Skip to main content
Log in

A Stochastic Process Approach to Model Distributed Computing on Complex Networks

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

In this work we present analytic expressions for the expected values of the performance metrics of parallel applications when the distributed computing infrastructure has a complex topology. Through active probing tests we analyse the structure of a real distributed computing environment. From the resulting network we both validate the analytic expressions and explore the performance metrics under different conditions through Monte Carlo simulations. In particular we gauge computing paradigms with different hierarchical structures in computing services. Fully decentralised (i.e., peer-to-peer) environments provide the best performance. Moreover, we show that it is possible to improve significantly the parallel efficiency by implementing more intelligent configurations of computing services and task allocation strategies (e.g., by using a betweenness centrality measure). We qualitatively reproduce results of previous works and provide closed-form solutions that link topology, application’s structure and allocation parameters when job dependencies and a complex network structure are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barabási, A.: Scale-free networks: a decade and beyond. Science 325(5939), 412 (2009)

    Article  MathSciNet  Google Scholar 

  2. Kahanwal, B., Singh, T.P.: The Distributed Computing Paradigms: P2P, Grid, Cluster, Cloud, and Jungle. Int. J. Latest Res. Sci. Technol. 1(2), 183–187 (2012)

    Google Scholar 

  3. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200 (2001)

    Article  Google Scholar 

  4. Buyya, R., Brogerg, J.: Cloud computing: principles and paradigms. Wiley series on parallel and distributed computing. Wiley-Blackwell (2011)

  5. Karagiannis, T.: Filesharing in the internet: A characterization of p2p traffic in the backbone. Tech. rep., UC Riverside (2003)

  6. Muttoni, L., Casale, G., Granata, F., Zanero, S.: Optimal number of nodes for computation in grid environments. In: Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP04), pp. 282–289 (2004)

  7. Iamnitchi, A., Ripeanu, M., Foster, I.: Locating data in (small-world?) peer-to-peer scientific collaborations. In: IPTPS ’01 Revised Papers from the First International Workshop on Peer-to-Peer Systems, pp. 232–241. Springer-Verlag (2002)

  8. da Fontoura Costa, L., Travieso, G., Ruggiero, C.: Complex grid computing. Eur. Phys. J. B 44(1), 119–128 (2005)

    Article  Google Scholar 

  9. Ilijašić, L., Saitta, L.: Characterization of a computational grid as a complex system. In: GMAC ’09 Proceedings of the 6th International Conference Industry Session on Grids Meets Autonomic Computing. ACM, pp. 9–18 (2009)

  10. de Mello, R.F., Ishii, R.P., Yang, L.T.: A complex network-based approach for job scheduling in grid environments. In: High Performance Computing and Communications of Lecture Notes in Computer Science, vol. 4782, pp. 204–215 (2007)

  11. Derbal, Y.: Entropic grid scheduling. J. Grid Comput. 4(4), 373–394 (2006)

    Article  MATH  Google Scholar 

  12. Batista, D., da Fonseca, N., Granelli, F., Kliazovich, D.: Self-adjusting grid networks. In: IEEE international conference on communications. IEEE, pp. 344–349 (2007)

  13. Jones, B.: An overview of the egee project. In: Türker, C., Agosti, M., Schek, H.-J. (eds.) Peer-to-Peer, Grid, and Service-orientation in Digital Library Architectures of Lecture Notes in Computer Science, vol. 3664, pp. 1–8. Springer, Berlin Heidelberg (2005)

  14. McCreary, C.L., Khan, A.A., Thompson, J.J., McArdle, M.E.: A comparison of heuristics for scheduling dags on multiprocessors. In: Proceedings of 8th International Parallel Processing Symposium. IEEE, pp. 446–451 (1994)

  15. Forti, A.: Dag scheduling for grid computing systems. Ph.D. Thesis. Udine University (2006)

  16. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A., Cavanaugh, R.: Mapping abstract complex workflows onto grid environments. J. Grid Comput. 1(1), 25–39 (2003)

    Article  Google Scholar 

  17. Cao, H., Jin, H., Wu, X., Wu, S., Shi, X.: DAGMap: Efficient and dependable scheduling of DAG workflow job in Grid. J. Supercomput. 51(2), 201–223 (2009)

    Article  Google Scholar 

  18. European grid infrastructure project: (http://www.egi.eu)

  19. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication on SIGCOMM ’99. ACM, pp. 251–262 (1999)

  20. Chen, Q., Hyunseok, Q.C., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: The origin of power laws in internet topologies revisited. In: Proceedings of 21th Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE, vol. 2, pp. 608–617 (2002)

  21. Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the AS-level internet topology. IEEE/ACM Trans. Networking 11(4), 514–524 (2003)

    Article  Google Scholar 

  22. Pansiot, J.-J., Grad, D.: On routes and multicast trees in the internet. ACM SIGCOMM Comput. Commun. Rev. 28(1), 41–50 (1998)

    Article  Google Scholar 

  23. Amini, L., Shaikh, A., Schulzrinne, H.: Issues with inferring internet topological attributes. Comput. Commun. 27(6), 557–567 (2004)

    Article  Google Scholar 

  24. Willinger, W., Alderson, D., Doyle, J.C.: Mathematics and the internet: A source of enormous confusion and great potential. Not. AMS 56(5), 586–599 (2009)

    MATH  MathSciNet  Google Scholar 

  25. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Clauset, A.: http://tuvalu.santafe.edu/~aaronc/powerlaws/

  27. Rewini, H.E., Lewis, T.G., Ali, H.H.: Task scheduling in parallel and distributed systems. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  28. Peterson, L., Davie, B.: Computer networks: A systems approach. Morgan Kauffman (2007)

  29. Zhang, Y.: Grid-centric scheduling strategies for workflow applications. Ph.D. thesis, Rice University (2009)

  30. Fujii, K., Goto, S.: Correlation between hop count and packet transfer time. APAN/IWS2000 (2000)

  31. Bollobás, B.: Modern graph theory. Springer, Berlin Heidelberg New York (1998)

    Book  MATH  Google Scholar 

  32. Kendall, M.G.: The advanced theory of statistics, vol. 1. C. Griffin & Company Limited (1945)

  33. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. Society for Industrial and Applied Mathematics (2008)

  34. Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurr. Comput. Pract. Experience 14(13-15), 1175–1220 (2002)

    Article  MATH  Google Scholar 

  35. O’Madadhain, J., Fisher, D., White, S., Boey, Y.: The JUNG (Java Universal Network/Graph) Framework. Tech. rep., UCI-ICS (2003)

  36. Chung, F., Lu, L.: The Diameter of sparse random graphs. Adv. Appl. Math. 26(4), 257–279 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)

    Article  MathSciNet  Google Scholar 

  38. Bollobás, B.: Graph theory and combinatorics. Ch. The evolution of sparse graphs. Cambridge Academic Press (1984)

  39. Fronczak, A., Fronczak, P., Hołyst, J.A.: Average path length in random networks. Phys. Rev. E 70(5), 056110 (2004)

    Article  Google Scholar 

  40. Blondel, V.D., Guillaume, J.-L., Hendrickx, J.M., Jungers, R.M.: Distance distribution in random graphs and application to network exploration. Phys. Rev. E 76(6), 066101 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Prieto-Castrillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto-Castrillo, F., Astillero, A. & Botón-Fernández, M. A Stochastic Process Approach to Model Distributed Computing on Complex Networks. J Grid Computing 13, 215–232 (2015). https://doi.org/10.1007/s10723-014-9317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-014-9317-4

Keywords

Navigation