Skip to main content
Log in

Motility, mixing, and multicellularity

  • Original Paper
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

A fundamental issue in evolutionary biology is the transition from unicellular to multicellular organisms, and the cellular differentiation that accompanies the increase in group size. Here we consider recent results on two types of “multicellular” systems, one produced by many unicellular organisms acting collectively, and another that is permanently multicellular. The former system is represented by groups of the bacterium Bacillus subtilis and the latter is represented by members of the colonial volvocalean green algae. In these flagellated organisms, the biology of chemotaxis, metabolism and cell–cell signaling is intimately connected to the physics of buoyancy, motility, diffusion, and mixing. Our results include the discovery in bacterial suspensions of intermittent episodes of disorder and collective coherence characterized by transient, recurring vortex streets and high-speed jets of cooperative swimming. These flow structures markedly enhance transport of passive tracers, and therefore likely have significant implications for intercellular communication. Experiments on the Volvocales reveal that the sterile flagellated somatic cells arrayed on the surface of Volvox colonies are not only important for allowing motion toward light (phototaxis), but also play a crucial role in driving fluid flows that transport dissolved molecular species. These flows, generated by the collective beating of flagella, confer a synergistic advantage with regard to transport of nutrients and chemical messengers. They allow these species to circumvent a nutrient acquisition bottleneck which would exist if transport were purely diffusive, and thereby evolve to larger multicellular individuals. In both cases, a higher level of organization, specialization and complexity counteract the higher costs inherent to larger groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guyon, E., Hulin, J.P., Petit, L., Mitescu, C.D.: Physical Hydrodynamics. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  2. Maynard Smith, J., Száthmary, E.: The Major Transitions in Evolution. Freeman, San Francisco (1995)

    Google Scholar 

  3. Velicer, G.J., Yu, Y.N.: Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature 425, 75–78 (2003)

    Article  Google Scholar 

  4. West, S.A., Griffin, A.S., Gardner, A., Diggle S.P.: Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006)

    Article  Google Scholar 

  5. Keller, L., Surette, M.G.: Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4, 249–258 (2006)

    Article  Google Scholar 

  6. Niklas, K.J.: Plant Allometry. University of Chicago Press, Chicago, IL (1994)

    Google Scholar 

  7. Niklas, K.J.: The evolution of plant body plans – a biomechanical perspective. Ann. Bot. 85, 411–438 (2000)

    Article  Google Scholar 

  8. Stearns, S.C.: The Evolution of Life Histories. Oxford University Press, Oxford (1992)

    Google Scholar 

  9. Michod, R.E., Viossat, Y., Solari, C.A., Hurand, M., Nedelcu, A.M.: Life-history evolution and the origin of multicellularity. J. Theor. Biol. 239, 257–272 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bonner, J.R.: On the origin of differentiation. J. Biosci. 28, 523–528 (2003)

    Google Scholar 

  11. Bonner, J.T.: Perspective on the size-complexity rule. Evolution 58, 1883–1890 (2004)

    Google Scholar 

  12. Sonenshein, A.L., Hoch, J.A., Losick, R. (eds.) In: Bacillus subtilis and its Closest Relatives. From Genes to Cells. American Society for Microbiology, Washington, D.C. (2002)

  13. Kirk, D.L.: Volvox: Molecular-genetic Origins of Multicellularity and Cellular Differentiation. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Furusawa, C., Kaneko, K.: Emergence of multicellular organisms with dynamic differentiation and spatial pattern. Artif. Life 4, 79–93 (1998)

    Article  Google Scholar 

  15. Bull L.: On the evolution of multicellularity and eusociality. Artif. Life 5, 1–15 (1999)

    Article  Google Scholar 

  16. Furusawa, C., Kaneko, K.: Complex organization in multicellularity as a necessity in evolution. Artif. Life 6, 265–281 (2000)

    Article  Google Scholar 

  17. Federici, D., Downing, K.: Evolution and development of a multicellular organism: scalability, resilience, and neutral complexification. Artif. Life 12, 381–409 (2006)

    Article  Google Scholar 

  18. Spector, L., Klein, J., Perry, C., Feinstein, M.: Emergence of collective behavior in evolving populations of flying agents. Genet. Program. Evolvable Machines 6, 111–125 (2005)

    Article  Google Scholar 

  19. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)

    Article  Google Scholar 

  20. Wiggins, C.H., Goldstein, R.E.: Flexive and propulsive dynamics of elastica at low Reynolds numbers. Phys. Rev. Lett. 80, 3879–3882 (1998)

    Article  Google Scholar 

  21. Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977)

    Article  Google Scholar 

  22. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1-4 (2004)

    Google Scholar 

  23. Tuval, I., Cisneros L., Dombrowski C., Wolgemuth C.W., Kessler J.O., Goldstein R.E.: Bacterial swimming and oxygen transport near contact lines. Proceedings of the National Academy of Sciences (USA) 102, 2277–2282 (2005)

    Google Scholar 

  24. Solari, C.A., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E.: Multicellularity and the functional interdependence of motility and molecular transport. Proceedings of the National Academy of Sciences (USA) 103, 1353–1358 (2006)

    Google Scholar 

  25. Short, M.B., Solari, C.A., Ganguly, S., Powers, T.R., Kessler, J.O., Goldstein, R.E.: Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proceedings of the National Academy of Sciences USA 103, 8315–8319 (2006)

    Google Scholar 

  26. Bell, G.: The origin and early evolution of germ cells as illustrated by the Volvocales. In: Halvorson H., Mornoy A. (eds.) The Origin and Evolution of Sex, pp. 221–256. Alan R. Liss, New York (1985)

    Google Scholar 

  27. Koufopanou, V.: The evolution of soma in the Volvocales. Am. Nat. 143, 907–931 (1994)

    Article  Google Scholar 

  28. Solari, C.A., Kessler, J.O., Michod, R.E.: A hydrodynamics approach to the evolution of multicellularity: Flagellar motility and germ-soma differentiation in volvocalean green algae. Am. Nat. 167, 537–554 (2006)

    Article  Google Scholar 

  29. Coleman A.W.: Phylogenetic analysis of “Volvocacae” for comparative genetic studies. Proceedings of the National Academy of Sciences (USA) 96, 13892–13897 (1999)

  30. Nozaki, H., Ohta, N., Takano, H., Watanabe, M.M.: Reexamination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): an analysis of atpB and rbcL gene sequences. J. Phycol. 35, 104–112 (1999)

    Article  Google Scholar 

  31. Nozaki, H.: Origin and evolution of the general Pleodorina and Volvox (Volvocales). Biologa 58, 425–431 (2003)

    Google Scholar 

  32. Nozaki, H., Ott, F.D., Coleman, A.W.: Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae). J. Phycol. 42, 1072–1080 (2006)

    Article  Google Scholar 

  33. Desnitski, A.G.: A review on the evolution of development in Volvox – morphological and physiological aspects. Eur. J. Protistol. 31, 241–247 (1995)

    Google Scholar 

  34. Kirk, D.L. The genetic program for germ-soma differentiation in Volvox. Annu. Rev. Genet. 31, 359–380 (1997)

    Article  Google Scholar 

  35. Tam, L.W., Kirk, D.L.: The program for cellular differentiation in Volvox carteri as revealed by molecular analysis of development in a gonidialess/somatic regenerator mutant. Development 112, 571–580 (1991)

    Google Scholar 

  36. Van de Berg, W.J., Starr, R.C.: Structure, reproduction, and differentiation in Volvox gigas and Volvox powersii. Arch. Protistenkunde 113, 195–219 (1971)

    Google Scholar 

  37. Larson, A., Kirk, M.M., Kirk, D.L.: Molecular phylogeny of the volvocine flagellates. Mol. Biol. Evol. 9, 85–105 (1992)

    Google Scholar 

  38. Reynolds, C.S.: The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  39. Hoops, H.J.: Motility in the colonial and multicellular Volvocales: structure function, and evolution. Protoplasma 199, 99–112 (1997)

    Article  Google Scholar 

  40. Kirk, D.L.: Seeking the ultimate and proximate causes of Volvox multicellularity and cellular differentiation. Integ. Comp. Biol. 43, 247–253 (2003)

    Article  Google Scholar 

  41. Kessler, J.O., Wojciechowski, M.F.: Collective behavior and dynamics of swimming bacteria. In: Shapiro, J.A., Dworkin, M. (eds.) Bacteria as Multicellular Organisms, pp. 417–450. Oxford University Press, New York (1997)

    Google Scholar 

  42. Cisneros, L., Dombrowski, C., Goldstein, R.E., Kessler, J.O.: Reversal of bacterial locomotion at an obstacle. Phys. Rev. E: Rapid Commun. 73, 030901-1-4 (2006)

    Google Scholar 

  43. Bassler, B.L.: Small talk: cell-to-cell communication in bacteria. Cell 109, 421–424 (2002)

    Article  Google Scholar 

  44. Watnick, P., Kolter, R.: Biofilm, city of microbes. J. Bacteriol. 182, 2675–2679 (2000)

    Article  Google Scholar 

  45. O’Toole, G., Kaplan, H.B., Kolter, R.: Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000)

    Article  Google Scholar 

  46. Kearns, D.B., Losick, R.: Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49, 581–590 (2003)

    Article  Google Scholar 

  47. Shapiro, J.A., Dworkin, M. (eds.) Bacteria as Multicellular Organisms. Oxford University Press, New York, pp. 417–450 (1997)

  48. Hernandez-Ortiz, J.P., Stoltz, C.G., Graham, M.D.: Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501-1-4, (2005)

    Google Scholar 

  49. King, N.: The unicellular ancestry of animal development. Dev. Cell 7, 313–325 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues C. Dombrowski, L. Cisneros, S. Ganguly, R.E. Michod, A.M. Nedelcu, M.B. Short, and T.R. Powers for ongoing collaborations, and to T.E. Huxman and R. Stocker for important discussions. This work was supported in part by NSF grants DEB-0075296 (CAS) and PHY-0551742 (JOK & REG), and DOE grant W31-109-ENG38 (JOK & REG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian A. Solari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solari, C.A., Kessler, J.O. & Goldstein, R.E. Motility, mixing, and multicellularity. Genet Program Evolvable Mach 8, 115–129 (2007). https://doi.org/10.1007/s10710-007-9029-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-007-9029-7

Keywords

Navigation