Skip to main content

Advertisement

Log in

Detecting the epistatic structure of generalized embedded landscape

  • Original Paper
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Working under the premise that most optimizable functions are of bounded epistasis, this paper addresses the problem of discovering the linkage structure of a black-box function with a domain of arbitrary-cardinality under the assumption of bounded epistasis. To model functions of bounded epistasis, we develop a generalization of the mathematical model of “embedded landscapes” over domains of cardinality M. We then generalize the Walsh transform as a discrete Fourier transform, and develop algorithms for linkage learning of epistatically bounded GELs. We propose Generalized Embedding Theorem that models the relationship between the underlying decomposable structure of GEL and its Fourier coefficients. We give a deterministic algorithm to exactly calculate the Fourier coefficients of GEL with bounded epistasis. Complexity analysis shows that the epistatic structure of epistatically bounded GEL can be obtained after a polynomial number of function evaluations. Finally, an example experiment of the algorithm is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thierens, D.: Scalability problems of simple genetic algorithms. Evol. Comput. 7(4), 331–352 (1999)

    Article  Google Scholar 

  2. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  3. Kargupta, H., Bandyopadhyay, S.: A perspective on the foundation and evolution of the linkage learning genetic algorithms. J. Comp. Methods Appl. Mech. Eng. 186, 266–294 (2000)

    Google Scholar 

  4. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, accurate optimization of difficult optimization problems using fast messy genetic algorithms. In: Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, USA (1993)

  5. Kargupta, H.: The gene expression messy genetic algorithm. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Nogoya, Japan (1996)

  6. Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. Ph.D. dissertation, University of Michigan, Ann Arbor (1997)

  7. Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  8. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer Publication, Berlin (2005)

    MATH  Google Scholar 

  9. Heckendorn, R.B.: Embedded landscapes. Evol. Comput. 10(4), 345–369 (2002)

    Article  Google Scholar 

  10. Kargupta, H., Park, B.: Gene expression and fast construction of distributed evolutionary representation. Evol. Comput. 9(1), 43–59 (2001)

    Article  Google Scholar 

  11. Heckendorn, R.B., Wright, A.: Efficient linkage discovery by limited probing. Evol. Comput. 12(4), 517–545 (2004)

    Article  Google Scholar 

  12. Rana, S., Heckendorn, R.B., Whitley, D.: A tractable Walsh analysis of sat and its implication of genetic algorithms. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 392–397. AAAI, Menlo Park, CA (1998)

  13. Wright, A.H., Pulavarty, S.: On the convergence of an estimation of distribution algorithm based on linkage discovery and factorization. In: GECCO 2005 Proceedings, pp. 695–702. ACM SIGEVO, June (2005)

  14. Mühlenbein, H.: Convergence of estimation of distribution algorithms for finite samples. http://www.ais.fhg.de/muehlen/pegasus/publications.html (2007)

  15. Chen, Y.-P.: Extending the scalability of linkage learning genetic algorithms: theory and practice. IlliGAL Report No. 2004018 (2004)

  16. Mühlenbein, H., Mahnig, T., Ochoa, A.R.: Schemata, distributions and graphical models in evolutionary optimization. J. Heuristics 5(2), 215–247 (1999)

    Article  MATH  Google Scholar 

  17. Mühlenbein, H., Mahnig, T.: Evolutionary optimization and the estimation of search distribution with application to graph bipartitioning. J. Approx. Reason. 31, 157–192 (2002)

    Article  MATH  Google Scholar 

  18. Zhang, Q., Müehlenbein, H.: On the convergence of a class of estimation of distribution algorithms. IEEE Trans. Evol. Comput. 8(2), 127–136 (2004)

    Article  Google Scholar 

  19. Zhang, Q.: On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Trans. Evol. Comput. 8(1), 80–93 (2004)

    Article  Google Scholar 

  20. Munetomo, M., Goldberg, D.E.: Linkage identification by non-monotonicity detection for overlapping functions. Evol. Comput. 7(4), 377–398 (1999)

    Article  Google Scholar 

  21. Koehler, G.J., Bhattacharyya, S., Vose, M.D.: General cardinality genetic algorithms. Evol. Comput. 5(4), 439–549 (1998)

    Article  Google Scholar 

  22. Vose, M.D., Wright, A.H.: The simple genetic algorithm and the Walsh transform: Part I, theory. Evol. Comput. 6(3), 253–273 (1998)

    Article  Google Scholar 

  23. Vose, M.D., Wright, A.H.: The simple genetic algorithm and the Walsh transform: Part II, the inverse. Evol. Comput. 6, 275–289 (1998)

    Article  Google Scholar 

  24. Simon, H.A.: The Science of the Artificial. MIT Press (1981)

  25. Goldberg, D.E., Bridges C.L.: An analysis of a reordering operator on a ga-hard problem. Biol. Cybernet. 62, 397–405 (1990)

    Article  MATH  Google Scholar 

  26. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: motivation, analysis and first results. Complex Syst. 3, 493–530 (1989)

    MATH  MathSciNet  Google Scholar 

  27. Bethke, A.D.: Genetic algorithms as function optimizers. Dissertation University of Michigan, Ann Arbor (1981)

  28. Heckendorn, R.B., Whitley, D.: Predicting epistasis from mathematical models. Evol. Comput. 7(1), 69–101 (1999)

    Article  Google Scholar 

  29. Heckendorn, R.B., Rana, S., Whitley, D.: Test function generators as embedded landscapes. In: Foundations of Genetic Algorithms – 5. Morgan Kaufmann Publishers (1999)

  30. Mühlenbein, H., Mahnig, T.: Fda – a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evol. Comput. 7(4), 353–376 (1999)

    Article  Google Scholar 

  31. Kargupta, H., Bandyopadhyay, S.: Further experimentations on the scalability of the gemga. In: Lecture Notes in Computer Science: Parallel Problem Solving from Nature, pp. 315–324. Springer-Verlag, Amsterdam (1998)

  32. Bandyopadhyay, S., Kargupta, H., Wang, G.: Revisiting the gemga: scalable evolutionary optimization through linkage learning. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 603–608. IEEE Press, Piscataway (1998)

  33. Bhattacharyya, S., Koehler, G.: An analysis of non-binary genetic algorithm with cardinality 2v. Complex Syst. 8, 227–256 (1994)

    MATH  MathSciNet  Google Scholar 

  34. Krishna Garg, H.: Digital Signal Processing Algorithms: Number Theory, Convolution, Fast Fourier Transforms, and Applications. CRC Press, Boston (1998)

    MATH  Google Scholar 

  35. Rotman, J.J.: Advanced Modern Algebra. Prentice Hall (2002)

  36. Oei, C.K.: Walsh function analysis of genetic algorithms of nonbinary strings. Unpublished Masters Thesis, UIUC, (1992)

  37. Iglesias, M.T., Naudts, B., Verschoren, A., Vidal C.: Walsh transforms, balanced sum theorems and partition coefficients over multary alphabets. In: GECCO 2005 Proceedings, pp. 1303–1308. ACM SIGEVO, June (2005)

  38. Oppenheim, A.V., Schafer, R.W.: Digital Signal Processing. Prentice Hall, Inc, Englewood Cliffs, NJ (1975)

    MATH  Google Scholar 

  39. Kargupta, H., Goldberg, D.E.: SEARCH, blackbox optimization, and sample complexity. In: Belew, R., Vose, M. (eds.) Foundations of Genetic Algorithms, pp. 291–324. Morgan Kaufmann (1996)

  40. Kargupta, H.: SEARCH, computational processes in evolution, and preliminary development of the gene expression messy genetic algorithm. Complex Syst. 11(4), 233–287 (1997)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alden Wright and Heinz Mühlenbein for helpful discussion and support. We are grateful to the anonymous reviewers for their invaluable comments. Shude Zhou and Zengqi Sun are funded by the National Key Project for Basic Research of China (G2002cb312205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shude Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Heckendorn, R.B. & Sun, Z. Detecting the epistatic structure of generalized embedded landscape. Genet Program Evolvable Mach 9, 125–155 (2008). https://doi.org/10.1007/s10710-007-9045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-007-9045-7

Keywords

Navigation