Skip to main content

Advertisement

Log in

Consistency assessment for open geodata integration: an ontology-based approach

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Integrating heterogeneous geospatial data sources is important in various domains like smart cities, urban planning and governance, but remains a challenging research problem. In particular, the production of high-quality integrated data from multiple sources requires an understanding of their respective characteristics and a systematic assessment of the consistency within and between the data sources. In order to perform the assessment, the data has to be placed on a common ground. However, in practice, heterogeneous geodata are often provided in diverse formats and organized in significantly different structures. In this work, we propose a framework that uses an ontology-based approach to overcome the heterogeneity by means of a domain ontology, so that consistency rules can be evaluated at the unified ontological representation of the data sources. In our case study, we use open governmental data from Open Data Portals (ODPs) and volunteered geographic information from OpenStreetMap (OSM) as two test data sources in the area of the province of South Tyrol, Italy. Our preliminary experiment shows that the approach is effective in detecting inconsistencies within and between ODP and OSM data. These findings provide valuable insights for a better combined usage of these datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://data.gov.au/dataset/data-gov-au-dataset-ontology

  2. https://github.com/italia/daf-ontologie-vocabolari-controllati

  3. http://data.europa.eu/euodp/en/linked-data

  4. http://daten.buergernetz.bz.it/de/

  5. http://www.openstreetmap.org

  6. http://geokatalog.buergernetz.bz.it/geokatalog

  7. https://www.geofabrik.de/

  8. https://openlayers.org/

  9. http://visjs.org

  10. http://datiopen.istat.it/ontologie.php?language=eng

  11. http://www.geonames.org/ontology/documentation.html

  12. https://www.w3.org/TR/prov-primer/

References

  1. Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A, Ahmed E, Chiroma H (2016) The role of big data in smart city. Int J Inf Manag 36(5):748–758

    Article  Google Scholar 

  2. Hao J, Zhu J, Zhong R (2015) The rise of big data on urban studies and planning practices in China: review and open research issues. J Urban Manag 4 (2):92–124. Big/Open Data for Urban Management

    Article  Google Scholar 

  3. Wiemann S, Bernard L (2016) Spatial data fusion in spatial data infrastructures using linked data. Int J Geogr Inf Sci 30(4):613–636

    Article  Google Scholar 

  4. Schaumberger A (2006) Full integration of geodata in gis. In: Socrates-Erasmus Summer School, Brno

  5. Vetrò A, Canova L, Torchiano M, Minotas CO, Iemma R, Morando F (2016) Open data quality measurement framework: definition and application to open government data. Gov Inf Q 33(2):325–337

    Article  Google Scholar 

  6. Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221

    Article  Google Scholar 

  7. Bizer C, Heath T, Berners-Lee T (2009) Linked data - the story so far. Int J Semantic Web Inf Syst 5(3):1–22

    Article  Google Scholar 

  8. Kuhn W (2001) Ontologies in support of activities in geographical space. Int J Geogr Inf Sci 15(7):613–631

    Article  Google Scholar 

  9. Teller J, Lee JR, Roussey C (eds) (2007) Ontologies for urban development. Volume 61 of studies in computational intelligence. Springer, Berlin

  10. Janowicz K, Hu Y, McKenzie G, Gao S, Regalia B, Mai G, Zhu R, Adams B, Taylor KL (2016) Moon landing or safari? A study of systematic errors and their causes in geographic linked data. In: GIScience. Volume 9927 of LNCS. Springer, pp 275–290

  11. Sheeren D, Mustière S, Zucker JD (2009) A data-mining approach for assessing consistency between multiple representations in spatial databases. Int J Geogr Inf Sci 23(8):961–992

    Article  Google Scholar 

  12. Egenhofer M, Clementini E, Felice PD (1994) Evaluating inconsistencies among multiple representations. In: Sixth international symposium on spatial data handling, pp 901–920

  13. Janev V, Höchtl J (2016) Best practice: enable quality assessment of open data. Technical report W3C

  14. Frank AU (2001) Tiers of ontology and consistency constraints in geographical information systems. Int J Geogr Inf Sci 15(7):667–678

    Article  Google Scholar 

  15. Aracri RM, Bianco AM, Radini R, Scannapieco M, Tosco L, Croce F, Savo DF, Lenzerini M (2018) On the experimental usage of ontology-based data management for the italian integrated system of statistical registers: quality issues. In: The 9th European conference on quality in official statistics (Q2018)

  16. Ubaldi B (2003) Open government data – towards empirical analysis of open government data initiatives. OECD Working Papers on Public Governance

  17. Peled A (2013) Re-designing open data 2.0. J eDemocracy Open Govern 5 (2):187–199

    Article  Google Scholar 

  18. Heinzelman J, Waters C (2010) Crowdsourcing crisis information in disaster-affected Haiti. US Institute of Peace Washington, DC

  19. MacEachren AM, Robinson AC, Jaiswal A, Pezanowski S, Savelyev A, Blanford J, Mitra P (2011) Geo-twitter analytics: applications in crisis management. In: 25th International cartographic conference, pp 3–8

  20. Latif S, Islam KMR, Khan MMI, Ahmed SI (2011) Openstreetmap for the disaster management in Bangladesh. In: 2011 IEEE conference on open systems, pp 429–433

  21. Haklay M (2010) How good is volunteered geographical information? A comparative study of openstreetmap and ordnance survey datasets. Environ Plan B: Plan Des 37 (4):682–703

    Article  Google Scholar 

  22. Girres JF, Touya G (2010) Quality assessment of the french openstreetmap dataset. Trans GIS 14(4):435–459

    Article  Google Scholar 

  23. Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on openstreetmap. Int J Geogr Inf Sci 28(4):700–719

    Article  Google Scholar 

  24. Barron C, Neis P, Zipf A (2014) A comprehensive framework for intrinsic openstreetmap quality analysis. Trans GIS 18(6):877–895

    Article  Google Scholar 

  25. Codescu M, Horsinka G, Kutz O, Mossakowski T, Rau R (2011) Osmonto – an ontology of openstreetmap tags. In: State of the map Europe (SOTM-EU)

  26. Ballatore A, Bertolotto M, Wilson DC (2013) Geographic knowledge extraction and semantic similarity in OpenStreetMap. Knowl Inf Syst 37(1):61–81

    Article  Google Scholar 

  27. Stadler C, Lehmann J, Höffner K, Auer S (2012) Linkedgeodata: a core for a web of spatial open data. Sem Web J 3(4):333–354

    Article  Google Scholar 

  28. Koubarakis M, Bereta K, Papadakis G, Savva D, Stamoulis G (2017) Big, linked geospatial data and its applications in earth observation. IEEE Internet Comput 21(4):87–91

    Article  Google Scholar 

  29. Veregin H (1999) Data quality parameters. Geograph Inform Syst 1:177–189

    Google Scholar 

  30. Brisaboa NR, Rodríguez MA, Seco D, Troncoso RA (2015) Rank-based strategies for cleaning inconsistent spatial databases. Int J Geogr Inf Sci 29(2):280–304

    Article  Google Scholar 

  31. Senaratne H, Mobasheri A, Ali AL, Capineri C, Haklay MM (2017) A review of volunteered geographic information quality assessment methods. Int J Geogr Inf Sci 31(1):139–167

    Article  Google Scholar 

  32. Comber A, Fisher P, Wadsworth R (2004) Integrating land-cover data with different ontologies: identifying change from inconsistency. Int J Geogr Inf Sci 18 (7):691–708

    Article  Google Scholar 

  33. Rodríguez A (2005). In: Inconsistency issues in spatial databases. Springer, Berlin, pp 237–269

  34. Devogele T, Parent C, Spaccapietra S (1998) On spatial database integration. Int J Geogr Inf Sci 12(4):335–352

    Article  Google Scholar 

  35. Balley S, Parent C, Spaccapietra S (2004) Modelling geographic data with multiple representations. Int J Geogr Inf Sci 18(4):327–352

    Article  Google Scholar 

  36. Quix C, Ragia L, Cai L, Gan T (2006) Matching schemas for geographical information systems using semantic information. In: Meersman R, Tari Z, Herrero P (eds) On the move to meaningful internet systems 2006: OTM 2006 workshops. Heidelberg, Berlin, pp 1566–1575

  37. Nathalie A (2009) Schema matching based on attribute values and background ontology. In: 12th AGILE International conference on geographic information science, vol 1, pp 1–9

  38. Yu F, McMeekin DA, Arnold L, West G (2018) Semantic web technologies automate geospatial data conflation: conflating points of interest data for emergency response services. In: Progress in location based services, vol 2018. Springer International Publishing, Cham, pp 111–131

  39. Duckham M, Worboys M (2005) An algebraic approach to automated geospatial information fusion. Int J Geogr Inf Sci 19(5):537–557

    Article  Google Scholar 

  40. Meng L (2017) From multiple geodata sources to diverse maps. In: H L, X S (eds) Frontiers in geoinformations. Higher Education Press, pp 191–218

  41. Zhang M, Meng L (2008) Delimited stroke oriented algorithm - working principle and implementation for the matching of road networks. J Geogr Inf Sci 14(1):44–53

    Google Scholar 

  42. Hackelöeer A, Klasing K, Krisp JM, Meng L (2013) Comparison of point matching techniques for road network matching. In: 8th International symposium on spatial data quality, Hong Kong, pp 87–92

  43. Yang J, Meng L (2014) Feature selection in conditional random fields for map matching of gps trajectories. In: Lecture notes in geoinformation and cartography, progress in location-based-serivces. Springer, pp 121–135

  44. Paiva JAdC (1998) Topological equivalence and similarity in multi-representation geographic databases. PhD thesis the University of Maine

  45. Xiao G, Calvanese D, Kontchakov R, Lembo D, Poggi A, Rosati R, Zakharyaschev M (2018) Ontology-based data access: a survey. In: Proc.of the 28th int. joint conf. on artificial intelligence (IJCAI), IJCAI/AAAI

  46. Poggi A, Lembo D, Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2008) Linking data to ontologies. J Data Semantics 10:133–173

    Google Scholar 

  47. Das S, Sundara S, Cyganiak R R2RML: RDB to RDF mapping language. W3C Recommendation, World Wide Web Consortium (September 2012) Available at http://www.w3.org/TR/r2rml/

  48. Manola F, Mille E RDF primer. W3C Recommendation, World Wide Web Consortium (February 2004) Available at http://www.w3.org/TR/rdf-primer-20040210/

  49. Harris S, Seaborne A SPARQL 1.1 query language. W3C Recommendation, World Wide Web Consortium (March 2013) Available at http://www.w3.org/TR/sparql11-query

  50. Calvanese D, Cogrel B, Komla-Ebri S, Kontchakov R, Lanti D, Rezk M, Rodriguez-Muro M, Xiao G (2017) Ontop: answering SPARQL queries over relational databases. Sem Web J 8(3):471–487

    Article  Google Scholar 

  51. Xiao G, Ding L, Cogrel B, Calvanese D (2019) Virtual knowledge graphs: an overview of systems and use cases. Data Intell 1:201–223

    Article  Google Scholar 

  52. Perry M, Herring J (2011) GeoSPARQL - a geographic query language for RDF data. OGC Candidate Standard OGC 11-052r3 Open Geospatial Consortium

  53. Bereta K, Xiao G, Koubarakis M (2019) Ontop-spatial: ontop of geospatial databases. Journal of Web Semantics

  54. Bereta K, Xiao G, Koubarakis M, Hodrius M, Bielski C, Zeug G (2016) Ontop-spatial: geospatial data integration using GeoSPARQL-to-SQL translation. In: Proceedings of the ISWC 2016 posters & demonstrations track. Volume 1690 of CEUR workshop proceedings., CEUR-WS.org

  55. Brüggemann S, Bereta K, Xiao G, Koubarakis M (2016) Ontology-based data access for maritime security. In: ESWC. Volume 9678 of lecture notes in computer science. Springer, pp 741–757

  56. Frank AU (2003) Ontology for spatio-temporal databases. In: Spatio-temporal databases: the CHOROCHRONOS approach. Volume 2520 of lecture notes in computer science. Springer, pp 9–77

  57. Kuhn W (2012) Core concepts of spatial information for transdisciplinary research. Int J Geogr Inf Sci 26(12):2267–2276

    Article  Google Scholar 

  58. W3C (2017) Semantic sensor network ontology. W3C Recommendation, W3C

  59. Sequeda JF, Miranker DP (2015) Ultrawrap mapper: a semi-automatic relational database to RDF (RDB2RDF) mapping tool. In: International semantic web conference (posters & demos). Volume 1486 of CEUR workshop proceedings., CEUR-WS.org

  60. Jiménez-Ruiz E, Kharlamov E, Zheleznyakov D, Horrocks I, Pinkel C, Skjæveland MG, Thorstensen E, Mora J (2015) Bootox: Practical mapping of rdbs to OWL 2. In: International semantic web conference (2). Volume 9367 of lecture notes in computer science. Springer, pp 113–132

  61. Sicilia Á, Nemirovski G, Nolle A (2017) Map-on: a web-based editor for visual ontology mapping. Sem Web 8(6):969–980

    Article  Google Scholar 

  62. Sequeda JF, Miranker DP (2017) A pay-as-you-go methodology for ontology-based data access. IEEE Internet Comput 21(2):92–96

    Article  Google Scholar 

  63. Katifori A, Halatsis C, Lepouras G, Vassilakis C, Giannopoulou E (2007) Ontology visualization methods — a survey. ACM Comput Surv (CSUR) 39(4):10

    Article  Google Scholar 

  64. Soylu A, Kharlamov E, Zheleznyakov D, Jiménez-Ruiz E, Giese M, Skjæveland MG, Hovland D, Schlatte R, Brandt S, Lie H, Horrocks I (2018) OptiqueVQS: a visual query system over ontologies for industry. Sem Web 9 (5):627–660

    Article  Google Scholar 

  65. Beek W, Folmer E, Rietveld L, Walker J (2017) Geoyasgui: the GeoSPARQL query editor and result set visualizer. ISPRS - International archives of the photogrammetry, remote sensing and spatial information sciences XLII-4/W2, pp 39–42

  66. Nikolaou C, Dogani K, Bereta K, Garbis G, Karpathiotakis M, Kyzirakos K, Koubarakis M (2015) Sextant: visualizing time-evolving linked geospatial data. J Web Sem 35:35–52

    Article  Google Scholar 

  67. Gennari JH, Musen MA, Fergerson RW, Grosso WE, Crubézy M, Eriksson H, Noy NF, Tu SW (2003) The evolution of protégé: an environment for knowledge-based systems development. Int J Hum-Comput Stud 58(1):89–123

    Article  Google Scholar 

  68. Aracri RM, Radini R, Scannapieco M, Tosco L Garrigós I, Wimmer M (eds) (2018) Using ontologies for official statistics: the istat experience. Springer International Publishing, Cham

Download references

Acknowledgements

This research has been partially supported by the EU H2020 project INODE, by the Italian PRIN project HOPE, by the European Regional Development Fund (ERDF) Investment for Growth and Jobs Programme 2014-2020 through the project IDEE (FESR1133), by the Free University of Bozen-Bolzano through the projects QUADRO, KGID, and GeoVKG, by the Jiangsu Industrial Technology Research Institute (JITRI), and by the Changshu Fengfan Power Equipment Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Xiao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Xiao, G., Calvanese, D. et al. Consistency assessment for open geodata integration: an ontology-based approach. Geoinformatica 25, 733–758 (2021). https://doi.org/10.1007/s10707-019-00384-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-019-00384-9

Keywords

Navigation