: integrating semantics. J Enterp Inf Manag 26(5):516–535

    Article  Google Scholar 

  71. Zhang J-D, Chow C-Y, Li Y (2014) Lore: exploiting sequential influence for location recommendations. In: Proceedings of the 22nd ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 103–112

  72. Zheng Y, Liu Y, Yuan J, Xie X (2011) Urban computing with taxicabs. In: Proceedings of the 13th international conference on ubiquitous computing, UbiComp ’11. ACM, New York, pp 89–98

  73. Zheng Y, Zhang L, Xie X, Ma W-Y (2009) Mining interesting locations and travel sequences from gps trajectories. In: Proceedings of the 18th international conference on world wide web, WWW ’09. ACM, New York, pp 791–800

  74. Zheng Y, Zhou X (2011) Computing with spatial trajectories. Springer Science & Business Media

  75. Zheng Y-T, Zha Z-J, Chua T-S (2012) Mining travel patterns from geotagged photos. ACM Trans Intell Syst Technol (TIST)

  76. Zhu Y, Zhong E, Lu Z, Yang Q (2013) Feature engineering for semantic place prediction. Pervasive Mob Comput 9(6):772–783

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported partly by China 973 program (No. 2014CB340305, 2015CB358700), by the National Natural Science Foundation of China (No. 61421003), and by the Beijing Advanced Innovation Center for Big Data and Brain Computing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhang, R., Liu, X. et al. Human mobility semantics analysis: a probabilistic and scalable approach. Geoinformatica 22, 507–539 (2018). https://doi.org/10.1007/s10707-017-0295-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-017-0295-0

Keywords

Navigation