Abstract
Optimization techniques have become powerful tools for approaching multiple NP-hard optimization problems. In this kind of problem it is practically impossible to obtain optimal solutions, thus we must apply approximation strategies such as metaheuristics. In this paper, seven metaheuristics have been used to address an important biological problem known as the motif discovery problem. As it is defined as a multiobjective optimization problem, we have adapted the proposed algorithms to this optimization context. We evaluate the proposed metaheuristics on 54 sequence datasets that belong to four organisms with different numbers of sequences and sizes. The results have been analysed in order to discover which algorithm performs best in each case. The algorithms implemented and the results achieved can assist biological researchers in the complicated task of finding DNA patterns with an important biological relevance.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
W. Ao, J. Gaudet, W.J. Kent, S. Muttumu, S.E. Mango, Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305(5691), 1743–1746 (2004)
T.L. Bailey, C. Elkan, Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach. Learn. 21(1–2), 51–80 (1995)
D. Che, Y. Song, K. Rashedd, MDGA: motif discovery using a genetic algorithm, in Proceedings of the 2005 Conference on Genetic and Evolutionary Computation (GECCO’05), (2005), pp. 447–452.
K. Deb, Multi-objective Optimization using Evolutionary Algorithms (Wiley, New York, 2001)
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
P. D’haeseleer, What are DNA sequence motifs? Nat. Biotechnol. 24(4), 423–425 (2006)
E. Eskin, P.A. Pevzner, Finding composite regulatory patterns in DNA sequences. Bioinformatics 18(Suppl 1), S354–S363 (2002)
A.V. Favorov, M.S. Gelfand, A.V. Gerasimova, D.A. Ravcheev, A.A. Mironov, V.J. Makeev, A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics 21(10), 2240–2245 (2005)
G.B. Fogel, D.G. Weekes, G. Varga, E.R. Dow, H.B. Harlow, J.E. Onyia, C. Su, Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Res. 32(13), 3826–3835 (2004)
M.C. Frith, U. Hansen, J.L. Spouge, Z. Weng, Finding functional sequence elements by multiple local alignment. Nucleic Acids Res. 32(1), 189–200 (2004)
F. Glover, G. Kochenberger, Handbook of Metaheuristics (Kluwer, Dordrecht, 2003)
D.L. González-Álvarez, M.A. Vega-Rodríguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez, A multiobjective variable neighborhood search for solving the motif discovery problem, in International Workshop on Soft Computing Models in Industrial Applications (SOCO’10), vol. 73 (2010), pp. 39–46
D.L. González-Álvarez, M.A. Vega-Rodríguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez, Solving the motif discovery problem by using differential evolution with pareto tournaments, in Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC’10), (2010), pp. 4140–4147.
D.L. González-Álvarez, M.A. Vega-Rodríguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez, Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs, in International Work Conference on Artificial Neural Networks (IWANN’11), LNCS 6692/2011, (2011), pp. 372–379
D.L. González-Álvarez, M.A. Vega-Rodríguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez, Finding motifs in DNA sequences applying a multiobjective artificial bee colony (MOABC) algorithm, in EVOBIO’11, LNCS 6623/2011, (2011), pp. 89–100
D.L. González-Álvarez, M.A. Vega-Rodríguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez, Predicting DNA motifs by using evolutionary multiobjective optimization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 913–925 (2011)
D.L. González-Álvarez, M.A. Vega-Rodríguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez, Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Eng. Appl. Artif. Intell. 26(1), 341–326 (2012)
J. van Helden, B. Andre, J. Collado-Vides, Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281(5), 827–842 (1998)
G.Z. Hertz, G.D. Stormo, Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8), 563–577 (1999)
J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)
D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)
M. Kaya, MOGAMOD: multi-objective genetic algorithm for motif discovery. Expert Syst. Appl. 36(2), 1039–1047 (2009)
J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks IV, (1995), pp. 1942–1948
M. Li, B. Ma, L. Wang, Finding similar regions in many sequences. J. Comput. Syst. Sci. 65(1), 73–96 (2002)
F.F.M. Liu, J.J.P. Tsai, R.M. Chen, S.N. Chen, S.H. Shih, FMGA: finding motifs by genetic algorithm, in Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04), (2004) pp. 459–466
M.A. Lones, A.M. Tyrrell, Regulatory motif discovery using a population clustering evolutionary algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3), 403–414 (2007)
N. Mladenovic, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)
C. Notredame, D.G. Higgins, SAGA: sequence alignment by genetic algorithm. Nucleic Acids Res. 24(8), 1515–1524 (1996)
G. Pavesi, G. Mauri, G. Pesole, An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(Suppl 1), S207–S214 (2001)
E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
M. Regnier, A. Denise, Rare events and conditional events on random strings. Discrete Math. Theor. Comput. Sci. 6(2), 191–214 (2004)
F.P. Roth, J.D. Hughes, P.W. Estep, G.M. Church, Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16(10), 939–945 (1998)
L. Shao, Y. Chen, Bacterial foraging optimization algorithm integrating tabu search for motif discovery, in IEEE International Conference on Bioinformatics and Biomedicine (BIBM’09), (2009), pp. 415–418
L. Shao, Y. Chen, A. Abraham, Motif discovery using evolutionary algorithms, in International Conference of Soft Computing and Pattern Recognition (SOCPAR’09), (2009), pp. 420–425
D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 5th edn. (Chapman & Hall/CRC Press, New York, 2011)
S. Sinha, M. Tompa, YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 31(13), 3586–3588 (2003)
M. Stine, D. Dasgupta, S. Mukatira, Motif discovery in upstream sequences of coordinately expressed genes, in The 2003 Congress on Evolutionary Computation (CEC’03), vol. 3 (2003), pp. 1596–1603
R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
E.G. Talbi, Metaheuristics: From Design to Implementation (Wiley, London, 2009)
G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouzé, Y. Moreau, A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17(12), 1113–1122 (2001)
M. Tompa, N. Li, T.L. Bailey, G.M. Church, B. De Moor, E. Eskin, A.V. Favorov, M.C. Frith, Y. Fu, W.J. Kent, V.J. Makeev, A.A. Mironov, W.S. Noble, G. Pavesi, G. Pesole, M. Régnier, N. Simonis, G. Sinha, S. Thijs, J. Van Helden, M. Vandenbogaert, Z. Weng, C. Workman, C. Ye, Z. Zhu, Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23(1), 137–144 (2005)
Z. Wei, S.T. Jensen, GAME: detecting cis-regulatory elements using genetic algorithm. Bioinformatics 22(13), 1577–1584 (2006)
E. Wingender, P. Dietze, H. Karas, R. Knuppel, TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24(1), 238–241 (1996)
C.T. Workman, G.D. Stormo, ANN-Spec: a method for discovering transcription factor binding sites with improved specificity, in Pacific Symposium on Biocomputing, (2000), pp. 467–478
X.S. Yang, Firefly algorithms for multimodal optimization, in 5th International Symposium of Stochastic Algorithms: Foundations and Applications (SAGA’09), LNCS 5792, (2009), pp. 169–178
F. Zare-Mirakabad, H. Ahrabian, M. Sadeghi, S. Hashemifar, A. Nowzari-Dalini, B. Goliaei, Genetic algorithm for dyad pattern finding in DNA sequences. Genes Genet. Syst. 84(1), 81–93 (2009)
E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report tik-report 103 (Swiss Federal Institute of Technology, Zurich, Switzerland, 2001)
E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Acknowledgments
This work was partially funded by the Spanish Ministry of Economy and Competitiveness and the ERDF (European Regional Development Fund), under the contract TIN2012-30685 (BIO project). David L. González-Álvarez is supported by the postdoc research grant ACCION-III-15 from the University of Extremadura.
Author information
Authors and Affiliations
Corresponding author
Additional information
Area Editor for Life Sciences: James Foster.
Rights and permissions
About this article
Cite this article
González-Álvarez, D.L., Vega-Rodríguez, M.A. & Rubio-Largo, Á. Multiobjective optimization algorithms for motif discovery in DNA sequences. Genet Program Evolvable Mach 16, 167–209 (2015). https://doi.org/10.1007/s10710-014-9232-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10710-014-9232-2