Skip to main content
Log in

EPLA: efficient personal location anonymity

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

A lot of researchers utilize side-information, such as the map which is likely to be exploited by some attackers, to protect users’ location privacy in location-based service (LBS). However, current technologies universally model the side-information for all users and don’t distinguish different users. We argue that the side-information is personal for every user. In this paper, we propose an efficient method, namely EPLA, to protect the users’ privacy using visit probability. We select the dummy locations to achieve k-anonymity according to personal visit probability for users’ queries. In EPLA, we use AKDE(Approximate Kernel Density Estimate), which greatly reduces the computational complexity compared with KDE approach. We conduct the comprehensive experimental study on the two real Gowalla and Foursqure data sets and the experimental results show that EPLA obtains fine privacy performance and low computation complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng B, Yuan NJ, Zheng K et al (2015) Approximate keyword search in semantic trajectory database. In: 2015 IEEE 31st International conference on data engineering (ICDE). IEEE, pp 975–986

  2. Su H, Zheng K, Zeng K et al (2015) Making sense of trajectory data: a partition-and-summarization approach. In: 2015 IEEE 31st International conference on data engineering (ICDE). IEEE, pp 963–974

  3. Zheng K, Huang Z, Zhou A et al (2012) Discovering the most influential sites over uncertain data: a rank-based approach. IEEE Trans Knowl Data Eng 24 (12):2156–2169

    Article  Google Scholar 

  4. Wang H, Zheng K, Xu J et al (2014) Sharkdb: an in-memory column-oriented trajectory storage. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management. ACM, pp 1409–1418

  5. Zheng K, Su H, Zheng B et al (2015) Interactive top-k spatial keyword queries. In: 2015 IEEE 31st International conference on data engineering (ICDE). IEEE, pp 423–434

  6. Ashouri-Talouki M, Baraani-Dastjerdi A, Seluk AA (2015) The Cloaked-Centroid protocol: location privacy protection for a group of users of location-based services. Knowl Inf Syst 45(3):589–615

    Article  Google Scholar 

  7. Pan X, Xu J, Meng X (2012) Protecting location privacy against location-dependent attacks in mobile services. IEEE Trans Knowl Data Eng 24 (8):1506–1519

    Article  Google Scholar 

  8. Lu H, Jensen CS, Yiu ML (2008) Pad: privacy-area aware, dummy-based location privacy in mobile services. In: Proceedings of the seventh ACM international workshop on data engineering for wireless and mobile access. ACM, pp 16–23

  9. Niu B, Li Q, Zhu X et al (2014) Achieving k-anonymity in privacy-aware location-based services. In: IEEE INFOCOM IEEE conference on computer communications. IEEE, pp 754–762

  10. Lee B, Oh J, Yu H et al (2011) Protecting location privacy using location semantics. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1289–1297

  11. Dehnad K (1987) Density estimation for statistics and data analysis. Technometrics 29(4):495–495

    Article  Google Scholar 

  12. Zhao D, Zhang K, Jin Y et al (2016) EPLA: efficient personal location anonymity. Asia-pacific web conference. Springer International Publishing, pp 263–275

  13. Jia J, Zhang F (2015) K-anonymity algorithm using encryption for location privacy protection. Int J Multimed Ubiquit Eng 10:155–166

    Article  Google Scholar 

  14. Gruteser M, Grunwald D, Wang Y, Xu D, He X et al (2012) L2P2: location-aware location privacy protection for location-based services. In: INFOCOM, 2012 Proceedings IEEE. IEEE, pp 1996–2004

  15. Natesan G, Liu J (2015) An adaptive learning model for k-anonymity location privacy protection. In: IEEE 39th Annual computer software and applications conference (COMPSAC). IEEE, vol 3, pp 10–16

  16. Zhang H, Xu Z, Yu X et al (2016) LPPS: location Privacy protection for smartphones. In: 2016 IEEE International conference on communications (ICC). IEEE, pp 1–6

  17. Palanisamy B, Liu L, Palanisamy B, Liu L (2015) Attack-resilient mix-zones over road networks: architecture and algorithms[J]. IEEE Trans Mob Comput 4(3):495–508

    Article  Google Scholar 

  18. Guo M, Pissinou N, Iyengar SS (2015) Pseudonym-based anonymity zone generation for mobile service with strong adversary model. In: 2015 12th annual IEEE consumer communications and networking conference (CCNC). IEEE, pp 335–340

  19. Kido H, Yanagisawa Y, Satoh (2005) An anonymous communication technique using dummies for location-based services. In: Proceedings of international conference on pervasive services ICPS’05. IEEE, pp 88–97

  20. Ghinita G, Kalnis P, Khoshgozaran A et al (2008) Private queries in location based services: anonymizers are not necessary. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data. ACM, pp 121–132

  21. Jia J, Zhang F (2015) K-anonymity algorithm using encryption for location privacy protection. Int J Multimedia Ubiquit Eng 10:155–166

    Article  Google Scholar 

  22. Li XY, Jung T (2013) Search me if you can: privacy-preserving location query service. In: INFOCOM, Proceedings IEEE. IEEE, pp 2760–2768

  23. Clifton C, Tassa T (2013) On syntactic anonymity and differential Privacy. Trans Data Priv 6(2):161–183

    Google Scholar 

  24. Andrés M E, Bordenabe NE, Chatzikokolakis K et al (2013) Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the ACMx SIGSAC conference on computer & communications security. ACM, pp 901–914

  25. Sweeney L (2002) K-anonymity: a model for protecting privacy. Int J Uncertainty Fuzziness Knowledge Based Syst 10(05):557–570

    Article  Google Scholar 

  26. Greengard L, Strain J (1991) The fast Gauss transform. SIAM J Sci Stat Comput 12(1):79–94

    Article  Google Scholar 

  27. Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1082–1090

  28. Yuan Q, Cong G, Ma Z et al (2013) Time-aware point-of-interest recommendation. In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 363–372

  29. Indritz J (1961) An inequality for Hermite polynomials. Proc Am Math Soc 12 (6):981–983

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NSFC grants (No. 61532021 and 61472141), Shanghai Knowledge Service Platform Project (No. ZF1213), Shanghai Leading Academic Discipline Project (Project NumberB412) and Shanghai Agriculture Applied Technology Development Program (GrantNo.G20160201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Jin, Y., Zhang, K. et al. EPLA: efficient personal location anonymity. Geoinformatica 22, 29–47 (2018). https://doi.org/10.1007/s10707-017-0303-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-017-0303-4

Keywords

Navigation