
Journal of Grid Computing

QoS-based Task Group Deployment on Grid by Learning the Performance Data
--Manuscript Draft--

Manuscript Number: GRID-D-12-00639R1

Full Title: QoS-based Task Group Deployment on Grid by Learning the Performance Data

Article Type: High-Performance Data Management & Mining on Computational Grids & Clouds

Keywords: grid computing; task group deployment; performance data; advance QoS planning;
task-resource mapping.

Corresponding Author: Nithiapidary Muthuvelu, Masters
Multimedia University
Cyberjaya, Selangor MALAYSIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Multimedia University

Corresponding Author's Secondary
Institution:

First Author: Nithiapidary Muthuvelu, Masters

First Author Secondary Information:

Order of Authors: Nithiapidary Muthuvelu, Masters

Ian Chai, Ph.D

Eswaran Chikkannan, Ph.D, Professor

Rajkumar Buyya, Ph.D, Professor

Order of Authors Secondary Information:

Abstract: Overhead of executing fine-grain tasks on computational grids led to task group or
batch deployment in which a batch is resized according to the characteristics of the
tasks, designated resource, and the interconnecting network. An economic grid
demands an application to be processed within the given budget and deadline, referred
to as the quality of service (QoS) requirements. In this paper, we increase the task
success rate in an economic grid by optimally mapping the tasks to the resources prior
to the batch deployment. The task-resource mapping (Advance QoS Planning) is
decided based on QoS requirement and by mining the historical performance data of
the application tasks using a genetic algorithm. The mapping is then used to assist in
creating the task groups. Practical experiments are conducted to validate the proposed
method and suggestions are given to implement our method in a cloud environment as
well as to process real-time tasks.

Response to Reviewers: Reviewer #2:

(1) Authors should better discuss complexity issues of their proposal, even at a
theoretical level.

Answer:
This has been addressed briefly in section 7.2.4 Issues and Future Direction.

As shown in Fig. 5, the proposed batch resizing strategy requires the meta- scheduler
to keep monitoring, learning and updating the average deployment metrics for each
task category-resource pair using a genetic algorithm. A frequent con- duct of advance
QoS planning may delay the entire task group deployment as the genetic algorithm will
increase the computation overhead at the meta-scheduler. With the current high-end
machines, the overhead or latency can be reduced or hid- den by configuring the
genetic algorithm to keep running in parallel as a separate thread. The meta-scheduler
can obtain the latest, optimal task-resource mapping at any time from the genetic
algorithm.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

The advance QoS planning needs to be conducted frequently only when the grid status
varies drastically at runtime. Practically, the meta-scheduler must have completed at
least one task group deployment to each resource before the subsequent QoS
planning. For simplicity, in our meta-scheduler, the planning is carried out once it has
successfully processed GR_TOTAL × 2 task groups. We also conducted experiments
in which the planning is performed after every GR_TOTAL × 1 task group deployment.
We observed almost similar task success rate and budget utilisation as our grid status
did not fluctuate much during the experiments.

(2) In fact, more experiments are necessary in order to prove that the proposed
approach scales well on large­scale settings.

Answer:
This paper was prepared in 2011. At that time, we couldn't cater for more gri
resources. Now (2014), we do not have the similar platform or configuration to run the
experiments again. All the machines used for this experiments do not exist anymore.

Reviewer #3:

(1) The scope of application of the method proposed by the paper is quite limited as it
is based on the assumption that the user has rough estimations on the processing time
and the output file size of the application tasks. Many times the user can't make such
estimations or, even worse, the estimations are completely wrong, hence making the
method not applicable in the former case, or generating bad performances in the latter.

Answer:
Yes. This is the scope of the proposed environment, expecting the grid user to give the
correct estimations of their BoT. Grid may delay the entire application processing time
if the user do not have the basic info about their own BoT.

Sample scenario:
The user may have 1000 tasks, each may take up to 4 secs in his machine; in total: 67
mins. He may have the permission to use 3 grid machines, each may take 7 mins for
executing 1 task. (Best case scenario) If the tasks are equally divided among the 3
machines, a machine will get a maximum of 334 tasks. Assume that each task requires
6 secs to be transmitted to and from the grid machine. In total he needs 39 mins for
computation and 34 mins for communication => 73 mins. In this case, it is not worth
running the BoT on grid. If the user has some estimations about his BoT size and
execution time, then he can avoid such scenario, investing in the 3 grid machines.
Hence, as a grid user, before using the grid, one should have some knowledge about
his BoT.

(2) The authors seem to neglect the impact the "accessory" executions can have on
the turnaround time, namely the tasks categorization, the sample task executions on
the user's local machine, the executions performed on the resources for benchmarking,
the computation of the deployment metrics, the computation of their average.

Answer:
Sample task executions on the user's local machine is done offline. The estimations
from the sample executions are fed to the meta-scheduler when the user is ready to
run the BoT on grid. This is indicated in section 4.

Tasks categorization is done using the task files and estimations (estimated CPU time,
output file size) fed to the meta-scheduler. It is done using simple algorithm (data
structure) which requires roughly 2-3 seconds.

Resource benchmarking is the core for determining the task category-resource
average deployment metrics. This part of the strategy cannot be missed. The resource
benchmarking and the computation of the deployment metrics are conducted in multi-
threading manner (indicated in section 6) to hide the latency or delay so that it would
not affect the turnaround time.

(3) the fact that it's the grid meta­ scheduler the one which performs all the other
computations and categorizations is not clear until late in the paper: this should be

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

stated clearly earlier in the paper.

Answer:
This is already indicated in section 1, page 2, last paragraph.

(4) The difference between the user's machine computational power and the resources
computational power could be substantial, making it unreasonable to run sample
executions locally, which could take days, while running them on the resources could
take minutes.

Answer:
The user doesn't need to run the entire BoT for collecting the sample. As addressed in
(1), in this paper we are covering the scenario where the user's machine performs
better than the grid. This is indicated in section 1.

(5) the sentence "quality of service (QoS) requirements." is unfinished, the verb and
the object are missing.

Answer:
Corrected.
"An economic grid demands an application to be processed within the given budget
and deadline, referred to as the quality of service (QoS) requirements".

(6)
- what happens to the tasks when they exceeds the constraints?

Answer:
In this paper we are focusing on economic or commercial grid and lightweight tasks
(indicated in section 1). If the user tasks exceed the constraints determined by the
resource providers, definitely they cannot use the grid to run their tasks.

Our focus is lightweight tasks. We practically learn the performance data, keep
grouping the tasks while ensuring the group obey the constraints. The whole batch
resizing strategy ensures that optimal groups are created, obeying the constraints.

(7)
- tasks requirements acronyms could be shortened removing the redundant "task" in
them (TFSize > FSize, ETCPUTime > ECPUTime). Alternatively the requirement
OFSize should have the word "task" in it for uniformity.

Answer:
A couple of acronyms were used for the deployment metics (for resources,
transmission time, processing overheads, processing cost, etc). Hence, we include "T"
to indicate if the acronym is related to task.

OFSize = Output file size
Using "Task Output File Size" or "Output Task File Size" doesn't really sound correct.

(8)
­it's not clear how the benchmarks affect the ETCPUTime and what's the relation
between them: what happens if the benchmarks show a different CPU time on the
resources?

Answer:
The entire resource benchmarking is explained in papers [23,24] as indicated in
section 4. Paper [24] has the complete experimental proof.

We can't expect for the user machine and grid machine to give us the same CPU time.
The user machine might be better than the grid machine. We are doing benchmark to
come up with a ratio [user machine CPU time : grid machine CPU time] for each task
category.

(9)
Section 5:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

­ - in "The process flow of of batch" there is an extra "of";
­ - the sentence "The term task­resource allocation denotes that each resource is
allocated tasks from each category." is not clear;

Answer:
Corrected.

"The term task-resource allocation will be used to refer to the allocation or mapping of
tasks from each category to each resource. "

(10)
Section 7:
­ a reference to the Grid Platform used in the experiments is missing;

Answer:
These grid machines are indicated in Table 1 (in section 7).

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Noname manuscript No.
(will be inserted by the editor)

QoS-based Task Group Deployment on Grid by

Learning the Performance Data

Nithiapidary Muthuvelu · Ian Chai ·

Eswaran Chikkannan · Rajkumar Buyya

Received: date / Accepted: date

Abstract Overhead of executing fine-grain tasks on computational grids led to
task group or batch deployment in which a batch is resized according to the char-
acteristics of the tasks, designated resource, and the interconnecting network. An
economic grid demands an application to be processed within the given budget and
deadline, referred to as the quality of service (QoS) requirements. In this paper,
we increase the task success rate in an economic grid by optimally mapping the
tasks to the resources prior to the batch deployment. The task-resource mapping
(Advance QoS Planning) is decided based on QoS requirement and by mining the
historical performance data of the application tasks using a genetic algorithm.
The mapping is then used to assist in creating the task groups. Practical experi-
ments are conducted to validate the proposed method and suggestions are given
to implement our method in a cloud environment as well as to process real-time
tasks.

Keywords Grid Computing · Task Group Deployment · Performance Data ·
Advance QoS Planning · Task-Resource Mapping

1 Introduction

In a typical grid, a grid meta-scheduler schedules and transfers the application
task files to the resources, monitors the progress of the task executions, retrieves
the output files from the resources, and finally compiles the output files. Task pro-
cessing and communication overheads are inevitable in a grid as the resources are
geographically distributed and shared by multiple users [4,16,35]. When utilising

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan
Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
Tel.: +603-83125429
Fax: +603-83125264
E-mail: nithiapidary@mmu.edu.my

Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Lab, Dept. of Computer Science and
Software Engineering, The University of Melbourne, Australia.

Manuscript
Click here to download Manuscript: jogc.tex
Click here to view linked References

http://www.editorialmanager.com/grid/download.aspx?id=31524&guid=1ca57546-d9b6-4ed4-886c-39c8a20416ed&scheme=1
http://www.editorialmanager.com/grid/viewRCResults.aspx?pdf=1&docID=967&rev=1&fileID=31524&msid={7BD70778-929E-41AD-908B-F5D464561D8D}

2 Nithiapidary Muthuvelu et al.

a grid for a large number of fine-grain tasks, the overheads affect the application
turnaround time. Therefore, in our previous work [23,24], we proposed batch pro-
cessing or task group deployment in which the fine-grain tasks of a bag-of-tasks
(BoT) application are grouped into several task groups prior to the deployment.
BoT tasks can be executed in parallel, thus, we can estimate the size of a task
group for a resource based on the utilisation constraints of the resource and net-
work, and the application budget and deadline as follows:

1. The estimated CPU time, wall-clock time, and storage/space consump-
tion of a task group should be less than the maximum allowed CPU
time, wall-clock time, and space utilisation of a resource.

2. The estimated transmission time of a task group and the output files
should be less than the maximum allowed file transmission time for a
resource.

3. The estimated task group turnaround time and processing cost should
be less than the remaining application deadline and budget respectively.

Experiments in [23,24] prove that grouping the tasks according to these batch
resizing policies highly reduces the application turnaround time while increasing
the utilisation of the grid resources and the interconnecting network. However,
not all the tasks can be processed within the application deadline and budget. For
example, assume that a BoT contains 500 tasks {T0, T1, T2, ..., T499} and the grid
consists of 3 resources {R0, R1, R2}.

At time t1, tasks T0 − T20 are grouped in a batch according to the batch
resizing policies, and deployed on R0; at time t2, T21−T40 are grouped for
R1; and at time t3, T41−T61 are grouped for R2. Once the meta-scheduler
retrieves a processed batch from a resource, it proceeds with the next task
group deployment to the resource. The tasks are grouped and deployed at
runtime when a particular resource becomes available (first-come-first-serve
manner). Hence, we can not assure that the given budget and deadline are
sufficient to process the entire BoT.

An economic or a commercial grid emphasises two main parameters known as
the user’s quality of service (QoS) requirements: application deadline and budget,
within which all the BoT tasks should be executed in a timely manner. The re-
source providers impose charges on the users for consuming the CPU cycles or
storage space of their resources. Apart from gaining profit, this helps to control
the usage of the resources [30,28,10,26]. In such an environment, we propose to
optimally map the tasks to the resources based on the QoS which we refer to as
advance QoS planning : the task-resource mapping is performed prior to the task
group deployment in order to maximise the processed task count within the QoS.

In our method, the grid meta-scheduler classifies the user tasks and deploys
some tasks on the grid resources to learn the processing capabilities of the resources
and the processing needs of the tasks. Then, a genetic algorithm in the meta-
scheduler estimates the task-resource mapping based on the QoS and the historical
performance data of the tasks. Following that, the tasks will be grouped according
to the mapping, the performance data, and the batch resizing policies prior to the
deployment. The cycle of mining performance data and advance QoS planning is
repeated at a regular basis so that the scheduling and deployment process adheres

QoS-based Task Group Deployment on Grid by Learning the Performance Data 3

to the latest grid status. Experiments are conducted in a small-scale grid to analyse
the task success rate within the specified QoS. We also suggest to extend our
method to accommodate a cloud environment and real-time tasks.

The rest of the paper is organised as follows: Section 2 delivers the related
work. Our scope and contribution are described in Section 3. Section 4 summarises
the batch resizing policies. The design of our advance QoS planning is given in
Section 5. Section 6 presents the process flow of the grid meta-scheduler. Section
7 delivers the experimental analysis and our suggestions for cloud environment.
Finally, Section 8 concludes this paper.

2 Related Work

Batch processing in distributed computing minimises the task waiting time and
resource idle time as well as maximises the resource and network utilisation. This
is proved by James et al in [17] by grouping and deploying independent tasks on
clusters. Li Hui et al [14] developed a framework in Gracie (a grid platform for bio-
informatics computational tasks) for grouping thousands of lightweight tasks into
a single group. They reduced the cost of submitting requests to the resources and
the cost of starting up the remote data transmissions. The application throughput
increased from 30.3 tasks/second to 50.7 tasks/second when 51242 tasks from the
genome alternative splicing application [12] were submitted to a SMP workstation
as a single batch. Snehal Antani [3] has conducted business value assessment for
IBM for utilising WebSphere Compute Grid which delivers a cloud-enabled batch-
processing platform for enterprises. In the Websphere platform, the tasks that
require data from a particular repository will be grouped and processed near the
repository in order to minimise the overhead and increase the I/O throughput.
This strategy highly reduces the IT and operational cost of an enterprise.

The dynamic computing environment leads to batch resizing efforts, where the
batch size is adapted based on certain priorities. In [32], Sodan et al determined the
optimal number of tasks in a batch based on minimum and maximum batch size,
average run-time of the tasks, machine size, number of running tasks in the ma-
chine, and minimum and maximum node utilisation. The authors in [22], grouped
and deployed the data-intensive tasks on a campus grid. The batch size is decided
in such a way that the batch tasks can be executed within an hour.

Batch resizing has been investigated well when handling task migration. Eric
Mohr et al introduced lazy task creation [21] in which, when a processor becomes
available at the time of the child task execution, the parent task will be un-grouped
from the child task and deployed on the available processor. Dror G. Feitelson [9]
introduced migration- and buddy-based task packing schemes for performing gang
scheduling in a parallel environment. When a node has completed its tasks, it
accepts the task group from a busy node. The size of the task group is determined
based on the processing slot available at the requesting node. Maghraoui et al [20]
created user jobs with special constructs to indicate the atomic tasks in the jobs.
Upon resource unavailability, the reverted jobs are checked for their granularity
and resized (split or merged) before being migrated to the designated nodes.

In an economic grid, the main priority is given to the application budget and
deadline [2,5]; one would process as many tasks as possible within the given budget
and deadline. The authors in [28,30] introduced capacity planning when executing

4 Nithiapidary Muthuvelu et al.

application jobs in a commercial or an economic grid. The term capacity covers
the deadline, budget, storage space, resource utilisation, and load balancing. Their
goal is to reserve the resources for later job executions in order to maximise the
QoS or capacity requirements.

A structured leaning on the computing environment is a necessity when decid-
ing the batch size. The authors in [29] used Particle Swarm Optimisation to learn
and mine the task processing time in order to decide the batch size. A couple of
research works had been conducted in mining performance data to predict task
turnaround time in order to support the task scheduling decision [11,18,27,31,
34]. In this paper, we use data mining and learning to predict the task-resource
mapping in order to maximise the task success rate within the QoS requirement.

3 Scope and Contribution

Simulations and practical experiments prove that task group deployment with
batch resizing strategy highly reduces the application processing time [23,24]. The
details of the batch resizing strategy is given in Section 4. In this paper, the task
group deployment is adapted to accommodate advance QoS planning; the sta-
tistical performance data of the processed tasks is learned and fed to a genetic
algorithm for planning the optimal QoS-based task-resource mapping before cre-
ating the task groups.

Figure 1 shows the individual and task group deployment strategies as opposed
to the task group deployment with advance task-resource mapping. Assume that a
resource needs 4 minutes to process the allocated tasks via individual deployment;
having a specific resource utilisation constraint (e.g. CPU utilisation of 1 minute
or 2 minutes), a well-planned task group deployment can process most of the tasks
within the time frame by minimising the resource idle time and task waiting time.
The concern of this paper is the task success rate that can be achieved within a
particular time frame. This is a common concern when a user reserves the resources
in advance and expects the tasks to be completed within the reserved time period
[6–8,25,33]. This expectation motivates us to associate the task group deployment
with advance QoS planning to further increase the task success rate.

The proposed method is designed for handling computational and independent
tasks of parametric and non-parametric sweep BoT. There is no special API needed
to create the user tasks. However, we assume that the user has rough estimations
on the processing time and the output file size of the application tasks.

4 Batch Resizing Policies and Techniques

We summarise the batch resizing policies [23,24] before proceeding with our ac-
tual contribution in Section 5. Figure 2 depicts the entities (User Application,
Meta-Scheduler, and Grid Resources) in a typical grid. (1) The user application
is associated with its QoS and passed to the meta-scheduler. (2-5) The meta-
scheduler distributes the application tasks to the available resources for execution.
(7-8) The processed tasks are then passed to the user via the meta-scheduler.

A task (T) consists of file(s); e.g. the execution instruction, library, program,
and input data. Each task has its requirements in terms of task file size (TF-

QoS-based Task Group Deployment on Grid by Learning the Performance Data 5

1 2 3 4 min

Individual deployment

Task group deployment

 1 minute utilisation

 2 minutes utilisation

Resource 0

Resource 1

Resource 2

1 2 3 4 minTasks

Optimal task-resource mapping:

2 minutes

utilisation

Fig. 1 (a) Individual Deployment; (b) Task Group Deployment; (c) Optimal Task-Resource
Allocation.

Grid Resources

Task

Requirements

User Application

Tasks
Instruction,
Libraries,

Program, Data

Task / Output
File Size,

Estimated Task
CPU Time

User

QoS
Deadline, Budget

Resource-

Network

Repository

Output

Collection

(1)

(2)

(3) Network
Utilisation
Constraint

(4)

Scheduling

Algorithm

(5)

(6) Grouped
Tasks

(7) Output
Files(8)

Resource 3

Resource 2

Resource 1

Resource

Utilisation Constraints

Maximum Allowed Task
CPU Time,

Task Wall-Clock Time,
Storage Space,

Task Processing Cost

Meta-

Scheduler

Fig. 2 Grid Entities and the Information Flow.

Size), output file size (OFSize), and estimated task CPU time (ETCPUTime).
The ETCPUTime is the estimated task processing time provided by the user
based on sample task executions on the user’s local machine. The execution of a
batch of tasks should adhere to the following utilisation constraints:

1. Resource utilisation constraints imposed by the resource provider to prevent
the resource from being overloaded or misused [10,26]:
– Maximum Allowed CPU Time (MaxCPUTime) for the execution of a batch

at a resource.
– Maximum Allowed Wall-Clock Time (MaxWCTime) that a batch can spend

at the resource which includes the batch processing time and overhead (task
waiting time, and task packing and unpacking overheads).

– Maximum Allowed Storage Space (MaxSpace) that a batch and its output
files can occupy at the resource at a time.

– Task Processing Cost (PCost) per time unit charged by a resource.
2. Network utilisation constraint:

– Maximum Allowed File Transmission Time (MaxTransTime) or the toler-
ance threshold that a meta-scheduler can wait for a batch and the relevant
output files to be transmitted to and from a resource.

6 Nithiapidary Muthuvelu et al.

For a resource, Rj , when adding a task into a task group, TG, the resulting
processing requirements of the TG should adhere to the following policies:

Policy 1: TG CPU time ≤ MaxCPUTimeRj

Policy 2: TG wall-clock time ≤ MaxWCTimeRj

Policy 3: TG and output transmission time ≤ MaxTransTimeRj

Policy 4: TG and output file size ≤ MaxSpaceRj

Policy 5: TG turnaround time ≤ Remaining Deadline

Policy 6: TG processing cost ≤ Remaining Budget

Policy 7: Number of tasks in TG ≤ Remaining BoTTOTAL

BoTTOTAL refers to the total tasks in the BoT. Policies 1-4 are on resource-
network utilisation constraints, Policies 5-6 are on QoS, and Policy 7 is on
task availability.

The varying processing capacities and workloads of the heterogeneous grid
resources and the fluctuating interconnecting network require the meta-scheduler
to learn and estimate the task CPU, wall-clock, and transmission times before
applying the policies to create task groups. For this purpose, first, the application
tasks are categorised based on their TFSize, OFSize, and ETCPUTime. Then,
some tasks from the dominating categories are deployed on the resources to learn
the performance of the resources and the network in regard to the task categories.
The performance metrics are then used to decide the batch size for a resource
according to the batch resizing policies. Periodic analysis is conducted to update
the performance metrics, thus, to maintain the accuracy in deciding the batch size.
The following sections further describe these batch resizing techniques.

4.1 Task Categorisation

The application tasks pass through three levels of categorisation and eventually
divided into categories (TCat) based on their TFSize, OFSize, and ETCPUTime
(provided by the user), and some pre-determined class intervals. An example of
such categorisation is given in Fig. 3.

Level 1 divides the tasks into categories based on TFSize of each task and the
associated class interval, TFSizeCI . In Fig. 3, TFSizeCI is set to 10 units and
the resulting categories contain the tasks within the following TFSize ranges:

TCat0: 0 to (1.5× TFSizeCI) or (0 < TFSize <15)
TCat1: (1.5× TFSizeCI) to (2.5× TFSizeCI) or (15 ≤ TFSize <25)
TCat2: (2.5× TFSizeCI) to (3.5× TFSizeCI) or (25 ≤ TFSize <35)

In level 2, the categories from level 1 are further divided into sub-categories ac-
cording to ETCPUTime of each task and the class interval,ETCPUTimeCI . The
resulting categories are divided into sub-categories in level 3 based on OFSize and
the class interval,OFSizeCI . In Fig. 3, ETCPUTimeCI = 6 andOFSizeCI = 10.
A category is created only when there is at least one task belonging to that partic-
ular category. For each resulting TCat, the average task processing requirements
are computed, namely average task file size (AvgTFSize), average estimated task
CPU time (AvgETCPUTime), and average output file size (AvgOFSize) which
will be used in the next technique (Section 4.2).

QoS-based Task Group Deployment on Grid by Learning the Performance Data 7

0<TFSize<15

15<=TFSize<25

25<=TFSize<35

Resulting Task

Category List

:TCat0

:TCat1

:TCat2

:TCat3

:TCat4

:TCat5

..........

The average

requirement

for eact TCat:

(AvgTFSize,

AvgETCPUTime,

AvgOFSize)

Level 1:
TFSize-based
categorisation

Level 2:
ETCPUTime-based

categorisation

Level 3:
OFSize-based
categorisation

A
p

p
li

c
a
ti

o
n

 T
a
s
k
s 0<ETCPUTime<9

9<=ETCPUTime<15

0<ETCPUTime<9

9<=ETCPUTime<15

0<=ETCPUTime<9

15<=ETCPUTime<21

0<OFSize<15

15<=OFSize<25

0<OFSize<15

25<=OFSize<35

35<=OFSize<45

..............................

15<=OFSize<25

Fig. 3 Task Categorisation; TFSizeCI = 10, ETCPUTimeCI = 6, and OFSizeCI = 10.

4.2 Task Category-Resource Benchmarking

The ETCPUTime is estimated based on some sample executions on user’s local
machine; however, the CPU time of a task varies on different platforms. Therefore,
some tasks from the dominating categories are benchmarked on the resources
to learn how each resource and the interconnecting network react in regard to
the categories. Upon retrieving a processed benchmark task, the following nine
deployment metrics of the task are computed:

task file transmission time from meta-scheduler to resource (MTRTime);
CPU time (CPUTime); wall-clock time (WCTime); output file trans-
mission time from resource to meta-scheduler (RTMTime); turnaround
time (TRTime); actual task processing time (APTime); resource over-
head (ROverhead); processing overhead (POverhead); and processing cost
(PCost); where,

ROverhead = WCTime− CPUTime (1)

APTime = MTRTime +WCTime+RTMTime (2)

POverhead = TRTime −APTime (3)

ROverhead covers task waiting time, and task packing and unpack-
ing time at the resource; POverhead is the overhead at the meta-
scheduler; and TRTime covers the time when the task is scheduled
until its output files are retrieved by the meta-scheduler.

After completing all the benchmark tasks, the average of each deployment
metric is computed for each task category-resource pair (average analysis). For
a category k, the average deployment metrics on a resource j are expressed as
average deployment metrics TCatk −Rj , which consist of:

average task file transmission time (AvgMTRTimek,j); average CPU time
(AvgCPUTimek,j); average wall-clock time (AvgWCTimek,j); average
output file transmission time (AvgRTMTimek,j); average turnaround time
(AvgTRTimek,j); average actual task processing time (AvgAPTimek,j);
average resource overhead (AvgROverheadk,j); average processing over-
head (AvgPOverheadk,j); average processing cost (AvgPCostk,j). The
average space (AvgSpacek,j) consumed by the task and output files is

8 Nithiapidary Muthuvelu et al.

obtained from AvgTFSize and AvgOFSize computed during task cate-
gorisation.

Not all the categories participate in this benchmark. Hence, their average de-
ployment metrics are updated based on the average ratio of those categories par-
ticipated in the benchmark and the average requirement details (AvgTFSize,
AvgETCPUTime, and AvgOFSize) computed for each category during the cat-
egorisation process (Section 4.1). In short, this benchmark phase studies the re-
sponse of the resources and the interconnecting network in respect to each category.

4.3 Periodic Average Analysis

Having the estimated average deployment metrics TCatk−Rj for all the categories,
we can create the batches for a resource using the seven batch resizing policies.
Due to task categorisation, Policy 7 is updated to control the total tasks that can
be selected from a category.

Policy 7: Total tasks in TG from a TCatk ≤ Remaining tasks in TCatk
where, k = 0,1,2,...,TCatTOTAL−1 (TCat ID); TCatTOTAL denotes total
task categories.

When adding a task from a category, TCatk, into a batch for a resource, Rj , the
processing requirements of the task group will get accumulated from the average
deployment metrics TCatk−Rj . Tasks will be added until the resulting task group
can satisfy all the seven batch resizing policies.

However, the deployment metrics TCatk − Rj may not reflect the grid after
a time period [13] due to the fluctuating loads of the autonomous resources and
the network which are shared by multiple users [11,19]; the benchmark results can
not be used for the entire BoT over a long period. Hence, the average analysis
is conducted periodically to update the average deployment metrics TCatk − Rj

according to the latest grid status. The overall process flow of our batch resizing
strategy is given in Fig. 4.

5 Advance QoS Planning

In this paper, we propose to conduct advance QoS planning to increase the task
completion rate within the given deadline and budget when deploying lightweight
tasks on an economic grid. The average deployment metrics of the task categories
will be fed into a genetic algorithm in order to optimally map the tasks to the
resources based on the QoS. Following that, the tasks are grouped based on the
batch resizing polices and dispatched to the designated resources. The process flow
of batch resizing strategy with advance QoS planning is shown in Fig. 5.

After benchmarking, the meta-scheduler steps into advance QoS planning with
the following strategy:

TCat[TCatTOTAL] refers to the file categories; TCat[k] indicates the re-
maining tasks in category k or in TCatk, where, (0 ≤ k < TCatTOTAL).

GR[GRTOTAL] refers to the grid resources; GR[j] indicates resource j,
where, (0 ≤ j < GRTOTAL).

QoS-based Task Group Deployment on Grid by Learning the Performance Data 9

User

Tasks

Updating average
deployment metrics for each
task category-resource pair

(1)
Task Categorisation

(2)

After a certain

time period...

Task Category-Resource

Benchmarking

(4)

Task Grouping and Deployment

(5)

Average Analysis
(6)

(4)

(3)

(7)(...)

(8)(...)

(9) (...)

Fig. 4 Process Flow of the Batch Resizing Strategy.

User

Tasks

Updating average deployment metrics
for each task category-resource pair

(8)(11) (...)(16)

(1)
Task Categorisation

(2)

After a certain

time period...

Task Category-Resource

Benchmarking

(4)

Task Grouping and Deployment

(6)

Average Analysis
(7)

(5)

(3)

(12)(...)

(9) (...)

(10) (...)

Advance QoS Planning

(5)

After a certain

time period...

(13)

(14)

(15)

(...)

Fig. 5 Process Flow of the Batch Resizing Strategy with Advance QoS Planning.

AvgTRTime[GRTOTAL][TCatTOTAL] refers to the average turnaround
time; AvgTRTime[j][k] indicates the estimated average turnaround time
of a task in category k on resource j.

AvgPCost[GRTOTAL][TCatTOTAL] refers to the average processing cost;
AvgPCost[j][k] indicates the estimated average processing cost spent for
executing a task in category k on resource j.

The term task-resource allocation will be used to refer to the allocation or
mapping of tasks from each category to each resource. We represent task-
resource allocation using TRA[GRTOTAL][TCatTOTAL]; TRA[j][k] indi-
cates the number of tasks allocated from a category k to resource j.

Assuming that G = GRTOTAL and C = TCatTOTAL, then each TRA[j][k]
is determined in such a way that,

1. All the resources execute the tasks in parallel; they complete the task
at different times. The estimated maximum turnaround time should be

10 Nithiapidary Muthuvelu et al.

less than the remaining deadline.

maximum[

C−1∑

k=0

(TRA[0][k]× AvgTRTime[0][k]),

C−1∑

k=0

(TRA[1][k]× AvgTRTime[1][k]),

C−1∑

k=0

(TRA[2][k]× AvgTRTime[2][k]),

C−1∑

k=0

(TRA[...][k]× AvgTRTime[...][k]),

C−1∑

k=0

(TRA[G− 1][k]×AvgTRTime[G− 1][k])] ≤ RemainingDeadline

2. All the resources impose utilisation charges. The estimated total pro-
cessing cost should be less than the remaining budget.

G−1∑

j=0

C−1∑

k=0

(TRA[j][k]×AvgPCost[j][k]) ≤ RemainingBudget

3. The total allocated tasks should be less than the remaining BoT tasks.

G−1∑

j=0

C−1∑

k=0

TRA[j][k] ≤ RemainingBoTTOTAL

4. The total allocated tasks from each category should be less than the
remaining tasks in the category.

for k ← 0 to C-1
G−1∑

j=0

TRA[j][k] ≤ TCat[k]

These four conditions serve as the fitness functions to a genetic algorithm.
The algorithm evolves a population of chromosomes. Each chromosome represents
the task-resource allocation in one-dimension TRA[GRTOTAL×TCatTOTAL]. As-
sume that there are three resources and four task categories, a sample chromosome
with its weight or values will be represented as in Fig. 6. The chromosome has 3×4
genes. Each gene indicates the number of tasks allocated from a particular TCat.
The first four genes contains the allocated tasks from the four categories to re-
source R0. This is followed by the task allocation for R1 and R2. In short, there
are 216 tasks allocated for the resources; 89 tasks from TCat0; 59 from TCat1; 20
from TCat2; and 48 from TCat3.

The weight of each chromosome is evaluated using the fitness functions and
those chromosomes with low fitness values will be removed from the population.
New chromosomes will be created from the remaining chromosomes in order to
maintain the population size for every evolution. Algorithm 1 depicts the refined
fitness functions. The input to the algorithm:

QoS-based Task Group Deployment on Grid by Learning the Performance Data 11

55 30 5 12 21 6 13 36 13 23 2 0

R_0 R_1 R_2

TRA[3x4]

T
C
a
t_
0

T
C
a
t_
1

T
C
a
t_
2

T
C
a
t_
3

T
C
a
t_
0

T
C
a
t_
1

T
C
a
t_
2

T
C
a
t_
3

T
C
a
t_
0

T
C
a
t_
1

T
C
a
t_
2

T
C
a
t_
3

Fig. 6 A Sample Chromosome Representation using TRA[3× 4].

Algorithm 1: Fitness Function.

F itnessV alue = 0, T otalAllocatedTasks = 01

TotalP rocessingCost = 0, gene = 02

AllocatedCategoryTasks[TCatTOTAL] //Initialised to 03

ResourceTurnaroundT ime[GRTOTAL] //Initialised to 04

//Getting the genes from the chromosome5

for j ← 0 to GRTOTAL do6

for k ← 0 to TCatTOTAL do7

TotalAllocatedTasks+ = TRA[gene]8

AllocatedCategoryTasks[k]+ = TRA[gene]9

TotalP rocessingCost+ = TRA[gene]×AvgPCost[j][k]10

ResourceTurnaroundT ime[j]+ = TRA[gene]× AvgTRTime[j][k]11

gene++12

//The fitness functions13

TaskSelectionRatio = (TotalAllocatedTasks/RemainingBoTTOTAL)14

if 0.75 < TaskSelectionRatio ≤ 1 then15

F itnessV alue++16

if TotalP rocessingCost <= RemainingBudget then17

F itnessV alue++18

if maximum(ResourceTurnaroundT ime) <= RemainingDeadline then19

F itnessV alue++20

for k ← 0 to TCatTOTAL do21

if (0.9 < AllocatedCategoryTasks[k]/RemainingTasksInTCatk) ≤ 1.0 then22

F itnessV alue++23

The chromosome (TRA[GRTOTAL×TCatTOTAL]) randomly generated by
the genetic algorithm, average processing cost (AvgPCost[GRTOTAL][TCatTOTAL])
and average turnaround time (AvgTRTime[GRTOTAL][TCatTOTAL]) of
each TCatk −Rj , and the remaining BoT tasks, category tasks, deadline,
and budget.

In lines(6-12), the genes in the chromosome are retrieved to compute the total
allocated tasks to all the resources, tasks allocated from each category, estimated
total processing cost, and the estimated turnaround time to be consumed by each
resource to process the allocated tasks. The resulting values are evaluated using
the fitness functions:

1. Lines(14-16) The total allocated tasks is compared with the total remain-
ing tasks. The chromosome fitness value will be incremented by one if the
ratio is within 0.75 or 75% to 1.0 or 100%. The minimum ratio value can
be increased (> 75%) for better optimisation of the resulting task-resource
allocation (TRA[GRTOTAL × TCatTOTAL]).

12 Nithiapidary Muthuvelu et al.

2. Lines(17-18) The fitness value will be incremented if the estimated total
processing cost can be accommodated by the remaining budget.

3. Lines(19-20) The fitness value will be incremented if the maximum of the
resource turnaround times can be accommodated by the remaining deadline.

4. Lines(21-23) The tasks allocated from each category is compared with the
remaining tasks in the category. The fitness value will be incremented if the
ratio is within 0.9 or 90% to 1.0 or 100%. The minimum ratio value can be
increased (> 90%) in order to achieve a better optimisation.

A chromosome that satisfies all the fitness functions will produce a fitness
value of 3 + TCatTOTAL. As mentioned in the fitness functions 1 and 4, if the
minimum ratio value is increased, one can get a better chromosome. However,
making the conditions to be more rigid may cause the evolution to end up with
local minima. In short, the genetic algorithm produces an optimal task-resource
allocation/mapping based on the performance data (average deployment metrics,
TCatk − Rj), remaining tasks, budget, and deadline. When creating a batch for
a resource, this mapping will be referred for selecting a task from a particular
category. Algorithm 2 explains the steps in deciding the batch size for a resource
Rj . It determines the number of tasks from various categories that can be grouped
for Rj . The algorithm requires the following input:

1. TRARj
[TCatTOTAL], the optimal task-resource allocation for Rj (the optimal

chromosome produced for Rj).
2. Average deployment metrics of Rj which include

AvgCPUTime[TCatTOTAL], AvgWCTime[TCatTOTAL],
AvgMTRTime[TCatTOTAL], AvgRTMTime[TCatTOTAL],
AvgSpace[TCatTOTAL], AvgTRTime[TCatTOTAL],
and AvgPCost[TCatTOTAL].

3. Resource-network utilisation constraints ofRj which includeMaxCPUTimeRj ,
MaxWCTimeRj , MaxTransTimeRj , and MaxSpaceRj .

4. Remaining budget, deadline, and category tasks.

In lines(5-6), the algorithm selects a task from a particular category based
on the task availability (Policy 7) and the task-resource mapping. In line(7), the
resulting task group (TG[TCatTOTAL]) is checked for its accumulated processing
requirements against the resource-network utilisation constraints using the batch
resizing policies. If the policies are satisfied, the task is added into the group in
line(9) and the processing requirements of the group are updated in lines(10-15).
The action of task grouping is conducted by referring to the task selection in
TG[TCatTOTAL]. The task group is then dispatched to Rj .

6 Implementation of the Grid Meta-Scheduler

The process flow of the grid meta-scheduler with Advance QoS Planning module is
given in Fig. 7. The meta-scheduler is developed using Java with multi-threading
features.

1. Initial Preparation. (1) Task Categorisation retrieves task files from an user
and categorises the tasks as explained in Section 4.1 according to the class

QoS-based Task Group Deployment on Grid by Learning the Performance Data 13

Algorithm 2: Determining the Size of a Task Group.

TG[TCatTOTAL] //Task group to be created; initialised to 01

TG CPUTime = 0, TG WallclockT ime = 02

TG TransmissionT ime = 0, TG Space = 03

TG TurnaroundT ime = 0, TG ProcessingCost = 04

for k ← 0 to TCatTOTAL do5

for m← 0 to RemainingTasksInTCatk and TRARj
[k] do6

if7

[(TG CPUTime+ AvgCPUTime[k]) ≤MaxCPUTimeRj]&&

[(TG WallclockT ime+ AvgWCTime[k]) ≤MaxWCTimeRj]&&

[(TG TransmissionT ime+AvgTransT ime[k]) ≤MaxTransT imeRj]&&

[(TG Space+ AvgSpace[k]) ≤MaxSpaceRj]&&

[(TG TurnaroundT ime+AvgTRTime[k]) ≤ RemainingDeadline]&&

[(TG ProcessingCost+AvgPCost[k]) ≤ RemainingBudget]

then

TG[k] + +8

TG CPUTime+ = AvgCPUTime[k]9

TG WallclockT ime+ = AvgWCTime[k]10

TG TransmissionT ime+ = AvgTransT ime[k]11

TG Space+ = AvgSpace[k]12

TG TurnaroundT ime+ = AvgTRTime[k]13

TG ProcessingCost+ = AvgPCost[k]14

else15

Break //Break the loop and check the next TCat16

//Note: AvgTransT ime[k] = AvgMTRTime[k]) +AvgRTMTime[k]17

intervals provided by the Controller. (2) It directs the task category list to the
Scheduling module. Meanwhile, (3)(4) Resource Planning, running as a sepa-
rate thread, keeps the information (hostname and the utilisation constraints
(MaxCPUTime, MaxWCTime, MaxSpace)) of the participating grid re-
sources to which the user has valid authorisations.

2. Benchmarking, Progress Monitoring, and Output Collection. (5) Hav-
ing the task category and resource lists, Benchmark Scheduling selects bench-
mark tasks from the dominating categories and (6) dispatches the task files to
the resources via Task / Batch Deployment. A task is dispatched to a resource
once the resource has completed its current task. Hence, (7)(10) the Progress
Monitoring will be informed about the dispatched task and the designated
resource which then (8) instructs the Output Collection to trace the progress
of the particular task. (9) Upon task completion, Output Collection retrieves
the output files and (8) notifies the Progress Monitoring. For each resource,
a set of Scheduling, Task / Batch Deployment, Progress Monitoring, Output
Collection, Deployment Analysis, and Average Analysis modules are invoked
as threads. The process of task deployment on a resource will not be affected
or delayed by other resources; thus eliminating the synchronisation overhead.
The steps (3-10) are repeated for each resource until all the benchmark tasks
are successfully processed.

14 Nithiapidary Muthuvelu et al.

User Tasks (Instruction, Libraries, Program, Data)

Output

Collection

(1)

(3)

(4)

(9)

(8)

(7)

Grid Resources

Meta-Scheduler

Task

Categorisation

Resource

Planning

Progress

Monitoring

(2)

(6)

(14)

(10)

Benchmark

Scheduling

Scheduling

Task / Batch

Deployment

Deployment

Analysis

(5)

Batch Resizing

& Scheduling

(11)

(13)

Controller

(1)

(1)
(12)

Average Analysis
(17)

(16)

(18)
(19)

(15)

QoS

Advance QoS Planning

Fig. 7 Grid Meta-Scheduler with Advance QoS Planning Module.

3. Updating the Average Deployment Metrics. Upon retrieving the output
files of a task, (11) Deployment Analysis will be updated by Output Collection
in order to get the progress details of the processed task from Progress Moni-
toring. It then computes the nine deployment metrics of the task as explained
in Section 4.2 and updates the remaining deadline and budget.

4. Advance QoS Planning. Once a particular resource completes its benchmark
tasks, it is time to proceed with the first QoS planning. Assume that there are
three resources (R0, R1, and R2) and R0 is the first one to complete all its
benchmark tasks. (15) The Controller invokes an instance of Average Analysis
to (16) gather the metrics of all the benchmark tasks processed by all the
resources so far and (17) compute the average deployment metrics for each
task category-resource pair (TCatk − Rj). The average details are used by
Advance QoS Planning to produce the optimal task-resource mapping based
on the remaining budget and deadline as explained in Section 5.

5. Task Group Deployment and Average Analysis. The meta-scheduler will
start to create task groups for R0 according to the batch resizing policies and
task-resource mapping. After conducting a number of task group deployment
iterations for R0, (15) the Controller will invoke an instance of Average Anal-
ysis specifically for R0 to update its TCatk −R0 average deployment metrics
based on the latest processed task groups.

6. Task Group Deployment and Periodic Average Analysis. (18) The De-
ployment Analysis passes the updated average details to Batch Resizing &
Scheduling for (19)(6) the subsequent batch resizing and deployment activities
for R0. (16-19) The next Average Analysis for R0 is invoked by the Controller
after a certain number of task group deployments for regularly updating R0’s
TCatk−R0 average deployment metrics. When R1 or R2 completes its bench-
mark tasks, the meta-scheduler performs the similar steps 6 and 7 to regularly
update their performance metrics.

QoS-based Task Group Deployment on Grid by Learning the Performance Data 15

7. Periodic Average Analysis and Advance QoS Planning. The average
analysis for each resource is conducted regularly in order to maintain the accu-
racy of the TCatk −Rj metrics. Similarly, the Advance QoS Planning will be
invoked periodically as to update the task-resource mapping according to the
latest TCatk−Rj metrics. The meta-scheduler repeats step 5 upon completing
a certain number of task group deployment iterations. However, the frequency
of conducting the advance QoS planning need to be monitored as genetic al-
gorithms will increase the computation overheads at the meta-scheduler.

The genetic algorithm in the Advance QoS Planning module is implemented
using Java Genetic Algorithms Package (JGAP) [1], an open-source toolkit. The
meta-scheduler communicates with the resources using simple SSH, SCP, and RSH
protocols for authentication, file transmission, and task execution purposes.

7 Performance Analysis

We conduct experiments in small scale environment using the proposed meta-
scheduler to observe the impact of the advance Qos planning along with the batch
resizing strategy in task group deployment. The next section presents some of the
main configurations of the experiments.

7.1 Experimental Set-Up

Environment. As shown in Fig. 8, we will use five compute resources and the
specifications of the machines are given in Table 1. Each resource is a single
processing node with multiple cores. R0 is located at the University of Mel-
bourne (UNIMELB), Australia, whereas R1 − R4 are at the Multimedia Uni-
versity (MMU). The resource-network utilisation constraints of the participating
resources are given in Table 2. The client is a dual-core machine (speed:2.40GHz,
RAM:3GB), running on Linux.

BoT Application. Six computational programs are developed as trial applica-
tions: heat distribution, linear equation, finite differential equation, and three ver-
sions of Pi computations. 568 instances of these tasks are created with (TFSize ≤
10KBytes), (ETCPUTime ≤ 3.15minutes), and (OFSize ≤ 5950KBytes). These
tasks will be deployed on the resources using various parameter sets. The majority
of the tasks are considered fine-grain as 90.49% of the tasks have (ETCPUTime ≤
2minutes) and 79.93% of the tasks have (OFSize ≤ 1000KBytes).

Task Group Deployment. In the experiments, the tasks are divided into cate-
gories according to the class intervals: TFSizeCI = 1KByte; ETCPUTimeCI =
1minute; and OFSizeCI = 500KBytes. Then, two tasks from the 20% of the
dominating categories are selected as benchmark tasks for each resource. Once a
resource completes its benchmark tasks, the average analysis for the resource will
be conducted after every two iterations of task group deployments to the resource.
Advance QoS planning will be carried out after the benchmarking, as well as after
every 10 (GRTOTAL × 2) iterations of task group deployments completed by the
meta-scheduler.

16 Nithiapidary Muthuvelu et al.

MMU

Intranet Internet

Domain: MMU
Client

(Meta-Scheduler)

Task / Output

Domain:

UNIMELB

R_0
belleR_1

sigs

R_2
agrid

R_3
bgrid

R_4
cgrid

Domain: MMU

Fig. 8 Environmental Set-Up for the Experiments.

Table 1 Grid Resources

ID Resource Name (Location)
Total
Cores

Operating System, Speed, RAM

R0

belle.csse.unimelb.edu.au
(UNIMELB, Australia)

4 Ubuntu, 2.80GHz, 2GB

R1

sigs.mmu.edu.my (MMU,
Malaysia)

4 OpenSUSE, 2.40GHz, 2GB

R2

agrid.mmu.edu.my (MMU,
Malaysia)

2 Ubuntu, 2.40GHz, 1GB

R3

bgrid.mmu.edu.my (MMU,
Malaysia)

2 Ubuntu, 2.40GHz, 1GB

R4

cgrid.mmu.edu.my (MMU,
Malaysia)

2 Ubuntu, 2.40GHz, 1GB

Table 2 Resource-Network Utilisation Constraints

Utilisation Constraints R0 R1 R2 R3 R4

MaxCPUTime(mins) 5 4 6 5 4
MaxWCTime(mins) 10 8 10 15 10
MaxSpace(MBytes) 10 15 10 10 10

MaxTransT ime(mins) 6 5 5 4 6
TPCost (cost units per ms) 4 4 5 8 3

Genetic Algorithm. During the advance QoS planning, the genetic algorithm
populates 80 chromosomes in each evolution. The best chromosome is selected
based on one of the two termination conditions: when all the maximum fitness
value is achieved or when the number of evolutions reaches 500.

Experiments. Two types of experiments are conducted in this analysis: (i) Task
grouping based on the batch resizing strategy without advance QoS planning; and
(ii) Task grouping based on the batch resizing strategy with advance QoS planning.

Note. We finalised the values given in our experiments and genetic algorithms
(class intervals, total benchmark tasks, iterations of average analysis and QoS
planning, total chromosomes, number of evolutions) after studying and observing
a several experiments during the conduct of this research work.

7.2 Observations and Discussions

First, we deployed the 568 tasks on the five resources in a first-come-first-serve
manner. On average, the individual task deployment consumed 141.40 minutes.

QoS-based Task Group Deployment on Grid by Learning the Performance Data 17

Task group deployment based on resource-network utilisation constraints (Policies
1-4) and task availability (Policy 7) exhibited a better performance with 109.29
minutes, a performance improvement of 22.71%. In the following observations, we
analyse the task success rate within the specified deadline and budget when the
task group deployment is conducted with and without the advance QoS planning.

7.2.1 Observation I - Process Flow

In this experiment, the meta-scheduler is provided with an application budget
of 100000k cost units and a deadline of 75 minutes. The goal is to observe the
process flow of the meta-scheduler and how the advance QoS planning reacts to
the dynamic grid status.

17 categories were generated with the class intervals indicated in Section 7.1;
thus, the highest fitness value that can be achieved is 3 + 17. The resulting cate-
gories are:

0-330, 1-64, 2-20, 3-6, 4-22, 5-12, 6-12, 7-10, 8-10, 9-10, 10-8, 11-10, 12-16,
13-12, 14-8, 15-10, 16-8
(For example, 0-330 indicated 330 tasks in category 0 or TCat0)

For the benchmarking, the meta-scheduler selected 20% of the dominating
categories (three categories), namely, TCat0, TCat1, and TCat4. Two tasks from
each category were deployed on each resource; the total benchmark task is 30. We
observed that R0 was the first to complete its benchmark tasks. At this point,
the remaining budget was 94086k cost units and the deadline was 69.5 minutes.
The meta-scheduler then computed the average deployments metrics of all the
TCatk −Rj pairs and proceeded with the advance QoS planning.

Table 3 presents the resulting optimal task-resource mapping with the fitness
value of 11. The total tasks predicted by the genetic algorithm was 611; this task
count is more than the remaining 538 tasks and expected to consume 127171k
cost units in 170 minutes. Figure 9 shows the ratio of the actual vs predicted task
count according to each category. The predicted task counts fell within the range
0.9 to 1.0 for 11 categories, yielding a fitness value of 11.

Subsequently, 13 tasks from TCat0 were grouped for R0. Meanwhile, R1 man-
aged to complete its benchmark tasks and 19 tasks from TCat0 were grouped
for R1. The average analysis for each resource was repeated once the particular
resource has successfully processed two task groups.

The meta-scheduler conducted the next advance QoS planning after completing
GRTOTAL×2 task group deployment iterations. Table 4 shows the total tasks and
deployments completed before the second call for the advance QoS planning. The
Processed Tasks includes six benchmark tasks and the tasks grouped in batches.
The Total Deployments indicates the number of interactions between the resources
and the meta-scheduler; i.e. the meta-scheduler deployed 32 tasks on R3; six bench-
mark tasks via individual deployments; and 26 tasks via two task groups. In total,
191 tasks were processed via 41 deployments.

Finally, 480 out of 568 tasks were successfully processed within the deadline
(75 minutes). The 480 tasks used up only 87330k cost units. As indicated in Table
4, 123 deployments were needed for processing the 480 tasks.

18 Nithiapidary Muthuvelu et al.

Table 3 Task-Resource Allocation, Fitness Value = 11

Resource
Task Categories Total

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Tasks

R0 65 11 5 0 3 5 0 3 2 3 5 3 2 3 2 7 3 122
R1 65 6 5 2 0 3 3 1 1 3 2 1 6 3 2 6 0 109
R2 65 15 2 1 3 8 3 3 2 10 2 3 4 1 3 3 5 133
R3 65 11 2 2 3 7 3 0 3 3 5 3 0 2 5 3 6 123
R4 57 11 5 1 3 3 3 3 2 3 6 0 4 2 3 10 8 124

Total 317 54 19 6 12 26 12 10 10 22 20 10 16 11 15 29 22 611
Actual 320 54 20 6 12 12 12 10 10 10 8 10 16 12 8 10 8 538

0 1 2 3 4 5 6 7 8 9 10 111213141516

0

1

2

3

Task Categories

P
re

d
ic

te
d

 v
s

A
ct

u
al

 T
as

k
 C

o
u

n
t

Fig. 9 Observation I: Ratio of the Actual vs Predicted Task Count.

Table 4 Benchmark and Task Group Deployment (Budget=100000k Cost Units, Deadline =
75 Minutes)

Resource
Before the Second QoS Planning Overall Deployment
Processed
Tasks

Total
Deployments

Processed
Tasks

Total
Deployments

R0 6+26 6+2 6+40 6+10
R1 6+19 6+1 6+104 6+18
R2 6+65 6+3 6+118 6+24
R3 6+26 6+2 6+103 6+24
R4 6+25 6+3 6+85 6+17

Total 191 41 480 123

7.2.2 Observation II - Comparison

In Observation I (Section 7.2.1), 480 tasks were successfully processed within 75
minutes using the batch resizing policies and the advance QoS planning. In this
observation, we conducted experiment without QoS planning (budget = 100000k
cost units, deadline = 75 minutes); the size of a task group is determined merely
based on the batch resizing policies.

Table 5 compares both the task deployments. Deployment without advance
QoS planning processed 465 tasks in 75 minutes by consuming 90267k cost units;
90.27% of the budget was spent to complete 465 tasks. On the other hand, deploy-
ment with advance QoS planning used up only 87.33% of the budget and processed
an additional 15 tasks.

QoS-based Task Group Deployment on Grid by Learning the Performance Data 19

Table 5 Budget=100000k cost units, Deadline=75 minutes

Task Group Deployment with Advance QoS Planning

Resource
Processed
Tasks

Total
Deployments

Budget Spent
(k)

Time Spent
(mins)

R0 46 16 15086 74.8
R1 110 24 15084 74.8
R2 124 30 18220 74.9
R3 109 30 27528 74.9
R4 91 23 11412 74.7

Total 480 123 87330 Max:74.9

Task Group Deployment without Advance QoS Planning

Resource
Processed
Tasks

Total
Deployments

Budget Spent
(k)

Time Spent
(mins)

R0 41 16 14824 73.8
R1 103 22 15242 73.9
R2 97 13 20459 74.9
R3 133 31 28881 74.1
R4 91 23 10861 72.6

Total 465 105 90267 Max:74.9

Table 6 (100000k ≤ Budget ≤ 1200000k) Cost Units, (75 ≤ Deadline ≤ 105) Minutes

Experiments I II III IV V

Deadline (mins) 75 85 95 95 105
Budget (k) 100000 100000 100000 1200000 1200000

With Time Spent (mins) 74.9 82.7 81.5 94.3 99.9
QoS Budget Spent (k) 87330 99301 99717 112655 118566

Planning Processed Tasks 480 510 515 531 546
Without Time Spent (mins) 74.9 81.2 80.3 95 96.3
QoS Budget Spent (k) 90267 99943 99655 117691 119756

Planning Processed Tasks 465 491 492 522 526

An important observation at R2: The advance QoS planning spent 18220k
to process 124 tasks, whereas in the deployment without QoS planning, 20459k
was spent to process only 97 tasks. This proves the QoS benefit of task-resource
mapping prior to task group deployment. A similar impact can be seen at R1.

Following that, we conducted four sets of experiments (Experiment II-V) with
varying budgets and deadlines as indicated in Table 6. In Experiment I, the de-
ployment was constrained by the deadline, 75 minutes. Hence, we extended the
deadline in Experiment II to 85 minutes and it can be noticed that the deployment
in Experiment II was constrained by the budget, 100000k cost units. The budget
constraint was confirmed in Experiment III by extending the deadline to 95 min-
utes. A similar configuration pattern was applied to the rest of the experiments.

All the experiments showed a similar time optimisation within the given time
frame (Table 6); e.g. in Experiment I, the deployments with and without QoS
planning used up 74.9 minutes; in Experiment II, the deployments consumed 82.7
minutes and 81.2 minutes respectively. The next concern is the task success rate
and the budget spent within the time spent.

Figure 10 illustrates the observation in terms of percentages of the processed
tasks and the budget spent. Policies & QoS Planning refers to the task grouping
based on batch resizing policies and advance QoS planning, whereas Policies refers
to the task grouping merely based on the batch resizing policies.

20 Nithiapidary Muthuvelu et al.

a b

I II III IV V

80

90

100
Policies &
QoS
Planning

Policies

Experiments

T
as

k
 C

o
u

n
t

(%
)

I II III IV V

85

90

95

100

Experiments

P
ro

ce
ss

in
g

 C
o

st
 (

%
)

Fig. 10 Observation II, (a) Percentage of the Processed Task Count and (b) the relevant Cost
or Budget Spent.

Figure 10(a) conveys that the deployment with advance QoS planning outper-
formed in terms of task success rate throughout the experiments. In Experiment
III, both the deployments used up almost the same budget, but advance QoS
planning managed to complete an additional 23 tasks (Fig. 10(b)). Experiment IV
delivered a significant performance where advance QoS planning processed 93.40%
tasks with only 93.88% of the budget. On the other hand, deployment without QoS
planning spent 98.08% of the budget to complete only 91.90% tasks. In short, the
optimal task-resource mapping increases the task success rate within the given
time frame while minimising the overall task processing cost.

7.2.3 Observation III - Performance of the Genetic Algorithm

In our first observation (Section 7.2.1), 480 tasks were successfully processed in
75 minutes with 87330k cost units (out of 100000k). In this section, we conducted
five experiments with varying budgets to analyse the performance of the genetic
algorithm in optimising the available budget along with the deadline, 75 minutes.

Table 7 shows the experiment configurations and the resulting performance in
terms of QoS utilisation and the total processed tasks. Experiment III reflects the
one conducted in Observation I. The task success rate with the percentage of the
budget spent are presented in Fig. 11.

The least number of processed tasks is recorded in Experiment I due to the
budget constraint of 80000k cost units. Throughout the experiments, the task
success rate increases as the budget increases.

R3 imposes high processing charges as compared to other resources. Hence, in
Experiment III (Observation I, Table 5), the advance QoS planning allocated fewer
tasks to R3 as compared to the task deployment without task-resource mapping.
However, in this observation, more tasks were allocated to R3 during Experiments
V-VI as the available budget was more than enough to accommodate the deploy-
ment for 75 minutes. For example, 129 tasks were allocated to R3 in Experiment V
and 124 tasks in Experiment VI. On the other hand, only 109 tasks were allocated
to R3 in Experiment III (Table 5). This reflects the optimisation feature of the
advance QoS planning. In spite of this optimisation, we did not see a convincing
usage of the available budget as shown in Fig. 11 due to the deadline constraint.

QoS-based Task Group Deployment on Grid by Learning the Performance Data 21

Table 7 (80000k ≤ Budget ≤ 400000k) Cost Units, Deadline = 75 Minutes

Experiments I II III IV V VI

Budget (k) 80000 90000 100000 200000 300000 400000
Time Spent (mins) 64.3 73.4 74.9 74.9 74.9 74.9
Budget Spent (k) 79898 89719 87330 88891 91309 91518
Processed Tasks 404 481 480 483 490 490

I II III IV V VI

20

30

40

50

60

70

80

90

100

Processed
Tasks

Budget Spent

Experiments

(%
)

Fig. 11 Observation III, Processed Tasks and the Budget Spent.

7.2.4 Issues and Future Direction

Advance QoS planning increases the task success rate as compared to the conven-
tional batch processing. However, there are a couple of issues need to be tackled
in this method.

As shown in Fig. 5, the proposed batch resizing strategy requires the meta-
scheduler to keep monitoring, learning and updating the average deployment met-
rics for each task category-resource pair using a genetic algorithm. A frequent con-
duct of advance QoS planning may delay the entire task group deployment as the
genetic algorithm will increase the computation overhead at the meta-scheduler.
With the current high-end machines, the overhead or latency can be reduced or hid-
den by configuring the genetic algorithm to keep running in parallel as a separate
thread. The meta-scheduler can obtain the latest, optimal task-resource mapping
at any time from the genetic algorithm.

The advance QoS planning needs to be conducted frequently only when the
grid status varies drastically at runtime. Practically, the meta-scheduler must have
completed at least one task group deployment to each resource before the subse-
quent QoS planning. For simplicity, in our meta-scheduler, the planning is carried
out once it has successfully processed GRTOTAL × 2 task groups. We also con-
ducted experiments in which the planning is performed after every GRTOTAL × 1
task group deployment. We observed almost similar task success rate and budget
utilisation as our grid status did not fluctuate much during the experiments.

Another issue is on the scalability of advance QoS planning. Our experiments
were conducted in a small-scale environment. How will the algorithm perform
when there are tens of thousands of tasks with varying TFSize, OFSize, and
ETCPUTime in an application? What if the environment consists of thousands
of CPUs for executing the massive application tasks? In this scenario, we can
adapt the clustering techniques to minimise the parameters in the QoS planning.

22 Nithiapidary Muthuvelu et al.

For example, upon benchmarking, the resources can be clustered according to
their common characteristics. The neighbouring task categories or categories with
similar processing requirements can be clustered as well. Then, the average perfor-
mance metrics of each category cluster on each resource cluster will be computed
to be fed to the genetic algorithm.

Besides these issues, the proposed task group deployment can be easily adapted
to cloud computing. The cloud users may use multiple physical hardware, each
running a number of instances or virtual machines (VMs). Similar to the grid
resources, upon the invocation of the VMs, their performance can be benchmarked,
and the application tasks can be grouped according to the capacities of the VMs.
As cloud is based on pay-per-use model [15], the advance QoS planning can highly
minimise the expenses and increase the utilisation of the VMs. In the case where
the VMs are allocated from a clustered physical machines, then, the user can
transfer the entire application tasks to one of the VMs and let the particular VM
act as the meta-scheduler. This will reduce the latencies caused by multiple file
transmissions between the user and the VMs, and progress monitoring of the tasks
dispatched to the VMs.

The task group deployment can be adapted to handle real-time tasks; e.g. op-
erations on weather information or road traffic data collected at every specific
interval. Thousands of tasks with real-time data arrive at the meta-scheduler at
regular intervals which need to be executed immediately in order to produce the
timely response to the public or consumers. The tasks with minimal granularity
can be grouped and passed to the resources or VMs, thus, minimising the rele-
vant processing and communication overheads. The OFSize and ETCPUTime of
the real-time tasks can be estimated based on the historical records of task ex-
ecution. The task categorisation will be conducted online; when the tasks arrive
at the meta-scheduler, they will be added into the existing categories according
to their OFSize and ETCPUTime, and new categories will be created as needed.
Subsequently, the average analysis and advance QoS planning will be conducted
to create the task groups.

8 Conclusions

Batch resizing strategy highly decreases the turnaround time when deploying fine-
grain tasks on a grid. The performance of the task group deployment can be
improved to facilitate the economic grid in which the application deadline and
budget play a critical role as the major constraints. In this paper, we proposed to
conduct advance QoS planning to determine the optimal task-resource mapping
prior to deploying the tasks on the grid resources. We learn the performance data
of the application tasks at regular basis and the relevant statistical information is
used to produce the task-resource mapping using a genetic algorithm. We devel-
oped a grid meta-scheduler for conducting experiments in a practical environment.
Experiments revealed that the task group deployment with advance QoS planning
outperforms in terms of task success rate as compared to the deployment without
QoS planning. This strategy is targeted for those who execute BoT tasks within
the reserved time frame in an economic or a commercial grid.

QoS-based Task Group Deployment on Grid by Learning the Performance Data 23

9 Acknowledgement

This paper is an extended version from ICA3PP 2010 [23]. We would like to ac-
knowledge e-ScienceFund, Ministry of Science, Technology, and Innovation (MOSTI),
Malaysia, and Endeavour Awards, Department of Innovation, Industry, Science
and Research (DIISR), Australia, for supporting the research work and the devel-
opment of the meta-scheduler described in this paper.

References

1. Jgap java genetic algorithm package. URL http://jgap.sourceforge.net/. Accessed on 30th
March 2011

2. Abramson, D., Buyya, R., Giddy, J.: A computational economy for grid computing and
its implementation in the nimrod-g resource broker. Future Generation Computer System
18(8), 1061–1074 (2002)

3. Antani, S.: Batch processing with websphere compute grid: Deliver-
ing business value to the enterprise. Tech. rep., IBM (2010). URL
http://www.redbooks.ibm.com/abstracts/redp4566.html

4. Baker, M., Buyya, R., Laforenza, D.: Grids and grid technologies for wide-area distributed
computing. Softw. Pract. Exper. 32(15), 1437–1466 (2002)

5. Barmouta, A., Buyya, R.: Gridbank: A grid accounting services architecture (gasa) for
distributed systems sharing and integration. In: Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, p. 245.1. IEEE Computer Society,
Washington, DC, USA (2003)

6. Castillo, C., Rouskas, G.N., Harfoush, K.: On the design of online scheduling algorithms
for advance reservations and qos in grids. In: International Symposium on Parallel and
Distributed Processing, pp. 1–10. California, USA (2007)

7. Castillo, C., Rouskas, G.N., Harfoush, K.: Online algorithms for advance resource reser-
vations. Journal of Distributed and Parallel Computing 71(7), 963–973 (2011)

8. Elmroth, E., Tordsson, J.: Grid resource brokering algorithms enabling advance reserva-
tions and resource selection based on performance predictions. Future Generation Com-
puter System 24(6), 585–593 (2008)

9. Feitelson, D.G.: Packing schemes for gang scheduling. In: Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, pp. 89–110. Springer-Verlag, London,
UK (1996)

10. Feng, J., Wasson, G., Humphrey, M.: Resource usage policy expression and enforcement
in grid computing. In: Proceedings of the 8th IEEE/ACM International Conference on
Grid Computing, pp. 66–73. IEEE Computer Society, Washington, DC, USA (2007)

11. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms.
Future Generation Computer Systems 21(1), 151–161 (2005)

12. Guttmacher, A.E., Collins, F.S.: Genomic medicine–a primer. The New England Journal
of Medicine 347(19), 1512–1520 (2002)

13. Huang, P., Peng, H., Lin, P., Li, X.: Static strategy and dynamic adjustment: An effective
method for grid task scheduling. Future Generation Computer Systems 25(8), 884–892
(2009)

14. Hui, L., Yu, H., Xiaoming, L.: A lightweight execution framework for massive independent
tasks. In: Workshop on Many-Task Computing on Grids and Supercomputers, pp. 1–9.
IEEE (2008)

15. Huu, T.T., Koslovski, G.P., Anhalt, F., Montagnat, J., Primet, P.V.B.: Joint elastic cloud
and virtual network framework for application performance-cost optimization. Journal of
Grid Computing 9(1), 27–47 (2011)

16. Jacob, B., Brown, M., Fukui, K., Trivedi, N.: Introduction to Grid Computing. IBM
Publication (2005)

17. James, H., Hawick, K., Coddington, P.: Scheduling independent tasks on metacomputing
systems. In: Proceedings of Parallel and Distributed Computing Systems, pp. 156–162.
Fort Lauderdale, US (1999)

18. Li, H., Groep, D., Wolters, L.: Mining performance data for metascheduling decision sup-
port in the grid. Future Generation Computer Systems 23, 92–99 (2007)

24 Nithiapidary Muthuvelu et al.

19. Liu, D., Cao, Y.: Computational intelligence and security. In: Y. Wang, Y.M. Cheung,
H. Liu (eds.) CIS’06, chap. CGA: Chaotic Genetic Algorithm for Fuzzy Job Scheduling in
Grid Environment, pp. 133–143. Springer-Verlag, Berlin, Heidelberg (2007)

20. Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: The internet operating
system: Middleware for adaptive distributed computing. International Journal of High
Performance Computing Applications 20(4), 467–480 (2006)

21. Mohr, E., Kranz, D.A., Halstead, R.H.J.: Lazy task creation: A technique for increasing the
granularity of parallel programs. IEEE Transactions on Parallel and Distributed Systems
2(3), 264–280 (1991)

22. Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., Thain, D.: All-pairs: An
abstraction for data-intensive computing on campus grids. IEEE Transactions on Parallel
Distributed Systems 21, 33–46 (2010)

23. Muthuvelu, N., Chai, I., Chikkannan, E., Buyya, R.: On-line task granularity adaptation
for dynamic grid applications. In: Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing, vol. 6081, pp. 266–277 (2010)

24. Muthuvelu, N., Chai, I., Chikkannan, E., Buyya, R.: Batch resizing policies and techniques
for fine-grain grid tasks: the nuts and bolts. Journal of Information Processing Systems
7(2), 299–320 (2011)

25. Prodan, R., Wieczorek, M.: Negotiation-based scheduling of scientific grid workflows
through advance reservations. Journal of Grid Computing 8(4), 493–510 (2010)

26. Rahman, M., Ranjan, R., Buyya, R.: Cooperative and decentralized workflow scheduling
in global grids. Future Generation Computer Systems 26(5), 753–768 (2010)

27. Ramı́rez-Alcaraz, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U., Quezada-Pina,
A., González-Garćıa, J.L., Hirales-Carbajal, A.: Job allocation strategies with user run
time estimates for online scheduling in hierarchical grids. Journal of Grid Computing
9(1), 95–116 (2011)

28. Risch, M., Altmann, J.: Capacity planning in economic grid markets. In: Proceedings of
the 4th International Conference on Advances in Grid and Pervasive Computing, GPC
’09, pp. 1–12. Springer-Verlag, Berlin, Heidelberg (2009)

29. Sadasivam, G.S., Rajendran, V.V.: An efficient approach to task scheduling in compu-
tational grids. International Journal of Computer Science and Applications 6(1), 53–69
(2009)

30. Siddiqui, M., Villazón, A., Fahringer, T.: Grid capacity planning with negotiation-based
advance reservation for optimized qos. In: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, pp. 103–118. ACM, New York, NY, USA (2006)

31. Smith, W., Foster, I., Taylor, V.: Predicting application run times with historical infor-
mation. Journal of Parallel and Distributed Computing 64, 1007–1016 (2004)

32. Sodan, A.C., Kanavallil, A., Esbaugh, B.: Group-based optimizaton for parallel job
scheduling with scojo-pect-o. In: Proceedings of the 22nd International Symposium on
High Performance Computing Systems and Applications, pp. 102–109. IEEE Computer
Society, Washington, DC, USA (2008)

33. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An advance reservation-based co-
allocation algorithm for distributed computers and network bandwidth on qos-guaranteed
grids. In: Proceedings of the 15th international conference on Job scheduling strategies
for parallel processing, pp. 16–34. Springer-Verlag, Berlin, Heidelberg (2010)

34. Talby, D., Feitelson, D.G.: Improving and stabilizing parallel computer performance using
adaptive backfilling. In: Proceedings of the 19th IEEE International Parallel and Dis-
tributed Processing Symposium, p. 84.1. IEEE Computer Society, Washington, DC, USA
(2005)

35. Venugopal, S., Buyya, R., Lyle, W.: A grid service broker for scheduling e-science appli-
cations on global data grids. Concurrency and Computation: Practice and Experience
(CCPE) 18, 685–699 (2006)

QoS-based Task Group Deployment on Grid by Learning the Performance Data 25

Dr. Nithiapidary received her B.IT degree from Universiti
Tenaga Nasional, Malaysia, in August 2003, M.IT degree from
the University of Melbourne, Australia, in December 2004, and
Ph.D in IT from Multimedia University Malaysia in 2012. She is
teaching at Multimedia University, Malaysia, since 2005. Her re-
search interests include: Distributed and Parallel Processing, and
Data Communication. She is a member of the IEEE Computer
Society.

Dr. Ian Chai received his B.Sci. and M.Sci. in Computer Sci-
ence from the University of Kansas and his Ph.D. in Computer
Science from the University of Illinois at Urbana-Champaign.
Since 1999, he has taught at Multimedia University in Cyber-
jaya, Malaysia.

Prof. Dr. C.Eswaran received his B.Tech, M.Tech, and Ph.D
degrees from the Indian Institute of Technology Madras, India
where he worked as a Professor in the Department of Electrical
Engineering until January 2002. Currently he is working as a
Professor in the Faculty of Information Technology, Multimedia
University, Malaysia. Dr.C.Eswaran served as a visiting faculty
and research fellow in many international universities. He has
supervised successfully more than 25 Ph.D/M.S students and

has published more than 150 research papers in reputed International Journals
and Conferences. Prof.C. Eswaran is a senior member of IEEE.

Prof. Dr. Rajkumar Buyya is Professor of Computer Science
and Software Engineering; and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory at the Univer-
sity of Melbourne, Australia. He is also serving as the founding
CEO of Manjrasoft Pty Ltd., a spin-off company of the Univer-
sity, commercialising its innovations in Grid and Cloud Comput-
ing. He has authored and published over 300 research papers and
four text books. The books on emerging topics that Dr. Buyya

edited include, High Performance Cluster Computing (Prentice Hall, USA, 1999),
Content Delivery Networks (Springer, Germany, 2008) and Market-Oriented Grid
and Utility Computing (Wiley, USA, 2009). He is one of the highly cited authors in
computer science and software engineering worldwide (h-index=48, g-index=104,
12500+ citations).

Software technologies for Grid and Cloud computing developed under Dr.
Buyya’s leadership have gained rapid acceptance and are in use at several aca-
demic institutions and commercial enterprises in 40 countries around the world.
Dr. Buyya has led the establishment and development of key community activi-
ties, including serving as foundation Chair of the IEEE Technical Committee on
Scalable Computing and four IEEE conferences (CCGrid, Cluster, Grid, and e-
Science). The contributions and international research leadership of Dr. Buyya
are recognised through the award of ”2009 IEEE Medal for Excellence in Scalable
Computing” from the IEEE Computer Society, USA. For further information on
Dr. Buyya, please visit his cyberhome: www.buyya.com

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Muthuvelu, N;Chai, I;Chikkannan, E;Buyya, R

Title:
QoS-based Task Group Deployment on Grid by Learning the Performance Data

Date:
2014-09

Citation:
Muthuvelu, N., Chai, I., Chikkannan, E. & Buyya, R. (2014). QoS-based Task Group
Deployment on Grid by Learning the Performance Data. JOURNAL OF GRID COMPUTING,
12 (3), pp.465-483. https://doi.org/10.1007/s10723-014-9308-5.

Persistent Link:
http://hdl.handle.net/11343/282778

http://hdl.handle.net/11343/282778

