Skip to main content

Advertisement

Log in

A Two-Phase Energy-Aware Scheduling Approach for CPU-Intensive Jobs in Mobile Grids

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The profusion of mobile devices over the world and their evolved computational capabilities promote their inclusion as resource providers in traditional Grid environments. However, their efficient exploitation requires adapting current schedulers to operate with computing capabilities limited by energy supply and mobile devices that cannot be assumed to be dedicated, among other concerns. We propose a two-phase scheduling approach for running CPU-intensive jobs on mobile devices that combines novel energy-aware criteria with job stealing techniques. The approach was evaluated through an event-based simulator that uses battery consumption profiles extracted from real mobile devices. CPU usage derived from non-Grid processes was also modelled. For evaluating the first phase we compared the number of finalized jobs by all energy-aware criteria, while for the second phase we analyzed the performance boost introduced by job stealing. While the best first phase criteria finalized up to 90 % of submitted jobs, job stealing increased this percentage by up to 9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huynh, D., Knezevic, D., Peterson, J., Patera, A.: High-fidelity real-time simulation on deployed platforms. Comput. Fluids 43(1), 74–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ryabinin, K., Chuprina, S.: Adaptive scientific visualization system for desktop computers and mobile devices. Procedia Computer Science 18(0), 722–731 (2013)

    Article  Google Scholar 

  3. Shiraz, M., Gani, A., Shamim, A., Khan, S., Ahmad, R.: Energy efficient computational offloading framework for mobile cloud computing. Journal of Grid Computing 13(1), 1–18 (2015)

    Article  Google Scholar 

  4. Khan, A.u.R., Othman, M., Khan, A., Abid, S., Madani, S.: Mobibyte: An application development model for mobile cloud computing. Journal of Grid Computing, 1–24 (2015)

  5. Rodriguez, J.M., Mateos, C., Zunino, A.: Are smartphones really useful for scientific computing?. Lect. Notes Comput. Sci 7547, 38–47 (2012)

    Article  Google Scholar 

  6. Karan, O., Bayraktar, C., Gümüşkaya, H., Karlik, B.: Diagnosing diabetes using neural networks on small mobile devices. Expert Syst. Appl. 39(1), 54–60 (2012)

    Article  Google Scholar 

  7. Rodriguez, J.M., Mateos, C., Zunino, A.: Energy-efficient job stealing for cpu-intensive processing in mobile devices. Computing 96(2), 87–117 (2014)

    Article  MATH  Google Scholar 

  8. Rodriguez, J.M., Zunino, A., Campo, M.: Mobile Grid Seas: Simple Energy-Aware Scheduler. In: 3Rd High-Performance Computing Symposium. 39Th JAIIO (2010)

  9. Ghosh, P., Das, S.K.: Mobility-aware cost-efficient job scheduling for single-class grid jobs in a generic mobile grid architecture. Futur. Gener. Comput. Syst. 26(8), 1356–1367 (2010)

    Article  Google Scholar 

  10. Rodriguez, J.M., Zunino, A., Campo, M.: Introducing mobile devices into grid systems: a survey. International Journal of Web and Grid Services 7(1), 1–40 (2011)

    Article  Google Scholar 

  11. Li, C., Li, L.: Tradeoffs between energy consumption and qos in mobile grid. J. Supercomput. 55, 367–399 (2011)

    Article  Google Scholar 

  12. Aron, J.: Harness unused smartphone power for a computing boost. New Scientist, 215 (2880)

  13. Li, W., Wu, J., Zhang, Q., Hu, K., Li, J.: Trust-driven and qos demand clustering analysis based cloud workflow scheduling strategies. Clust. Comput., 1–18 (2014)

  14. Callou, G., Maciel, P., Tavares, E., Andrade, E., Nogueira, B., Araujo, C., Cunha, P.: Energy consumption and execution time estimation of embedded system applications. Microprocess. Microsyst. 35(4), 426–440 (2011)

    Article  Google Scholar 

  15. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time problem – overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008)

    Article  Google Scholar 

  16. Serrano, P., de la Oliva, A., Patras, P., Mancuso, V., Banchs, A.: Greening wireless communications: Status and future directions. Comput. Commun. 35(14), 1651–1661 (2012)

    Article  Google Scholar 

  17. Arroqui, M., Mateos, C., Machado, C., Zunino, A.: RESTful web services improve the efficiency of data transfer of a whole-farm simulator accessed by android smartphones. Comput. Electron. Agric. 87(0), 14–18 (2012)

    Article  Google Scholar 

  18. Thiagarajan, N., Aggarwal, G., Nicoara, A., Boneh, D., Singh, J.P.. In: Proceedings of the 21St International Conference on World Wide Web, WWW’12. Who Killed My Battery?: Analyzing Mobile Browser Energy Consumption, pp. 41–50. ACM, New York (2012)

    Chapter  Google Scholar 

  19. Mahapatra, R., Domenico, A.D., Gupta, R., Strinati, E.C.: Green framework for future heterogeneous wireless networks. Comput. Netw. 57(6), 1518–1528 (2013)

    Article  Google Scholar 

  20. Nicolaos, A., Vasileios, K., George, A., Harris, M., Angeliki, K., Costas, G.: A data locality methodology for matrix-matrix multiplication algorithm. J. Supercomput. 59, 830–851 (2012)

    Article  Google Scholar 

  21. Hermelin, D., Rawitz, D., Rizzi, R., Vialette, S.: The minimum substring cover problem. Information and Computation/information and Control - IANDC 206, 1303–1312 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Baron, R., Lioubashevski, O., Katz, E., Niazov, T., Willner, I.: Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. Angew. Chem. Int. Ed. 45, 1572–1576 (2006)

    Article  Google Scholar 

  23. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: Proceedings of the 8th international conference on Mobile systems, applications, and services, ACM, pp. 179–194 (2010)

  24. Busching, F., Schildt, S., Wolf, L.: Droidcluster: Towards smartphone cluster computing – the streets are paved with potential computer clusters. In: 2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 114–117 (2012)

  25. Rodriguez, A.V., Mateos, C., Zunino, A.: Mobile Devices-Aware Refactorings for Scientific Computational Kernels. In: 13Th Argentine Symposium on Technology, AST 2012 (2012). 41Th JAIIO

  26. Li, C., Li, L.: A multi-agent-based model for service-oriented interaction in a mobile grid computing environment. Pervasive and Mobile Computing 7(2), 270–284 (2011)

    Article  Google Scholar 

  27. Chunlin, L., Layuan, L.: Exploiting composition of mobile devices for maximizing user qos under energy constraints in mobile grid. Inf. Sci. 279(0), 654–670 (2014)

    Article  Google Scholar 

  28. Shah, S.C.: Energy efficient and robust allocation of interdependent tasks on mobile ad hoc computational grid, Concurrency and Computation: Practice and Experience

  29. Wei, X., Fan, J., Lu, Z., Ding, K.: Application scheduling in mobile cloud computing with load balancing. J. Appl. Math (2013)

  30. Shah, S., Park, M.S.: An energy-efficient resource allocation scheme for mobile ad hoc computational grids. Journal of Grid Computing 9(3), 303–323 (2011)

    Article  Google Scholar 

  31. Loke, S.W., Napier, K., Alali, A., Fernando, N., Rahayu, W.: Mobile computations with surrounding devices: Proximity sensing and multilayered work stealing. ACM Trans. Embed. Comput. Syst. 14(2), 22:1–22:25 (2015)

    Article  Google Scholar 

  32. Li, B., Pei, Y., Wu, H., Shen, B.: Heuristics to allocate high-performance cloudlets for computation offloading in mobile ad hoc clouds. J. Supercomput., 1–28 (2015)

  33. Shi, T., Yang, M., Jiang, Y., Li, X., Lei, Q.: An Adaptive Probabilistic Scheduler for Offloading Time-Constrained Tasks in Local Mobile Clouds. In: Ubiquitous and Future Networks (ICUFN), vol. 2014 Sixth International Conf on, pp. 243–248. IEEE (2014)

  34. Castro, M.C., Kassler, A.J., Chiasserini, C.-F., Casetti, C., Korpeoglu, I.: Peer-to-peer overlay in mobile ad-hoc networks, pp. 1045–1080. Springer (2010)

  35. Macone, D., Oddi, G., Pietrabissa, A.: Mq-routing: Mobility-, gps- and energy-aware routing protocol in MANETs for disaster relief scenarios. Ad Hoc Networks 11(3), 861–878 (2013)

    Article  Google Scholar 

  36. Torres, R., Mengual, L., Marban, O., Eibe, S., Menasalvas, E., Maza, B.: A management ad hoc networks model for rescue and emergency scenarios. Expert Syst. Appl. 39(10), 9554–9563 (2012)

    Article  Google Scholar 

  37. van Nieuwpoort, R., Wrzesinska, G., Jacobs, C.J.H., Bal, H.E.: Satin: A high-level and efficient grid programming model. ACM Trans. Program. Lang. Syst. 32(3)

  38. Xu, H., Yang, B.: An incentive-based heuristic job scheduling algorithm for utility grids. Futur. Gener. Comput. Syst. 49(0), 1–7 (2015)

    Article  Google Scholar 

  39. Hu, Y., Yurkovich, S.: Battery cell state-of-charge estimation using linear parameter varying system techniques. J. Power. Sources 198(0), 338–350 (2012)

    Article  Google Scholar 

  40. Mednieks, Z., Dornin, L., Meike, G.B., Nakamura, M.: Programming Android, 2nd Edn. Java Programming for the New Generation of Mobile Devices, O’Reilly Media (2012)

  41. Shen, W.X., Chan, C.C., Lo, E.W.C., Chau, K.T.: Estimation of battery available capacity under variable discharge currents. J. Power Sources 103(2), 180–187 (2002)

    Article  Google Scholar 

  42. Khalaj, A., Lutfiyya, H., Perry, M.: The Proxy-Based Mobile Grid. In: Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobile Wireless Middleware, Operating Systems, and Applications, Vol. 48 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 59–69. Springer, Berlin (2010)

  43. Calheiros, R.N., Ranjan, R., Beloglazov, A., de Rose, C.A.F., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 41(1), 23–50 (2011)

    Google Scholar 

  44. Rice, A., Hay, S.: Measuring Mobile Phone Energy Consumption for 802.11 Wireless Networking. Pervasive and Mobile Computing 6(6), 593–606 (2010)

    Article  Google Scholar 

  45. Takeno, K., Ichimura, M., Takano, K., Yamaki, J.: Influence of cycle capacity deterioration and storage capacity deterioration on li-ion batteries used in mobile phones. J. Power. Sources 142(1-2), 298–305 (2005)

    Article  Google Scholar 

  46. Pacini, E., Mateos, C., García Garino, C.: Distributed job scheduling based on swarm intelligence: A survey. Comput. Electr. Eng. 40(1), 252–269 (2014). 40th-year commemorative issue

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Hirsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirsch, M., Rodríguez, J.M., Mateos, C. et al. A Two-Phase Energy-Aware Scheduling Approach for CPU-Intensive Jobs in Mobile Grids. J Grid Computing 15, 55–80 (2017). https://doi.org/10.1007/s10723-016-9387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-016-9387-6

Keywords

Navigation