Skip to main content

Advertisement

Log in

GVSS: A High Throughput Drug Discovery Service of Avian Flu and Dengue Fever for EGEE and EUAsiaGrid

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

In the study of Biomedicines, molecular docking simulation is a common method for predicting potential interacting complexes of small molecules in protein binding sites. However, it is a time-consuming process to search exhaustively all correct conformations of a compound. This study demonstrates how massive molecular docking benefit from state-of-the-art Grid technology. Providing intensive computing power and effective data management, the production e-infrastructure (such as EGEE and EUAsiaGrid) enables opportunities for in-silico drug discovery on the neglected and emerging diseases, for instance, avian influenza and dengue fever. In this study, Grid Application Platform (GAP) and GAP-enabled Virtual Screening Service (GVSS) were developed with the docking engine of the Autodock 3.0.5. A JAVA-based graphical user interface and the GAP allow end-users to specify target and compound library, set up docking parameters, monitor docking jobs and computing resources, visualize and refine docking results, and finally download the final results. To provide a more user-friendly Grid service, GVSS was designed for conducting large-scale molecular docking more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewing, T.J.A., Makino, S., Skillman, A.G., et al.: DOCK4.0: search strategies for automated molecular docking of flexible molecule database. J. Comput. Aided Mol. Des. 15(5), 411–428. DOCK: UCSF DOCK. http://dock.compbio.ucsf.edu/Overview_of_DOCK/index.htm(2001)

    Article  Google Scholar 

  2. Meng, E.C., Gschwend, D.A., Blaney, J.M., Kuntz, I.D.: Orientational sampling and rigid-body minimization in molecular docking. Protein. Struct. Funct. Genet. 17, 266–278 (1993)

    Article  Google Scholar 

  3. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  4. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S.: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004)

    Article  Google Scholar 

  5. Venkatachalam, C.M., Jiang, X., Oldfield, T., Waldman, M.: LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21, 289–307 (2003)

    Article  Google Scholar 

  6. Rarey, M., Wefing, S., Lengauer, T.: Time-efficient docking of flexible ligands into active sites of proteins. In: Rawlings, C., et al. (eds.) Proceedings of the Third International Conference on Intellegent Systems in Molecular Biology, pp. 300–308. AAAI, Menlo Park (1995)

  7. Chien, A., Foster, I., Goddette, D.: Grid technologies empowering drug discovery. Drug Discov. Today 7(Suppl.) 176–180 (2002)

    Article  Google Scholar 

  8. Buyya, R., Branson, K., Giddy, J., Abramson, D.: The virtual laboratory: a toolset to enable distributed molecular modeling for drug design on the world-wide Grid. Concurr. Comput. Pract. Exper. 15, 1–25 (2003)

    Article  MATH  Google Scholar 

  9. Lee, H.-C., Salzemann, J., Jacq, N., Chen, H.Y., Ho, L.Y., Merelli, I., Milanesi, L., Breton, V., Lin, S.C., Wu, Y.T.: Grid-enabled high-throughput in silico screening against influenza A neuraminidase. IEEE Transactions on Nanobioscience 5, 288–295 (2006)

    Article  Google Scholar 

  10. Jacq, N., Breton, V., Chen, H.Y., Ho, L.Y., Hofmann, M., Kasam, V., Lee, H.C., Legré, Y., Lin, S.C., Maaß, A., Medernach, E., Merelli, I., Milanesi, L., Rastelli, G., Reichstadt, M., Salzemann, J., Schwivhtenberg, H., Wu, Y.T., Zimmermann, M.: Virtual screening on large scale Grids. Parallel Comput. 33, 289–301 (2007)

    Article  Google Scholar 

  11. Jacq, N., Salzemann, J., Jacq, F., Legré, Y., Medernach, E., Montagnat, J., Maaß, A., Reichstadt, M., Schwivhtenberg, H., Sridhar, M., Kasam, V., Zimmermann, M., Hofmann, M., Breton, V.: Grid-enabled virtual screening against malaria. J. Grid Computing 6, 29–43 (2008)

    Article  Google Scholar 

  12. Levesque, M.J., Ichikawa, K., Data, S., Haga, J.H.: Design of a Grid service-based platform for in silico protein-ligand screenings. Comput. Methods Programs Biomed. 93, 73–82 (2009)

    Article  Google Scholar 

  13. Jithesh, P.V., Donachy, P., Harmer, T., Kelly, N., Perrott, R., Wasnik, S., Johnston, J., McCurley, M., Townsley, M., McKee, S.: GeneGrid: architecture, implementation and application. J. Grid Computing 4, 209–222 (2006)

    Article  MATH  Google Scholar 

  14. Bertis, V., Bolze, R., Desprez, F., Reed, K.: From dedicated Grid to volunteer Grid: large scale execution of a bioinformatics applications. J. Grid Computing 7, 463–478 (2009)

    Article  Google Scholar 

  15. Germain-Renaud1, C., Loomis, C., Mościcki, J.T.: Scheduling for responsive grids. J. Grid Computing 6, 15–27 (2008)

    Google Scholar 

  16. Moscicki, J.T.: Distributed analysis environment for HEP and interdisciplinary applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 502, 426–429 (2003)

    Article  Google Scholar 

  17. Moscicki, J.T., Brochu, F., Ebke, J., Egede, U., Elmsheuser, J., Harrison, K., Jones, R.W.L., Lee, H.-C., Liko, D., Maier, A., Muraru, A., Patrick, G.N., Pajchel, K., Reece, W., Samset, B.H., Slater, M.W., Soroko, A., Tan, C.L., van der Ster, D.C., Williams, M.: GANGA : a tool for computational-task management and easy access to Grid resources. Comput. Phys. Commun. 180, 2303–2316 (2009)

    Article  Google Scholar 

  18. Koblitz, B., Santos, N., Pose, V.: The AMGA metadata service. J. Grid Computing 6, 61–76 (2008)

    Article  Google Scholar 

  19. Li, K.S., Guan, Y., Wang, J., Smith, G.J.D., Xu, K.M., Duan, L., Rahardjo, A.P., Puthavathana, P., Buranathai, C., Nguyen, T.D., Estoepangestie, A.T.S., Chaisingh, A., Auewarakul, P., Long, H.T., Hanh, N.T.H., Webby, R.J., Ponn, L.L.M., Chen, H., Shortridge, K.F., Yuen, K.Y., Webster, R.G., Peiris, J.S.M.: Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213 (2004)

    Article  Google Scholar 

  20. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001)

    Article  Google Scholar 

  21. Sanner, M.F.: Python: a programming language for software integration and development. J. Mol. Graph. Mod. 17, 57–61 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon C. Lin or Ying-Ta Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HY., Hsiung, M., Lee, HC. et al. GVSS: A High Throughput Drug Discovery Service of Avian Flu and Dengue Fever for EGEE and EUAsiaGrid. J Grid Computing 8, 529–541 (2010). https://doi.org/10.1007/s10723-010-9159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-010-9159-7

Keywords

Navigation