Abstract
Grid computing supports a host of research areas, but it still lacks successful case studies concerning real-world industrial problems. This lack of work relates to difficulties faced by scientists and engineers, mostly due to two Achilles’ heels of Grid computing: incompleteness of resource information and high execution failure rates. This paper shows an application (Industry@Grid) developed to profit from grid computing resources to support the product-mix decision making in a plastic company and presents an analysis of grid related issues that drove the current design of Industry@Grid.
Similar content being viewed by others
References
Andronico, G., Ardizzone, V., Barbera, R., Becker, B., Bruno, R., Calanducci, A., Carvalho, D., Ciuffo, L., Fargetta, M., Giorgio, E., La Rocca, G., Masoni, A., Paganoni, M., Ruggieri, F., Scardaci, D.: e-Infrastructures for e-Science: A Global View. Journal of Grid Computing 9(2), 155–184 (2011)
Bertrand, J.W.M., Fransoo, J.C.: Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management 22(2), 241–264 (2002). doi:10.1108/01443570210414338
Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer-Verlag, New York (1997)
Carvalho, D., Bello, P.H.R., Duarte, A, de Castro Dutra, I.: Mining the eela-2 e-infrastructure. In: Proceedings of the First EELA-2 Conference (2009)
Carvalho, D., Marechal, B., Bello, P.H.R.: Building a grid in latin america: The eela project e-infrastructure. In: LA Grid07 - Seventh IEEE International Symposium on Cluster Computing and the Grid — CCGrid 2007 (2007)
CASAVANT, T., KUHL, J.: A taxonomy of scheduling in general-purpose distributed computing systems. IEEE T. Softw. Eng. 14(2), 141–154 (1988)
Chawla, N.V., Thain, D., Lichtenwalter, R., Cieslak, D.A.: Data mining on the grid for the grid. IEEE International Parallel & Distributed Processing Symposium ’08 (2008)
Christodoulopoulos, K., Gkamas, V., Varvarigos, E.A.: Statistical analysis and modeling of jobs in a grid environment. J. Grid. Comput. 6(1), 77–101 (2008)
Clery, D.: Bracing for a Maelstrom of Data, CERN Puts Its Faith in the Grid. Science 321(5894), 1289–1291 (2008). doi:10.1126/science.321.5894.1289
Czajkowski, K., Foster, I., Kasselman, C., Martin, S., Smith, W., Tuecke, S.: A resource management architecture for metacomputing systems. In: Proceedings of IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing. Orlando, FL, USA (1998)
Duan, R., Prodan, R., Fahringer, T.: Run-time optimisation of grid workflow applications. GRID ’06: Proceedings of the 7th IEEE/ACM International Conference on Grid Computing, pp. 33–40 (2006)
Foster, I., Kasselman, C.: Globus: a metacomputing infrastructure toolkit. International Journal of Supercomputing Applications 11(2), 115–128 (1997)
Foster, I., Kasselman, C., Tuecke, G.: A security architecture for computational grids (1998)
Fox, A.: Cloud Computing - What’s in It for Me as a Scientist? Science 331(6016), 406–407 (2011). doi:10.1126/science.1198981
Iosup, A., Jan, M., Sonmez, O., Epema, D.: On the dynamic resource availability in grids. GRID ’07: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing (2007)
Jiao, J., Zhang, Y.: Product portfolio identification based on association rule mining. Comput. Aided Des. 37(2), 149–172 (2005). doi:10.1016/j.cad.2004.05.006
Kwak, B.-J., Song, N.-O., Miller, E.L.: Performance analysis of exponential backoff. IEEE/ACM Trans. Netw. 13(2), 343–355 (2005)
Landau, S., Everitt, B.S.: Classification : Cluster Analysis and Discriminant Function Analysis ; Tibetan Skulls. In: A Handbook of Statistical Analyses Using SPSS. Chapman and Hall/CRC (2003)
Latorre, J.M., Cerisola, S., Ramos, A., Palacios, R.: Analysis of stochastic problem decomposition algorithms in computational grids. Ann. Oper. Res. 166(1), 355–373 (2009)
Laure, E., Hemmer, F., et al.: Middleware for the Next Generation Grid Infrastructure. In: Computing in High Energy and Nuclear Physics (CHEP) 2004. Interlaken, Switzerland (2004)
Li, H., Azarm, S.: An Approach for Product Line Design Selection Under Uncertainty and Competition, vol. 124. doi:10.1115/1.1485740 (2002)
Li, H., Groep, D., Wolters, L., Templon, J.: Job failure analysis and its implications in a large-scale production grid. In: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing (e-Science’06), pp. 27 (2006)
Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142(1), 215–241 (2006)
Linderoth, J., Wright, S.: Decomposition algorithms for stochastic programming on a computational grid. Comput. Optim. Appl. 24(2-3), 207–250 (2003)
Liu, Q., Shi, Y.J.: Gird manufacturing: a new solution for cross-enterprise collaboration. Int. J. Adv. Manuf. Technol. 36(1-2), 205–212 (2008)
Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). doi:10.1109/TIT.1982.1056489
Macqueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
Homem-de Mello, T., Bayraksan, G.: Monte carlo sampling-based methods for stochastic optimization. Manuscript, under review for Surveys in Operations Research and Management Science. Preprint available at Optimization Online (http://www.optimization-online.org) (2013)
Metcalfe, R., Boggs, D.: Ethernet: distributed packet switching for local computer networks. Communications of the ACM 19(7) (1976)
Metropolis, N., Ulam, S.: The Monte Carlo Method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)
Milligan, G., Cooper, M.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2), 159–179 (1985). doi:10.1007/BF02294245
Mocicki, J., Brochu, F., Ebke, J., Egede, U., Elmsheuser, J., Harrison, K., Jones, R., Lee, H., Liko, D., Maier, A., Muraru, A., Patrick, G., Pajchel, K., Reece, W., Samset, B., Slater, M., Soroko, A., Tan, C., van der Ster, D., Williams, M.: Ganga: A tool for computational-task management and easy access to grid resources. Computer Physics Communications 180(11), 2303–2316 (2009). doi:10.1016/j.cpc.2009.06.016 http://www.sciencedirect.com/science/article/pii/S0010465509001970
Neoh, S., Morad, N., Lim, C., Abdul Aziz, Z.: A Layered-Encoding Cascade Optimization Approach to Product-Mix Planning in High-Mix-Low-Volume Manufacturing. IEEE Trans. Syst. Man Cybern. Syst. Hum. 40(1), 133–146 (2010)
Oinn, T., Addis, M.J., Ferris, J., Marvin, D.J., Senger, M., Carver, T., Greenwood, M., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows pp. 3045–3054 (2004)
Pidd, M.: Computer Simulation in Management Science, 4th edn. John Wiley, New York (1998)
Shapiro, A.: Monte carlo simulation approach to stochastic programming. In: Proceedings of the 33nd conference on Winter simulation, pp. 428–431. IEEE Computer Society (2001)
Shapiro, A.: Stochastic programming approach to optimization under uncertainty. Math. Program. 112(1), 183–220 (2007). doi:10.1007/s10107-006-0090-4
Shapiro, B.P.: Can marketing and manufacturing co-exist. Harv. Bus. Rev. 55(5), 104 (1977)
Sirmakessis, S., Markellos, K., Markellou, P., Mayritsakis, G., Perdikouri, K., Tsakalidis, A., Panagopoulou, G.: STING: Evaluation of Scientific & Technological Innovation and Progress in Europe Through Patents. In: 1st STING User-Focus Group Meeting. Lausanne (2001)
Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor: a distributed job scheduler. MIT Press, Cambridge (2002)
Thain, D., Tannenbaum, T., Livny, M.: How to measure a large open-source distributed system. Concurrency and Computation: Practice and Experience (2006)
Tierney, B., Gunter, D., Schopf, J.: The cedps troubleshooting architecture and deployment on the open science grid. J. Phys. Conf. Ser. 78(012), 075 (2007)
Trigueros-Preciado, S., Pérez-González, D., Solana-González, P.: Cloud computing in industrial smes: identification of the barriers to its adoption and effects of its application. Electron. Mark. 23(2), 105–114 (2013)
Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling e-science applications on global data grids. Concurr. Comp.-Pract. E 18(6), 685–699 (2006)
Wang, X., Schulzrinne, H., Kandlur, D.: Measurement and analysis of ldap performance. IEEE/ACM Trans. Networking 16(1), 232–243 (2008)
Wets, R.: Stochastic programming: Solution techniques and approximation schemes. Springer (1983)
Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: Strategic vision and state-of-the-art. J. Manuf. Syst. (2013). Available at: http://www.sciencedirect.com/science/article/piiS
Xu, X.: From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 28(1), 75–86 (2012)
Yeo, C.S., Buyya, R.: Pricing for utility-driven resource management and allocation in clusters. Int. J. High Perform C 21(4), 405–418 (2007)
Yu, J., Buyya, R.: A novel architecture for realizing grid workflow using tuple spaces. In: Proceedings of the 5th International Workshop on Grid Computing (GRID 2004), 8 November 2004, pp 119–128. IEEE Computer Society, Pittsburgh (2004)
Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. ACM Sigmod Record 34(3), 49 (2005)
Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. Journal of Grid Computing 3(3), 171–200 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Carvalho, D., de Souza, L.R., Barbastefano, R.G. et al. Stochastic Product-Mix: A Grid Computing Industrial Application. J Grid Computing 13, 293–304 (2015). https://doi.org/10.1007/s10723-015-9325-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10723-015-9325-z