Skip to main content

Advertisement

Log in

A Grid-Enabled Regional-Scale Ensemble Forecasting System in the Mediterranean Area

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Numerical weather prediction applications require considerable processing power and data storage resources, and thus can benefit from the offerings of Grid technologies. In this paper we discuss the porting of such an application on the Grid infrastructure provided by the SEE-GRID-SCI European research project. This study explores the regional ensemble forecasting technique as a means to contribute to the improvement of weather forecasting in the Mediterranean. Indeed, a regional ensemble system was built, based on the use of two limited area models that are run using a multitude on initial and boundary conditions over the Mediterranean. This large-scale application involves the use of large infrastructures that are not easily available and thus its porting to the Grid at production level has been proved to be a challenging endeavour. The application workflow, the operational and Grid infrastructure requirements, and also the problems encountered are presented. Multiple requirements mainly related to the characteristics of the implemented workflow, the model characteristics and the limitations imposed by the Grid infrastructure itself, had to be satisfied. The paper concludes with a recent result of the implemented application. Indeed the regional scale ensemble forecasting system provided useful probabilistic forecasts for a severe thunderstorm case that affected Central Europe during the summer 2009 (with damages, casualties and several injuries).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akylas, E., Kotroni, V., Lagouvardos, K.: Sensitivity of high resolution operational weather forecasts to the choice of the planetary boundary layer scheme. Atmos. Res. 84, 49–57 (2007)

    Article  Google Scholar 

  2. Bird, I., et al.: Operating the LCG and EGEE production Grids for HEP. In: Proceedings of the CHEP’04 Conference (2004)

  3. Buzzi, A., Fantini, M., Malguzzi, P., Nerozzi, F.: Validation of a limited area model in cases of Mediterranean cyclogenesis: surface fields and precipitation scores. Meteorol. Atmos. Phys. 53, 137–153 (1994)

    Article  Google Scholar 

  4. Buzzi, A., Cadelli, R., Malguzzi, P.: Low level jet simulation over the Antarctic ocean. Tellus. 49A, 263–276 (1997)

    Google Scholar 

  5. Buzzi, A., Tartaglione, N., Malguzzi, P.: Numerical simulations of the 1994 Piedmont flood: role of orography and moist processes. Mon. Weather Rev. 126, 2369–2383 (1998)

    Article  Google Scholar 

  6. Buzzi, A., Foschini, L.: Mesoscale meteorological features associated with heavy precipitation in the southern Alpine region. Meteorol. Atmos. Phys. 72, 131–146 (2000)

    Article  Google Scholar 

  7. Campana, S., et al.: Analysis of the ATLAS Rome production experience on the LHC computing Grid. In: IEEE International Conference on e-Science and Grid Computing (2005)

  8. Diomede, T., Davolio, S., Marsigli, C., Miglietta, M.M., Moscatello, A., Papetti, P., Paccagnella, T., Buzzi, A., Malguzzi, P.: Discharge prediction based on multi-model precipitation forecasts. Meorol. Atmos. Phys. 101, 245–265 (2008)

    Article  Google Scholar 

  9. Dudhia, J.: A non-hydrostatic version of the Penn State/NCAR nesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121, 1493–1513 (1993)

    Article  Google Scholar 

  10. Epstein, E.S.: Stochastic dynamic prediction. Tellus. 21, 739–757 (1969)

    Article  Google Scholar 

  11. Escriba, P.A., Callado, A., Santos, D., Santos, C., Simarro, J., García-Moya, J.A.: Added value of non-calibrated and BMA calibrated AEMET-SREPS probabilistic forecasts: the 24 January 2009 extreme wind event over Catalonia. Plinius Conference Abstracts, Vol. 11, Plinius11-138-2, 2009, 11th Plinius Conference on Mediterranean Storms (2009)

  12. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure, 2nd ed. Morgan Kaufman, San Francisco (2003)

    Google Scholar 

  13. Hong, S-Y., Pan, H-L.: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 124, 2322–2339 (1996)

    Article  Google Scholar 

  14. Hou, D., Kalnay, E., Droegemeier, K.K.: Objective verification of the SAMEX ’98 ensemble forecasts. Mon. Weather Rev. 129, 73–91 (2001)

    Article  Google Scholar 

  15. Kain, J.S., Fritsch, J.M.: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The representation of cumulus in numerical models, Meteor. Monogr., No 46, Amer. Met., Soc. 165–177 (1993)

  16. Kalnay, E.: Atmospheric Modelling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  17. Kotroni, V., Lagouvardos, K.: Precipitation forecast skill of different convective parameterization and microphysical schemes: application for the cold season over Greece. Geophys. Res. Let. 108(10), 1977–1980 (2001)

    Article  Google Scholar 

  18. Kotroni, V., Lagouvardos, K.: Evaluation of MM5 high-resolution real-time forecasts over the urban area of Athens, Greece. J. Appl. Meteor. 43, 1666–1678 (2004)

    Article  Google Scholar 

  19. Krishnamurti, T.N., Kishtawal, C.M., Zhang, Z., Larow, T., Bachiochi, D., Williford, E.: Multimodel ensemble forecasts for weather and seasonal climate. J. Clim. 13, 4196–4216 (2000)

    Article  Google Scholar 

  20. Lagouvardos, K., Kotroni, V., Koussis, A., Feidas, C., Buzzi, A., Malguzzi, P.: The meteorological model BOLAM at the National Observatory of Athens: assessment of two-year operational use. J. Appl. Meteorol. 42, 1667–1678 (2003)

    Article  Google Scholar 

  21. Laure, E., Jones, B.: Enabling Grids for e-Science: The EGEE Project. Grid Computing: Infrastructure, Service, and Application. CRC Press, Boca Raton, pp. 55–72 (2009)

    Google Scholar 

  22. Laure, E., Fisher, S., Frohner, A., et al.: Programming the Grid with gLite. Comput. Methods Sci. Technol. 12(1), 22–45 (2006)

    Google Scholar 

  23. Leith, C.E.: Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev. 102, 409–418 (1974)

    Article  Google Scholar 

  24. Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus. 17, 321–333 (1965)

    Article  Google Scholar 

  25. Lorenz, E.N.: The predictability of a flow which possesses many scales of motion. Tellus. 21, 289–307 (1968)

    Article  Google Scholar 

  26. Montani, A., Capaldo, M., Cesari, D., Marsigli, C., Modigliani, U., Nerozzi, F., Paccagnella, T., Patruno, P., Tibaldi, S.: Operational Limited-Area Ensemble Forecasts Based on the Lokal Modell, ECMWF Newsletter Summer 1998, pp. 2–7, 2003 (2003)

  27. Mościcki, J.T., et al.: Ganga: a tool for computational-task management and easy access to Grid resources. Comput. Phys. Commun. 180, 2303–2316 (2009)

    Article  Google Scholar 

  28. Palmer, T.N., Molteni, F., Mureau, R., Buizza, R., Chapelet, P., Tribbia, J.: Ensemble prediction. Proceedings of the ECMWF Seminar on Validation of models over Europe, vol. 1. ECMWF, Shinfield Park, Reading, UK (1993)

  29. Schultz, P.: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Weather. Rev. 123, 3331–3343 (1995)

    Article  Google Scholar 

  30. Spencer, P.L., Stensrud, D.J.: Flash flood events: importance of the subgrid representation of convection. Mon. Weather Rev. 126, 2884–2912 (1998)

    Article  Google Scholar 

  31. Tracton, M.S., Kalnay, E.: Ensemble forecasting at NMC: practical aspects. Weather Forecast. 8, 379–398 (1993)

    Article  Google Scholar 

  32. Wei, M., Toth, Z., Wobus, R., Zhu, Y.: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus. 60A, 62–79 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Floros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagouvardos, K., Floros, E. & Kotroni, V. A Grid-Enabled Regional-Scale Ensemble Forecasting System in the Mediterranean Area. J Grid Computing 8, 181–197 (2010). https://doi.org/10.1007/s10723-010-9150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-010-9150-3

Keywords