Skip to main content

Advertisement

Log in

A survey of evolutionary algorithms using metameric representations

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Evolutionary algorithms have been used to solve a number of variable-length problems, many of which share a common representation. A set of design variables is repeatedly defined, giving the genome a segmented structure. Each segment encodes a portion, frequently a single component, of the solution. For example, in a wind farm design problem each segment may encode the position and height of a single turbine. This is described as a metameric representation, with each segment referred to as a metavariable. The number of metavariables can vary among solutions, requiring modifications to the traditional fixed-length evolutionary operators. This paper surveys the literature that uses metameric representations with a focus on the problems being solved, the specifics of the representation, and the modifications to evolutionary operators. While there is little cross-referencing among the cited articles, it is demonstrated that there is already a strong overlap in their methodologies. By considering problems using a metameric representation as a single class, greater recognition of commonalities and differences among these works can be achieved. This could allow for the development of more efficient metameric evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Figure adapted from Ahrari et al. [41]

Fig. 6
Fig. 7

Figure adapted from Ryerkerk et al. [3]

Fig. 8

Figure adapted from Ryerkerk et al. [3]

Fig. 9

Figure adapted from Ryerkerk et al. [3]

Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. An adaptation of this work is included in the doctoral dissertation submitted by the primary author to Michigan State University [2].

References

  1. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming—An Introduction (Morgan Kaufmann, San Francisco, 1998)

    MATH  Google Scholar 

  2. M.L. Ryerkerk, Metameric representations in evolutionary algorithms. Ph.D. Thesis, Michigan State University, East Lansing (2018)

  3. M.L. Ryerkerk, R.C. Averill, K. Deb, E.D. Goodman, Solving metameric variable-length optimization problems using genetic algorithms. Genet. Program. Evolvable Mach. 18(2), 247–277 (2017)

    Google Scholar 

  4. M.V. Fidelis, H.S. Lopes, A.A. Freitas, Discovering comprehensible classification rules with a genetic algorithm, in Proceedings of of CEC 2000 (IEEE, 2000), pp. 805–810

  5. J.B. Grimbleby, Automatic analogue circuit synthesis using genetic algorithms. IEE Proc. Circuit Dev. Syst. 147(6), 319–323 (2000)

    Google Scholar 

  6. R.S. Zebulum, M. Vellasco, M.A. Pacheco, Variable length representation in evolutionary electronics. Evol. Comput. 8(1), 93–120 (2000)

    Google Scholar 

  7. S. Bandyopadhyay, U. Maulik, Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit. 35(6), 1197–1208 (2002)

    MATH  Google Scholar 

  8. C.Y. Lee, Efficient automatic engineering design synthesis via evolutionary exploration. Ph.D. Thesis, California Institute of Technology, Pasadena (2002)

  9. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Google Scholar 

  10. P.J. Bentley, Evolving beyond perfection: an investigation of the effects of long-term evolution on fractal gene regulatory networks. Biosystem 76(1–3), 291–301 (2004)

    Google Scholar 

  11. M. Giger, Representation concepts in evolutionary algorithm-based structural optimization. Ph.D. Thesis, ETH Zurich, Zurich (2007)

  12. A. Das, R. Vemuri, An automated passive analog circuit synthesis framework using genetic algorithms, in Proceedings of ISLVSI’07 (IEEE, 2007), pp. 145–152

  13. K.O. Stanley, Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)

    Google Scholar 

  14. K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Google Scholar 

  15. Y.A. Sapargaliyev, T.G. Kalganova, Open-ended evolution to discover analogue circuits for beyond conventional applications. Genet. Program. Evolvable Mach. 13(4), 411–443 (2012)

    Google Scholar 

  16. M.A. Trefzer, T. Kuyucu, J.F. Miller, A.M. Tyrrell, On the advantages of variable length GRNs for the evolution of multicellular developmental systems. IEEE Trans. Evol. Comput. 17(1), 100–121 (2013)

    Google Scholar 

  17. T.Y. Teck, M. Chitre, Direct policy search with variable-length genetic algorithm for single beacon cooperative path planning, in Proceedings of DARS 2014 (Springer, 2014), pp. 321–336

  18. H.Q. Dinh, N. Aubert, N. Noman, T. Fujii, Y. Rondelez, H. Iba, An effective method for evolving reaction networks in synthetic biochemical systems. IEEE Trans. Evol. Comput. 19(3), 374–386 (2015)

    Google Scholar 

  19. J.K. Han, B.S. Park, Y.S. Choi, H.K. Park, Genetic approach with a new representation for base station placement in mobile communications, in Proceedings of VTC 2001 Fall (IEEE, 2001), pp. 2703–2707

  20. C.K. Ting, C.N. Lee, H.C. Chang, J.S. Wu, Wireless heterogeneous transmitter placement using multiobjective variable-length genetic algorithm. IEEE Trans. Syst. Man Cybern. B Cybern. 39(4), 945–958 (2009)

    Google Scholar 

  21. R. Srikanth, R. George, N. Warsi, D. Prabhu, F.E. Petry, B.P. Buckles, A variable-length genetic algorithm for clustering and classification. Pattern Recognit. Lett. 16(8), 789–800 (1995)

    Google Scholar 

  22. D. Wilson, E. Awa, S. Cussat-Blanc, K. Veeramachaneni, U.M. O’Reilly, On learning to generate wind farm layouts, in Proceedings of GECCO’13 (ACM, 2013), pp. 767–774

  23. S. Sanchez, S. Cussat-Blanc, Gene regulated car driving: using a gene regulatory network to drive a virtual car. Genet. Program. Evolvable Mach. 15(4), 477–511 (2014)

    Google Scholar 

  24. S. Cussat-Blanc, K. Harrington, J. Pollack, Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)

    Google Scholar 

  25. S. Manos, M. Large, L. Poladian, Evolutionary design of single-mode microstructured polymer optical fibres using an artificial embryogeny representation, in Proceedings of GECCO’07 (ACM, 2007), pp. 2549–2556

  26. L. Poladian, A genotype-to-phenotype mapping for microstructured polymer optical fibres, in Proceedings of CEC’11 (IEEE, 2011), pp. 378–385

  27. F. Rothlauf, Design of Modern Heuristics: Principles and Application (Springer, Berlin, 2011)

    MATH  Google Scholar 

  28. F. Rothlauf, Representations for Genetic and Evolutionary Algorithms (Springer, Berlin, 2006)

    MATH  Google Scholar 

  29. R. Kicinger, T. Arciszewski, K.A. De Jong, Evolutionary computation and structural design: a survey of the state-of-the-art. Comput. Struct. 83(23), 1943–1978 (2005)

    Google Scholar 

  30. J. Bacardit, J.M. Garrell, Bloat control and generalization pressure using the minimum description length principle for a Pittsburgh approach learning classifier system, in Proceedings of Revised Selected Papers IWLCS 2003–2005 (Springer, 2007), pp. 59–79

  31. J.H.B. Ang, K.C. Tan, A. Al Mamun, A memetic evolutionary search algorithm with variable length chromosome for rule extraction, in Proceedings of SMC 2008 (IEEE, 2008), pp. 535–540

  32. J.D. Lohn, S.P. Colombano, A circuit representation technique for automated circuit design. IEEE Trans. Evol. Comput. 3(3), 205–219 (1999)

    Google Scholar 

  33. G.A. Hollinger, D.A. Gwaltney, Evolutionary design of fault-tolerant analog control for a piezoelectric pipe-crawling robot, in Proceedings of GECCO’06 (ACM, 2006), pp. 761–768

  34. K. Deb, S. Gulati, Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37(5), 447–465 (2001)

    MATH  Google Scholar 

  35. D. Whitley, T. Starkweather, C. Bogart, Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput. 14(3), 347–361 (1990)

    Google Scholar 

  36. J. Yu, S. Wang, L. Xi, Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 71(4–6), 1054–1060 (2008)

    Google Scholar 

  37. K.J. Kim, S.B. Cho, Automated synthesis of multiple analog circuits using evolutionary computation for redundancy-based fault-tolerance. Appl. Soft Comput. 12(4), 1309–1321 (2012)

    Google Scholar 

  38. X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 8(3), 694–713 (1997)

    Google Scholar 

  39. M. Giger, P. Ermanni, Evolutionary truss topology optimization using a graph-based parameterization concept. Struct. Multidiscip. Optim. 32(4), 313–326 (2006)

    Google Scholar 

  40. J.N. Richardson, S. Adriaenssens, P. Bouillard, R.F. Coelho, Multiobjective topology optimization of truss structures with kinematic stability repair. Struct. Multidiscip. Optim. 46(4), 513–532 (2012)

    MATH  Google Scholar 

  41. A. Ahrari, A.A. Atai, K. Deb, Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy. Eng. Optim. 47(8), 1063–1084 (2015)

    MathSciNet  Google Scholar 

  42. S.A. Khan, S. Rehman, Iterative non-deterministic algorithms in on-shore wind farm design: a brief survey. Renew. Sustain. Energy. Rev. 19, 370–384 (2013)

    Google Scholar 

  43. J.F. Herbert-Acero, O. Probst, P.E. Réthoré, G.C. Larsen, K.K. Castillo-Villar, A review of methodological approaches for the design and optimization of wind farms. Energies 7(11), 6930–7016 (2014)

    Google Scholar 

  44. J.S. González, M.B. Payán, J.M.R. Santos, F. González-Longatt, A review and recent developments in the optimal wind-turbine micro-siting problem. Renew. Sustain. Energy Rev. 30, 133–144 (2014)

    Google Scholar 

  45. J.C. Mora, J.M.C. Barón, J.M.R. Santos, M.B. Payán, An evolutive algorithm for wind farm optimal design. Neurocomputing 70(16), 2651–2658 (2007)

    Google Scholar 

  46. J.S. González, M.B. Payán, J.M.R. Santos, Optimization of wind farm turbine layout including decision making under risk. IEEE Syst. J. 6(1), 94–102 (2012)

    Google Scholar 

  47. G. Mosetti, C. Poloni, B. Diviacco, Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind Eng. Ind. Aerodyn. 51(1), 105–116 (1994)

    Google Scholar 

  48. S.A. Grady, M.Y. Hussaini, M.M. Abdullah, Placement of wind turbines using genetic algorithms. Renew. Energy 30(2), 259–270 (2005)

    Google Scholar 

  49. A. Emami, P. Noghreh, New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renew. Energy 35(7), 1559–1564 (2010)

    Google Scholar 

  50. S. Şişbot, Ö. Turgut, M. Tunç, Ü. Çamdalı, Optimal positioning of wind turbines on Gökçeada using multi-objective genetic algorithm. Wind Energy 13(4), 297–306 (2010)

    Google Scholar 

  51. Y. Chen, H. Li, K. Jin, Q. Song, Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers. Manag. 70, 56–65 (2013)

    Google Scholar 

  52. F. Luna, J.J. Durillo, A.J. Nebro, E. Alba, Evolutionary algorithms for solving the automatic cell planning problem: a survey. Eng. Optim. 42(7), 671–690 (2010)

    MATH  Google Scholar 

  53. S. Abdollahzadeh, N.J. Navimipour, Deployment strategies in the wireless sensor network: a comprehensive review. Comput. Commun. 91–92, 1–16 (2016)

    Google Scholar 

  54. Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, L. Hanzo, A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms and open problems. IEEE Commun. Surv. Tutor. 19(1), 550–586 (2017)

    Google Scholar 

  55. N. Weicker, G. Szabo, K. Weicker, P. Widmayer, Evolutionary multiobjective optimization for base station transmitter placement with frequency assignment. IEEE Trans. Evol. Comput. 7(2), 189–203 (2003)

    Google Scholar 

  56. D.B. Jourdan, O.L. de Weck, Multi-objective genetic algorithm for the automated planning of a wireless sensor network to monitor a critical facility, in Proceedings of SPIE, Volume 5403 (SPIE, 2004), pp. 565–575

  57. T.M. Chan, K.F. Man, K.S. Tang, S. Kwong, A jumping-genes paradigm for optimizing factory WLAN network. IEEE Trans. Ind. Inform. 3(1), 33–43 (2007)

    Google Scholar 

  58. G. Molina, E. Alba, E.G. Talbi, Optimal sensor network layout using multi-objective metaheuristics. J. Univers. Comput. Sci. 14(15), 2549–2565 (2008)

    Google Scholar 

  59. K.P. Ferentinos, T.A. Tsiligiridis, Adaptive design optimization of wireless sensor networks using genetic algorithms. Comput. Netw. 51(4), 1031–1051 (2007)

    MATH  Google Scholar 

  60. J. Jia, J. Chen, G. Chang, Y. Wen, J. Song, Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius. Comput. Math. Appl. 57(11), 1767–1775 (2009)

    MathSciNet  MATH  Google Scholar 

  61. E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas, A.C.P.L.F. de Carvalho, A survey of evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 39(2), 133–155 (2009)

    Google Scholar 

  62. S.J. Nanda, G. Panda, A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 16, 1–18 (2014)

    Google Scholar 

  63. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Google Scholar 

  64. S. Bandyopadhyay, U. Maulik, Nonparametric genetic clustering: comparison of validity indices. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 31(1), 120–125 (2001)

    Google Scholar 

  65. S. Das, S. Sil, Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm. Inf. Sci. 180(8), 1237–1256 (2010)

    MathSciNet  Google Scholar 

  66. D. Chang, Y. Zhao, C. Zheng, X. Zhang, A genetic clustering algorithm using a message-based similarity measure. Expert Syst. Appl. 39(2), 2194–2202 (2012)

    Google Scholar 

  67. L.Y. Tseng, S.B. Yang, A genetic approach to the automatic clustering problem. Pattern Recognit. 34(2), 415–424 (2001)

    MATH  Google Scholar 

  68. M.G.H. Omran, A. Salman, A.P. Engelbrecht, Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern. Anal. Appl. 8(4), 332–344 (2006)

    MathSciNet  Google Scholar 

  69. S.M. Pan, K.S. Cheng, Evolution-based tabu search approach to automatic clustering. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 37(5), 827–838 (2007)

    Google Scholar 

  70. A. Ghozeil, D.B. Fogel, Discovering patterns in spatial data using evolutionary programming, in Proceedings of GP’96 (MIT Press, 1996), pp. 521–527

  71. A. Fernández, S. García, J. Luengo, E. Bernadó-Mansilla, F. Herrera, Genetics-based machine learning for rule induction: state of the art, taxonomy, and comparative study. IEEE Trans. Evol. Comput. 14(6), 913–941 (2010)

    Google Scholar 

  72. K.A. De Jong, W.M. Spears, D.F. Gordon, Using genetic algorithms for concept learning. Mach. Learn. 13(2–3), 161–188 (1993)

    Google Scholar 

  73. P.P. Palmes, T. Hayasaka, S. Usui, Mutation-based genetic neural network. IEEE Trans. Neural Netw. 16(3), 587–600 (2005)

    Google Scholar 

  74. P. Pulkkinen, H. Koivisto, Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms. Int. J. Approx. Reason. 48(2), 526–543 (2008)

    Google Scholar 

  75. S. Bandyopadhyay, C.A. Murthy, S.K. Pal, VGA-classifier: design and applications. IEEE Trans. Syst. Man Cybern. B Cybern. 30(6), 890–895 (2000)

    Google Scholar 

  76. I.M. Daniel, O. Ishai, Engineering Mechanics of Composite Materials, 2nd edn. (Oxford University Press, New York, 2006)

    Google Scholar 

  77. H. Ghiasi, D. Pasini, L. Lessard, Optimum stacking sequence design of composite materials Part I: constant stiffness design. Compos. Struct. 90(1), 1–11 (2009)

    Google Scholar 

  78. H. Ghiasi, K. Fayazbakhsh, D. Pasini, L. Lessard, Optimum stacking sequence design of composite materials Part II: variable stiffness design. Compos. Struct. 93(1), 1–13 (2010)

    Google Scholar 

  79. R. Le Riche, R.T. Haftka, Improved genetic algorithm for minimum thickness composite laminate design. Compos. Eng. 5(2), 143–161 (1995)

    Google Scholar 

  80. G. Soremekun, Z. Gürdal, R.T. Haftka, L.T. Watson, Composite laminate design optimization by genetic algorithm with generalized elitist selection. Comput. Struct. 79(2), 131–143 (2001)

    Google Scholar 

  81. J.L. Pelletier, S.S. Vel, Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Comput. Struct. 84(29), 2065–2080 (2006)

    Google Scholar 

  82. C.H. Park, W.I. Lee, W.S. Han, A. Vautrin, Improved genetic algorithm for multidisciplinary optimization of composite laminates. Comput. Struct. 86(19–20), 1894–1903 (2008)

    Google Scholar 

  83. F.S. Almeida, A.M. Awruch, Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos. Struct. 88(3), 443–454 (2009)

    Google Scholar 

  84. A.R.M. Rao, K. Lakshmi, Discrete hybrid PSO algorithm for design of laminate composites with multiple objectives. J. Reinf. Plast. Compos. 30(20), 1703–1727 (2011)

    Google Scholar 

  85. K. Lakshmi, A.R.M. Rao, Multi-objective optimal design of laminated composite skirt using hybrid NSGA. Meccanica 48(6), 1431–1450 (2013)

    MathSciNet  MATH  Google Scholar 

  86. D. Keller, Global laminate optimization on geometrically partitioned shell structures. Struct. Multidiscip. Optim. 43(3), 353–368 (2011)

    MathSciNet  MATH  Google Scholar 

  87. S. Ando, M. Ishizuka, H. Iba, Evolving analog circuits by variable length chromosomes, in Advances in Evolutionary Computing, ed. by A. Ghosh, S. Tsutsui (Springer, Berlin, 2003), pp. 643–662

    Google Scholar 

  88. G.R. Zavala, A.J. Nebro, F. Luna, C.A. Coello Coello, A survey of multi-objective metaheuristics applied to structural optimization. Struct. Multidiscip. Optim. 49(4), 537–558 (2014)

    MathSciNet  Google Scholar 

  89. S.D. Rajan, Sizing, shape, and topology design optimization of trusses using genetic algorithm. J. Struct. Eng. 121(10), 1480–1487 (1995)

    Google Scholar 

  90. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Google Scholar 

  91. D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from architectures to learning. Evol. Intell. 1(1), 47–62 (2008)

    Google Scholar 

  92. V. Maniezzo, Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans. Neural Netw. 5(1), 39–53 (1994)

    Google Scholar 

  93. F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 14(1), 79–88 (2003)

    Google Scholar 

  94. M.M. Khan, A.M. Ahmad, G.M. Khan, J.F. Miller, Fast learning neural networks using Cartesian genetic programming. Neurocomputing 121, 274–289 (2013)

    Google Scholar 

  95. C. Igel, S. Wiegand, F. Friedrichs, Evolutionary optimization of neural systems: the use of strategy adaptation, in Trends and Applications in Constructive Approximation, ISNM, vol. 151, ed. by D.H. Mache, J. Szabados, M.G. de Bruin (Birkhäuser, Basel, 2005), pp. 103–123

    Google Scholar 

  96. Y. Sun, B. Xue, M. Zhang. Evolving deep convolutional neural networks for image classification (2017). arXiv:1710.10741

  97. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, B. Hodjat, Chapter 15: Evolving deep neural networks, in Artificial Intelligence in the Age of Neural Networks and Brain Computing, ed. by R. Kozma, C. Alippi, Y. Choe, F.C. Morabito (Academic Press, New York, 2019), pp. 293–312

    Google Scholar 

  98. A. Spirov, D. Holloway, Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks. Methods 62(1), 39–55 (2013)

    Google Scholar 

  99. M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, R. Guthke, Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1), 86–103 (2009)

    Google Scholar 

  100. W. Banzhaf, Artificial regulatory networks and genetic programming, in Genetic Programming Theory and Practice, ed. by R. Riolo, B. Worzell (Springer, Boston, 2003), pp. 43–61

    Google Scholar 

  101. A. Sîrbu, H.J. Ruskin, M. Crane, Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinform. 11, 59 (2010)

    Google Scholar 

  102. B. Carse, T.C. Fogarty, A. Munro, Evolving fuzzy rule based controllers using genetic algorithms. Fuzzy Sets Syst. 80(3), 273–293 (1996)

    Google Scholar 

  103. A.S. Wu, A.C. Schultz, A. Agah, Evolving control for distributed micro air vehicles, in Proceedings of CIRA’99 (IEEE, 1999), pp. 174–179

  104. J.K. Bassett, K.A. De Jong, Evolving behaviors for cooperating agents, in Proceedings of ISMIS 2000 (Springer, 2000), pp. 157–165

  105. C.S. Chang, S.S. Sim, Optimising train movements through coast control using genetic algorithms. IEE Proc. Electr. Power Appl. 144(1), 65–73 (1997)

    Google Scholar 

  106. J.A. Hageman, R. Wehrens, H.A. van Sprang, L.M.C. Buydens, Hybrid genetic algorithm–Tabu search approach for optimising multilayer optical coatings. Anal. Chim. Acta 490, 211–222 (2003)

    Google Scholar 

  107. C.Y. Lee, E.K. Antonsson, Variable length genomes for evolutionary algorithms, in Proceedings of GECCO’00 (Morgan Kaufmann, 2000), p. 806

  108. Y. Chen, V. Mahalec, Y. Chen, X. Liu, R. He, K. Sun, Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution. Eur. J. Oper. Res. 242(1), 10–20 (2015)

    MathSciNet  MATH  Google Scholar 

  109. M. Montemurro, A. Vincenti, P. Vannucci, A two-level procedure for the global optimum design of composite modular structures—application to the design of an aircraft wing. Part 1: Theoretical Formulation. J. Optim. Theory Appl. 155(1), 1–23 (2012)

    MathSciNet  MATH  Google Scholar 

  110. A. Gad, O. Abdelkhalik, Hidden genes genetic algorithm for multi-gravity-assist trajectories optimization. J. Spacecr. Rocket 48(4), 629–641 (2011)

    Google Scholar 

  111. R.R. de Lucena, J.S. Baioco, B.S.L.P. de Lima, C.H. Albrecht, B.P. Jacob, Optimal design of submarine pipeline routes by genetic algorithm with different constraint handling techniques. Adv. Eng. Softw. 76, 110–124 (2014)

    Google Scholar 

  112. M. Schoenauer, Shape representations and evolutionary schemes, in Proceedings of Evolutionary Programming V (MIT Press, 1996), pp. 121–129

  113. M. Schoenauer, L. Kallel, F. Jouve, Mechanical inclusions identification by evolutionary computation. Revue Européenne des Éléments Finis 5–6, 619–648 (1996)

    MathSciNet  MATH  Google Scholar 

  114. H. Hamda, F. Jouve, E. Lutton, M. Schoenauer, M. Sebag, Compact unstructured representations for evolutionary design. Appl. Intell. 16(2), 139–155 (2002)

    MATH  Google Scholar 

  115. I. Kajitani, T. Hoshino, M. Iwata, T. Higuchi, Variable length chromosome GA for evolvable hardware, in Proceedings of ICEC’96 (IEEE, 1996), pp. 443–447

  116. J.F. Miller, D. Job, V.K. Vassilev, Principles in the evolutionary design of digital circuits—Part I. Genet. Program. Evolvable Mach. 1(1–2), 7–35 (2000)

    MATH  Google Scholar 

  117. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in Cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

    Google Scholar 

  118. M. Brameier, W. Banzhaf, A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26 (2001)

    MATH  Google Scholar 

  119. D.M. Cherba, W. Punch, Crossover gene selection by spatial location, in Proceedings of GECCO’06 (ACM, 2006), pp. 1111–1116

  120. J.F. Miller, Cartesian genetic programming, in Cartesian Genetic Programming, ed. by J.F. Miller (Springer, Heidelberg, 2011), pp. 17–34

    MATH  Google Scholar 

  121. R. Poli, W.B. Langdon, N.F. McPhee, J.R. Koza, A Field Guide to Genetic Programming (Lulu Enterprises, Morrisville, 2008)

    Google Scholar 

  122. W.B. Langdon, The evolution of size in variable length representations, in Proceedings of ICEC’98 (IEEE, 1998), pp. 633–638

  123. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  124. P.D. Surry, N.J. Radcliffe, Formal algorithms + formal representations = search strategies, in Proceedings of PPSN IV (Springer, 1996), pp. 366–375

  125. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1998)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their time and constructive comments which helped improve the quality of this paper. This material is based in part upon work supported by the National Science Foundation under Cooperative Agreement No. DBI-0939454 to BEACON Center for the Study of Evolution in Action. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Ryerkerk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryerkerk, M., Averill, R., Deb, K. et al. A survey of evolutionary algorithms using metameric representations. Genet Program Evolvable Mach 20, 441–478 (2019). https://doi.org/10.1007/s10710-019-09356-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-019-09356-2

Keywords

Navigation