Abstract
Genetic programming is a powerful, robust and versatile tool that is suitable for predicting and forecasting, especially in the steelmaking industry, where the diversity of serial production processes and equipment strongly influence final product properties, quality and price. The article reviews a wide spectrum of implementation attempts of genetic programing in the steelmaking industry, including real practical applications where direct economic effects can be easily established. The article also presents remaining challenges.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
B.K. Mahanta, N. Chakraborti, Evolutionary data driven modeling and multi objective optimization of noisy data set in blast furnace iron making process. Steel Res. Int. 89(9), 1800121 (2018)
C. Halder, L. Madej, M. Pietrzyk, N. Chakraborti, Optimization of cellular automata model for the heating of dual-phase steel by genetic algorithm and genetic programming. Mater. Manuf. Process. 30(4), 552–562 (2015)
M. Kovačič, B. Jurjovec, L. Krajnc, Ladle-nozzle opening and genetic programming. Mater. Tehnol. 48(1), 23–26 (2014)
M. Kovačič, R. Jager, Modeling of occurrence of surface defects of C45 steel with genetic programming. Mater. Tehnol. 49(6), 857–863 (2015)
M. Kovacic, J. Balic, M. Brezocnik, Evolutionary approach for cutting forces prediction in milling. J. Mater. Process. Technol. 155, 1647–1652 (2004)
M. Kovačič, M. Pšeničnik, Extra machinability modeling. RMZ - Mater. Geoenviron. (Materiali geookolje) 56(3), 338–345 (2009)
A. Garg, J.S.L. Lam, Improving environmental sustainability by formulation of generalized power consumption models using an ensemble based multi-gene genetic programming approach. J. Clean. Prod. 102, 246–263 (2015)
M. Kovačič, S. Senčič, Modeling of PM10 emission with genetic programming. Mater. Tehnol. 46(5), 453–457 (2012)
M. Kovacic, M. Brezocnik, R. Turk, Modeling of hot yield stress curves for carbon silicon steel by genetic programming. Mater. Manuf. Process. 20(3), 543–551 (2005)
M. Kovačič, A. Turnšek, D. Ocvirk, G. Gantar, Increasing the tensile strength and elongation of 16MnCrS5 steel using genetic programming. Mater. Tehnol. 51(6), 883–888 (2017)
A. Al-Mosawe, R. Kalfat, R. Al-Mahaidi, Strength of Cfrp-steel double strap joints under impact loads using genetic programming. Compos. Struct. 160, 1205–1211 (2017)
A.F. Ashour, L.F. Alvarez, V.V. Toropov, Empirical modelling of shear strength of RC deep beams by genetic programming. Comput. Struct. 81(5), 331–338 (2003)
V. Vijayaraghavan, A. Garg, K. Tai, L. Gao, Thermo-mechanical modeling of metallic alloys for nuclear engineering applications. Measurement 97, 242–250 (2017)
M. Moradi, A.R. Bagherieh, M.R. Esfahani, Relationship of tensile strength of steel fiber reinforced concrete based on genetic programming. Int. J. Optim. Civ. Eng. 6(3), 349–363 (2016)
E. Kanca, F. Çavdar, M.M. Erşen, Prediction of mechanical properties of cold rolled steel using genetic expression programming. Acta Phys. Pol., A 130(1), 365–369 (2016)
R.C. Dimitriu, Complex Mechanical Properties of Steel (University of Cambridge Press, Cambridge, 2009)
R.C. Dimitriu, H.K.D.H. Bhadeshia, C. Fillon, C. Poloni, Strength of ferritic steels: neural networks and genetic programming. Mater. Manuf. Process. 24(1), 10–15 (2008)
P. Papliński, W. Sitek, J. Trzaska, Modelling the structural steel hardness using genetic programming method. Adv. Mater. Res. 1036, 580–585 (2014)
M. Pala, Genetic programming-based formulation for distortional buckling stress of cold-formed steel members. J. Constr. Steel Res. 64(12), 1495–1504 (2008)
M. Brezocnik, B. Buchmeister, L. Gusel, Evolutionary algorithm approaches to modeling of flow stress. Mater. Manuf. Process. 26(3), 501–507 (2011)
M. Kovačič, Modeling of total decarburization of spring steel with genetic programming. Mater. Manuf. Process. 30(4), 434–443 (2015)
A. Marref, S. Basalamah, R. Al-Ghamdi, Evolutionary computation techniques for predicting atmospheric corrosion. Int. J. Corros. 2013, 1–12 (2013)
M. BabičM, P. Kokol, I. Belič, P. Panjan, M. Kovačič, J. Balič, T. Verbovšek, Prediction of the hardness of hardened specimens with a neural network. Mater. Tehnol. 48(3), 409–414 (2014)
M. Kovačič, B. Šarler, Genetic programming and soft-annealing productivity. Mater. Tehnol. 45(5), 369–374 (2011)
M. Kovačič, Genetic programming and Jominy test modeling. Mater. Manuf. Process. 24(7–8), 806–808 (2009)
A. Garg, K. Tai, Stepwise approach for the evolution of generalized genetic programming model in prediction of surface finish of the turning process. Adv. Eng. Softw. 78, 16–27 (2014)
X. Cao, Y. Fan, R. Ma, A. Du, Predicting temper embrittlement of 30Cr2MoV rotor steel with genetic programming. J. Comput. Theor. Nanosci. 5(8), 1713–1716 (2008)
B. Jurjovec, Steelmaking Processes Impact on 30MnVS6 and Occurrence of Surface Defects with the Use of Genetic Programming, University of Maribor, Faculty of Mechanical Engineering (2016)
A. Garg, K. Tai, A.K. Gupta, A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304. Meccanica 49(5), 1193–1209 (2014)
A. Garg, B.N. Panda, K. Tai, True stress measurement of nuclear fuel rod cladding material subjected to DSA regime. Neural Comput. Appl. 28(S1), 119–126 (2017)
A. Garg, K. Tai, V. Vijayaraghavan, P.M. Singru, Mathematical modelling of burr height of the drilling process using a statistical-based multi-gene genetic programming approach. Int. J. Adv. Manuf. Technol. 73(1–4), 113–126 (2014)
M. Brezocnik, M. Kovacic, L. Gusel, Comparison between genetic algorithm and genetic programming approach for modeling the stress distribution. Mater. Manuf. Process. 20(3), 497–508 (2005)
M. Kovačič, D. Novak, Prediction of the chemical non-homogeneity of 30MnVS6 billets with genetic programming. Mater. Tehnol. 50(1), 69–74 (2016)
M. Brezocnik, M. Kovacic, M. Ficko, Prediction of surface roughness with genetic programming. J. Mater. Process. Technol. 157–158, 28–36 (2004)
J.L. Pérez, I. Vieito, J. Rabuñal, F. Martínez-Abella, Genetic Programming to Improvement FIB Model, in Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol. 7902, ed. by I. Rojas , G. Joya , J. Gabestany (Springer, Berlin, Heidelberg, 2013). https://doi.org/10.1007/978-3-642-38679-4_46
İ.H. Karahan, R. Ozdemir, B. Erkayman, A comparison of genetic programming and neural networks; new formulations for electrical resistivity of Zn–Fe alloys. Appl. Phys. A 113(2), 459–476 (2013)
M. Kovačič, Modeling of total decarburization of spring steel with genetic programming. Mater. Manuf. Process. 30(4), 434–443 (2014)
M. Kovačič, B. Šarler, Application of the genetic programming for increasing the soft annealing productivity in steel industry. Mater. Manuf. Process. 24(3), 369–374 (2009)
A. Cevik, Genetic programming based formulation of rotation capacity of wide flange beams. J. Constr. Steel Res. 63(7), 884–893 (2007)
A.H. Gandomi, S.M. Tabatabaei, M.H. Moradian, A. Radfar, A.H. Alavi, A new prediction model for the load capacity of castellated steel beams. J. Constr. Steel Res. 67(7), 1096–1105 (2011)
P.D. Deshpande, B.P. Gautham, U. Gupta, D. Khan, Modeling the steel case carburizing quenching process using statistical and machine learning techniques, in 2014 9th International Conference on Industrial and Information Systems (ICIIS), (2014), pp. 1–6
M. Kommenda, G. Kronberger, C. Feilmayr, L. Schickmair, M. Affenzeller, S.M. Winkler, S. Wagner, Application of symbolic regression on blast furnace and temper mill datasets, in Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol. 6927, ed. by R. Moreno-Díaz, F. Pichler, A. Quesada-Arencibia (Springer, Berlin, Heidelberg, 2012)
M. Kommenda, G. Kronberger, S. Winkler, M. Affenzeller, S. Wagner, L. Schickmair, B. Lindner, Application of genetic programming on temper mill datasets, in Proceedings of the IEEE 2nd International Symposium on Logistics and Industrial Informatics, Linz, Austria, 2009, pp. 58–62
M. Lotz, S. Silva, Application of Genetic Programming Classification in an Industrial Process Resulting in Greenhouse Gas Emission Reductions, in Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol. 6025, ed. by C. Di Chio et al. (Springer, Berlin, Heidelberg, 2010)
M. Kovačič, B. Šarler, Genetic programming prediction of the natural gas consumption in a steel plant. Energy 66, 273–284 (2014)
A.F. Sheta, H. Faris, E. Öznergiz, Improving production quality of a hot-rolling industrial process via genetic programming model. Int. J. Comput. Appl. Technol. 49(3/4), 239 (2014)
A.H. Gandomi, D.A. Roke, Assessment of artificial neural network and genetic programming as predictive tools. Adv. Eng. Softw. 88, 63–72 (2015)
R. Jha, P.K. Sen, N. Chakraborti, Multi-objective genetic algorithms and genetic programming models for minimizing input carbon rates in a blast furnace compared with a conventional analytic approach. Steel Res. Int. 85(2), 219–232 (2014)
A. Cevik, A new formulation for web crippling strength of cold-formed steel sheeting using genetic programming. J. Constr. Steel Res. 63(7), 867–883 (2007)
H. Firpi, G. Vachtsevanos, Genetically programmed-based artificial features extraction applied to fault detection. Eng. Appl. Artif. Intell. 21(4), 558–568 (2008)
H. Faris, A. Sheta, E. Öznergiz, Modelling hot rolling manufacturing process using soft computing techniques. Int. J. Comput. Integr. Manuf. 26(8), 762–771 (2013)
A.H. Gandomi, A.H. Alavi, S. Kazemi, M.M. Alinia, Behavior appraisal of steel semi-rigid joints using Linear Genetic Programming. J. Constr. Steel Res. 65(8–9), 1738–1750 (2009)
M. Brezocnik, M. Kovacic, Integrated genetic programming and genetic algorithm approach to predict surface roughness. Mater. Manuf. Process. 18(3), 475–491 (2003)
J. Duda, A. Stawowy, Genetic programming for the prediction of tensile strength of cast iron. Arch. Foundry Eng. 11(4), 31–34 (2011)
B. Podgornik, V. Leskovšek, M. Kovačič, J. Vižintin, Analysis and Prediction of Residual Stresses in Nitrided Tool Steel, in Materials Science Forum, vol. 681, ed. by P. Scardi, C.L. Azanza Ricardo, pp. 352–357 (2011)
A. Cevik, I.H. Guzelbey, A soft computing based approach for the prediction of ultimate strength of metal plates in compression. Eng. Struct. 29(3), 383–394 (2007). https://doi.org/10.1016/j.engstruct.2006.05.005
S. Wang, B.X. Liu, C.X. Chen, J.H. Feng, F.X. Yin, Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios. J. Alloys Compd. 766, 517–526 (2018)
J. Balic, M. Nastran, An on-line predictive system for steel wire straightening using genetic programming. Eng. Appl. Artif. Intell. 15(6), 559–565 (2002)
M. Kovačič, K. Mačkošek, A. Mihevc, T. Marolt, Crack presence modeling after rolling by genetic programming. RMZ - Mater. Geoenviron. (Materiali geookolje) 56(1), 24–29 (2009)
M. Babič, P. Kokol, I. Belič, P. Panjan, M. Kovačič, J. Balič, Using of genetic programming in engineering. Elektrotehniški vestnik 81(3), 143–147 (2014)
M. Brezočnik, M. Kovačič, M. Pšeničnik, Prediction of steel machinability by genetic programming. J. Achiev. Mater. Manuf. Eng. 16(1–2), 107–113 (2006)
M. Kovačič, S. Senčič, Genetic programming and artificial neural network modeling of PM10 emission close to a steel plant. Mater. Tehnol. 46(5), 453–457 (2012)
ASM, ASM Handbook, Volume 12: Fractography (ASM International, 1987)
M. Kovačič, S. Senčič, Critical inclusion size in spring steel and genetic programming. RMZ-Mater. Geoenviron. 57(1), 17–23 (2010)
N. Gubeljak, M.D. Chapetti, J. Predan, B. Senčič, Variation of fatigue threshold of spring steel with pre-stressing. Procedia Eng. 10, 3339–3344 (2011)
M. Kovačič, B. Šarler, Genetic programming prediction of the natural gas consumption in a steel plant. Energy, 66(1), 273–284 (2014)
A. Vaz-Romero, J.A. Rodríguez-Martínez, A. Arias, The deterministic nature of the fracture location in the dynamic tensile testing of steel sheets. Int. J. Impact Eng 86, 318–335 (2015)
R. Cao, X. Yu, Z. Feng, W. Liu, R. Xu, M. Ojima, T. Koseki, Strain partition and rupture analysis of notched tensile multilayered steel specimens. Mater. Charact. 145, 634–643 (2018)
S. Jie, L. Junchen, L. Peiqing, W. Fuan, S. Yi, W. Keliang, Investigation of tensile properties of 316L stainless steel with micro-nano-structure in SEM by in situ tension. Integr. Ferroelectr. 181(1), 33–41 (2017)
K.P. Balan, Casting defects in iron and steel, in Metallurgical Failure Analysis, (Elsevier, Amsterdam, 2018), pp. 93–110
M.O. El-Bealy, New macrosegregation criteria for quality problems in continuous casting of steel. Ironmak. Steelmak. 40(8), 559–570 (2013)
S. Tamimi, J.J. Gracio, A.B. Lopes, S. Ahzi, F. Barlat, Asymmetric rolling of interstitial free steel sheets: microstructural evolution and mechanical properties. J. Manuf. Process. 31, 583–592 (2018)
N.D. Beynon, T.B. Jones, G. Fourlaris, Effect of high strain rate deformation on microstructure of strip steels tested under dynamic tensile conditions. Mater. Sci. Technol. 21(1), 103–112 (2005)
H. Zhao, E.J. Palmiere, Effect of austenite grain size on acicular ferrite transformation in a HSLA steel. Mater. Charact. 145, 479–489 (2018)
I. Schemmel, C. Martinschitz, H. Leitner, G. Kellezi, Abnormal grain growth in high speed steels. Int. Heat Treat. Surf. Eng. 7(3), 106–109 (2013)
W.E. Bryson, Heat Treatment (Carl Hanser Verlag GmbH & Co. KG, München, 2015)
A. Bhaduri, Mechanical Properties and Working of Metals and Alloys, vol. 264 (Springer, Singapore, 2018)
H.K.D.H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties (Elsevier, Amsterdam, 2006)
J.M. Steer, R. Marsh, D. Sexton, M. Greenslade, A comparison of partially burnt coal chars and the implications of their properties on the blast furnace process. Fuel Process. Technol. 176, 230–239 (2018)
H. Wang, M. Chu, W. Zhao, R. Wang, Z. Liu, J. Tang, Fundamental research on iron coke hot briquette: a new type burden used in blast furnace. Ironmak. Steelmak. 43(8), 571–580 (2016)
L. Liu, Z. Jiang, X. Zhang, Y. Lu, J. He, J. Wang, X. Zhang, Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace. Energy 163, 144–150 (2018)
F.T.P. de Medeiros, S.J.X. Noblat, A.M.F. Fileti, Reviving traditional blast furnace models with new mathematical approach. Ironmak. Steelmak. 34(5), 410–414 (2007)
Committee on Reaction within Blast FurnaceJoint Society on Iron and Steel Basic Research, The Iron and Steel Institute of Japan, Blast Furnace Phenomena and Modelling (Springer, Dordrecht, 1987)
D. Fu, G. Tang, Y. Zhao, J. D’Alessio, C.Q. Zhou, Modeling of iron ore reactions in blast furnace. Int. J. Heat Mass Transf. 103, 77–86 (2016)
Y.B. Zhang, M.H. Du, Z.J. Su, G.H. Li, T. Jiang, Preparation of blast furnace burdens with middle-low basicity from high-SiO2 -content iron concentrates by composite agglomeration process (CAP). Ironmak. Steelmak. 45(6), 566–575 (2018)
R. Lan, J. Wang, Y. Han, X. She, L. Wang, Q. Xue, Reduction behavior of sinter based on top gas recycling-oxygen blast furnace. J. Iron. Steel Res. Int. 19(9), 13–19 (2012)
E.A. Mousa, Effect of basicity on wüstite sinter reducibility under simulated blast furnace conditions. Ironmak. Steelmak. 41(6), 418–429 (2014)
Y. Yu, G. Feng, D. Su, Measures of decreasing blast furnace fuel consumption and improving sinter performance in Guofeng. J. Iron. Steel Res. Int. 15(5), 9–28 (2008)
T. van den Berg, J.P.R. de Villiers, An assessment of the production of fine material in iron ore sinter. Miner. Process. Extr. Metall. 118(4), 214–221 (2009)
E.A. Mousa, D. Senk, A. Babich, H.W. Gudenau, Influence of nut coke on iron ore sinter reducibility under simulated blast furnace conditions. Ironmak. Steelmak. 37(3), 219–228 (2010)
S. Jursova, P. Pustejovska, S. Brozova, Study on reducibility and porosity of metallurgical sinter. Alexandria Eng. J. 57(3), 1657–1664(2017)
T. Umadevi, D.K. Naik, R. Sah, A. Brahmacharyulu, K. Marutiram, P.C. Mahapatra, Studies on parameters affecting sinter strength and prediction through artificial neural network model. Miner. Process. Extr. Metall. 125(1), 32–38 (2016)
M. Wu, K. Zhang, J. An, J. She, K.-Z. Liu, An energy efficient decision-making strategy of burden distribution for blast furnace. Control Eng. Pract. 78, 186–195 (2018)
H. Saxén, J. Hinnelä, Model for burden distribution tracking in the blast furnace. Miner. Process. Extr. Metall. Rev. 25(1), 1–27 (2004)
X. Su, S. Zhang, Y. Yin, W. Xiao, Prediction model of permeability index for blast furnace based on the improved multi-layer extreme learning machine and wavelet transform. J. Frankl. Inst. 355(4), 1663–1691 (2018)
B. Desai, R.V. Ramna, A. Dey, Effect of casting parameters on permeability in lower part of blast furnace. Ironmak. Steelmak. 34(3), 248–252 (2007)
L.J. Wu, W.G. Zhou, Y.L. Su, X.J. Li, Experimental and operational thermal studies on blast furnace cast steel staves. Ironmak. Steelmak. 35(3), 179–182 (2008)
M. Omran, T. Fabritius, Improved removal of zinc from blast furnace sludge by particle size separation and microwave heating. Miner. Eng. 127, 265–276 (2018)
W. Wang, J. Wang, R. Xu, Y. Yu, Y. Jin, Z. Xue, Influence mechanism of zinc on the solution loss reaction of coke used in blast furnace. Fuel Process. Technol. 159, 118–127 (2017)
D.E. Esezobor, S.A. Balogun, Zinc accumulation during recycling of iron oxide wastes in the blast furnace. Ironmak. Steelmak. 33(5), 419–425 (2006)
W. Chen, B.-X. Wang, H.-L. Han, Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm. Ironmak. Steelmak. 37(6), 458–463 (2010)
M. Meraikib, Silicon distribution between blast furnace slag and hot metal. Ironmak. Steelmak. 27(4), 280–285 (2000)
D.C. Sexton, J.M. Steer, R. Marsh, M. Greenslade, Investigating char agglomeration in blast furnace coal injection. Fuel Process. Technol. 178, 24–34 (2018)
V.I. Shatokha, I.V. Sokolovskaya, Effect of coal treatment with molten blast furnace slag on char properties. Ironmak. Steelmak. 40(8), 635–637 (2013)
A. Shankar, Sulphur partition between hot metal and high alumina blast furnace slag. Ironmak. Steelmak. 33(5), 413–418 (2006)
A.J. Andersson, A.M.T. Andersson, P.G. Jönsson, Variation in hot metal and slag composition during tapping of blast furnace. Ironmak. Steelmak. 31(3), 216–226 (2004)
W.T. Cheng, E.N. Huang, S.W. Du, Numerical analysis on transient thermal flow of the blast furnace hearth in tapping process through CFD. Int. Commun. Heat Mass Transf. 57, 13–21 (2014)
F. Bambauer, S. Wirtz, V. Scherer, H. Bartusch, Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model. Powder Technol. 334, 53–64 (2018)
R.D. Martín, F. Obeso, J. Mochón, R. Barea, J. Jiménez, Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmak. Steelmak. 34(3), 241–247 (2007)
A. Agrawal, S.C. Kor, U. Nandy, A.R. Choudhary, V.R. Tripathi, Real-time blast furnace hearth liquid level monitoring system. Ironmak. Steelmak. 43(7), 550–558 (2016)
A. Agrawal, M.K. Agarwal, A.K. Kothari, S. Mallick, A mathematical model to control thermal stability of blast furnace using proactive thermal indicator. Ironmak. Steelmak. 46(2), 133–140 (2017)
M. Smith, Blast furnace ironmaking: view on future developments. Ironmak. Steelmak. 42(10), 734–742 (2015)
I. Crudu, M.-P. Ionescu, V. Munteanu, I.-F. Sandu, P. Nedelcu, A tribosystemic approach to refractory lining destruction in blast furnaces. Wear 216(2), 251–261 (1998)
X. Bi, J. Qiu, W. Wang, Y. Bi, S. Lu, J. Cheng, Y. Xia, X. Gu, Influences of scaffold and coal injection on gas and liquid flow distributions in blast furnace: mathematical model. Ironmak. Steelmak. 28(1), 27–32 (2001)
S. Prakash, K. Mukherjee, S. Singh, S.P. Mehrotra, Simulation of energy dynamics of electric furnace steelmaking using DRI. Ironmak. Steelmak. 34(1), 61–70 (2007)
T. Jiemin, M.B. Ferri, P. Argenta, EAF technology evolution by continuous charging. Ironmak. Steelmak. 32(3), 191–194 (2005)
P.C. Morgan, The continued development of the electric arc furnace. Ironmak. Steelmak. 32(3), 185–186 (2005)
Ü. Çamdali, Y. Yetişken, İ. Ekmekçi, Determination of the optimum cost function for an electric arc furnace and ladle furnace system by using energy balance. Energy Sources Part B Econ. Plan. Policy 7(2), 200–212 (2012)
M. Tunc, U. Camdali, G. Arasil, Energy analysis of the operation of an electric-arc furnace at a steel company in Turkey. Metallurgist 59(5–6), 489–497 (2015)
K. Beskow, D. Sichen, Ladle glaze: major source of oxide inclusions during ladle treatment of steel. Ironmak. Steelmak. 31(5), 393–400 (2004)
G. Straffelini, A. Gabos, L. Labiscsak, D. Bodino, S. Adinolfi, F. Venturi, Coupled modelling of electric arc furnace and ladle furnace processes. Ironmak. Steelmak. 37(3), 181–186 (2010)
T.S. Kho, D.R. Swinbourne, B. Blanpain, S. Arnout, D. Langberg, Understanding stainless steelmaking through computational thermodynamics Part 1: electric arc furnace melting. Miner. Process. Extr. Metall. 119(1), 1–8 (2010)
Ī. Ekmekçi, Y. Yetisken, Ü. Çamdali, Mass balance modeling for electric arc furnace and ladle furnace system in steelmaking facility in Turkey. J. Iron. Steel Res. Int. 14(5), 1–55 (2007)
A.N. Conejo, D.E. Hernández, Optimization of aluminum deoxidation practice in the ladle furnace. Mater. Manuf. Process. 21(8), 796–803 (2006)
A.K. Kothari, R. Ranjan, R.S. Singh, G. Kumar, A. Kumar, A. Agrawal, A real-time ferroalloy model for the optimum ladle furnace treatment during the secondary steelmaking. Ironmak. Steelmak. 46(3), 211–220 (2017)
M.F. Santos, M.H. Moreira, M.G.G. Campos, P.I.B.G.B. Pelissari, R.A. Angélico, E.Y. Sako, S. Sinnema, V.C. Pandolfelli, Enhanced numerical tool to evaluate steel ladle thermal losses. Ceram. Int. 44(11), 12831–12840 (2018)
A. Zimmer, Á.N.C. Lima, R.M. Trommer, S.R. Bragança, C.P. Bergmann, Heat transfer in steelmaking ladle. J. Iron. Steel Res. Int. 15(3), 11–60 (2008)
R.I.L. Guthrie, L. Gourtsoyannis, Melting rates of furnace or ladle additions in steelmaking. Can. Metall. Q. 10(1), 37–46 (1971)
N.N. Tripathi, M. Nzotta, A. Sandberg, D. Sichen, Effect of ladle age on formation of non-metallic inclusions in ladle treatment. Ironmak. Steelmak. 31(3), 235–240 (2004)
X. Deng, C. Ji, Y. Cui, Z. Tian, X. Yin, X. Shao, Y. Yang, A. McLean, Formation and evolution of macro inclusions in IF steels during continuous casting. Ironmak. Steelmak. 44(10), 739–749 (2017)
H. Tang, J. Li, C. Xie, S. Yang, K. Sun, D. Wen, Rational argon stirring for a 150-t ladle furnace. Int. J. Miner. Metall. Mater. 16(4), 383–386 (2009)
V.T. Mantripragada, S. Sarkar, Wall stresses in dual bottom purged steel making ladles. Chem. Eng. Res. Des. 139, 335–345 (2018)
J. Roy, S. Chandra, S. Maitra, Nanotechnology in castable refractory. Ceram. Int. 45(1), 19–29 (2019)
J.K.S. Svensson, A. Memarpour, V. Brabie, P.G. Jönsson, Studies of the decarburisation phenomena during preheating of submerged entry nozzles (SEN) in continuous casting processes. Ironmak. Steelmak. 44(2), 108–116 (2017)
F.R. Camisani-Calzolari, I.K. Craig, P.C. Pistorius, A review on causes of surface defects in continuous casting. IFAC Proc. 36(24), 113–121 (2003)
L. Xu, S. Zhang, C. Qiu, S. Qiu, X. Zhang, Surface microstructure control of microalloyed steel during slab casting. J. Iron. Steel Res. Int. 24(8), 803–810 (2017)
V.K. Barcellos, C.R.F. Ferreira, J.A. Spim, C.A. dos Santos, A. Garcia, The Interrelation between casting size, steel grade, and temperature evolution along the mold length and at the strand surface during continuous casting of steel. Mater. Manuf. Process. 26(1), 113–126 (2011)
H.Q. Yu, M.Y. Zhu, Influence of electromagnetic stirring on transport phenomena in round billet continuous casting mould and macrostructure of high carbon steel billet. Ironmak. Steelmak. 39(8), 574–584 (2012)
H. Fredriksson, On the solidification of steel ingots and continuously cast steel billets and slabs. Can. Metall. Q. 30(4), 235–244 (1991)
C. Cui, U. Fritsching, A. Schulz, R. Tinscher, K. Bauckhage, P. Mayr, Spray forming of homogeneous 100Cr6 bearing steel billets. J. Mater. Process. Technol. 168(3), 496–504 (2005)
S. Kumar, J.A. Meech, I.V. Samarasekera, J.K. Brimacombe, V. Rakocevic, Development of intelligent mould for online detection of defects in steel billets. Ironmak. Steelmak. 26(4), 269–284 (1999)
B.W. Rooks, A.K. Singh, S.A. Tobias, Temperature effects in hot forging dies. Met. Technol. 1(1), 449–455 (1974)
S. Serajzadeh, A. Karimi Taheri, Modelling work-roll temperature variations in hot strip rolling. Int. J. Model. Simul. 24(1), 42–50 (2004)
I. Earnshaw, Hot rolling of sheet and strip: steel. Met. Technol. 2(1), 306–312 (1975)
P.U. Nwachukwu, O.O. Oluwole, Effects of rolling process parameters on the mechanical properties of hot-rolled St60Mn steel. Case Stud. Constr. Mater. 6, 134–146 (2017)
S. Yu, L.X. Du, J. Hu, R.D.K. Misra, Effect of hot rolling temperature on the microstructure and mechanical properties of ultra-low carbon medium manganese steel. Mater. Sci. Eng., A 731, 149–155 (2018)
M. Meshkat, S. Serajzadeh, A study on non-isothermal static recrystallization during hot rolling of carbon steels. Mater. Manuf. Process. 28(3), 236–241 (2013)
J. Paulo Davim, Machining (Springer, London, 2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kovačič, M., Župerl, U. Genetic programming in the steelmaking industry. Genet Program Evolvable Mach 21, 99–128 (2020). https://doi.org/10.1007/s10710-020-09382-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10710-020-09382-5