Skip to main content
Log in

Orchestrating the Deployment of High Availability Services on Multi-zone and Multi-cloud Scenarios

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Cloud computing has become one of the most used platforms to deploy High Availability (HA) solutions for its flexibility, on-demand provisioning, and elasticity. However, although many providers offer specific tools for HA support, like floating IPs and load balancing, the analysis of downtime at public cloud providers in previous years shows that a combination of several availability zones or cloud providers is required to achieve “five nines” availability. Besides reducing the chances of failure, the use of multiple availability zones and geographically distributed clouds may additionally bring performance and cost benefits. However, the orchestration, in an efficient and adaptive way, of HA multi-tier services in multi-zone and multi-cloud environments brings several challenges. This paper presents a novel orchestration method to automate the deployment and management of high availability multi-tier services on multiple availability zones, by introducing new affinity mechanisms, such as VM to location and role to role affinity/anti-affinity rules. Furthermore, we also extend this solution to multi-cloud scenarios, based on the replication or distribution of the service components among various clouds, along with their corresponding affinity rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aditya, B., Juhana, T.: A high availability (HA) MariaDB Galera Cluster across data center with optimized WRR scheduling algorithm of LVS – TUN. In: 9th International Conference on Telecommunication Systems Services and Applications (TSSA), pp. 1–5 (2015)

  2. Attebury, G., Ramamurthy, B.: Router and Firewall redundancy with OpenBSD and CARP. In: IEEE International Conference on Communications, pp. 146–151 (2006)

  3. Barr, J., Narin, A., Varia, J.: Building Fault-Tolerant Applications on AWS. Amazon Web Services White Paper http://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.pdf (2011)

  4. Birman, K., van Renesse, R., Vogels, W.: Adding high availability and autonomic behavior to Web services. In: 26th International Conference on Software Engineering, pp. 17–26 (2004)

  5. Bleja, M.: Overview and implementing SQL server high availability solutions. Inf. Syst. Manag. 5(4), 463–472 (2016)

    Google Scholar 

  6. Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task scheduling strategies for workflow-based applications in grids. IEEE Int. Symp. Clust. Comput. Grid (CCGrid 2005). 2, 759–767 (2005)

    Google Scholar 

  7. Brandic, I., Pllana, S., Benkner, S.: High-level composition of QoS-aware Grid workflows: an approach that considers location affinity. In: Workshop on Workflows in Support of Large-Scale Science, in conjunction with the 15th IEEE International Symposium on High Performance Distributed Computing, pp. 1–10 (2006)

  8. Brenner, S., Garbers, B., Kapitza, R.: Adaptive and scalable high availability for infrastructure clouds. In: 14th International Conference on Distributed Applications and Interoperable Systems, vol. 8460, pp. 16–30. LNCS (2014)

  9. Chaurasiya, V., Dhyani, P., Munot, S.: Linux highly available (HA) fault-tolerant servers. In: 10th International Conference on Information Technology (ICIT ’07), pp. 223–226 (2007)

  10. Cuomo, A., et al.: An SLA-based broker for cloud infrastructures. J. Grid Comput. 11(1), 1–25 (2013)

    Article  Google Scholar 

  11. Drake, S., et al.: Architecture of highly available databases. First Int. Serv. Availab. Symp., ISAS 2004, 1–16 (2004)

    Google Scholar 

  12. Endo, P.T. et al.: High availability in clouds: systematic review and research challenges. J. Cloud Comput. 5(1), 5–16 (2016)

    Article  Google Scholar 

  13. Espling, D., Larsson, L., Li, W., Tordsson, J., Elmroth, E.: Modeling and placement of cloud services with internal structure. IEEE Trans. Cloud Comput. 4(4), 429–439 (2016)

    Article  Google Scholar 

  14. Ferrer, A., et al.: Optimis: A holistic approach to cloud service provisioning. Future Gener. Comput. Syst. 28(1), 66–77 (2012)

    Article  Google Scholar 

  15. Garcia-Molina, H., Kogan, B.: Achieving high availability in distributed databases. IEEE Trans. Softw. Eng. 14(7), 886–896 (1988)

    Article  MathSciNet  Google Scholar 

  16. Grozev, N., Buyya, R.: Multi-cloud provisioning and load distribution for three-tier applications. ACM Trans. Auton. Adapt. Syst. 9(3), 1–21 (2014)

    Article  Google Scholar 

  17. Grozev, N., Buyya, R.: Regulations and latency-aware load distribution of web applications in Multi-Clouds. J. Supercomput. 72(8), 3261–3280 (2016)

    Article  Google Scholar 

  18. Gulati, A., et al.: VMware distributed resource management: design, implementation, and lessons learned. VMware Tech. J. 1(1) (2012)

  19. Karoczkai, K., Kertesz, A., Kacsuk, P.: A meta-brokering framework for science gateways. J. Grid Comput. 14(4), 687–703 (2016)

    Article  Google Scholar 

  20. Keller, G., Lutfiyya, H.: Dynamic management of applications with constraints in virtualized data centres. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management, pp. 330–338 (2015)

  21. Kumar, S., Rana, D.S.: Various dynamic load balancing algorithms in cloud environment: a survey. Int. J. Comput. Appl. 129(6), 14–19 (2015)

    Google Scholar 

  22. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Scheduling strategies for optimal service deployment across multiple clouds. Future Gener. Comput. Syst. 29(6), 1431–1441 (2013)

    Article  Google Scholar 

  23. Marcus, E., Stern, H.: Blueprints for High Availability: Designing Resilient Distributed Systems, 2nd edn. Wiley, USA (2003)

    Google Scholar 

  24. Méndez Muñoz, V., et al.: Rafhyc: an architecture for constructing resilient services on federated hybrid clouds. J. Grid Comput. 11(4), 753–770 (2013)

    Article  Google Scholar 

  25. Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: An elasticity model for high throughput computing clusters. J. Parallel Distrib. Comput. 71(6), 750–757 (2011)

    Article  Google Scholar 

  26. Morad, S.: Amazon virtual private cloud connectivity options. Amazon Web Services Documentation https://media.amazonwebservices.com/AWSAmazonVPCConnectivityOptions.pdf (2014)

  27. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: IaaS cloud architecture: from virtualized data centers to federated cloud infrastructures. Computer 45(12), 65–72 (2012)

    Article  Google Scholar 

  28. Moreno-Vozmediano, R., et al.: BEACON: A cloud network federation framework. In: FedCloudNet Workshop, European Conference on Service-Oriented and Cloud Computing 2015. Communications in Computer and Information Science, vol. 567, pp. 325–337 (2016)

  29. Moreno-Vozmediano, R., Montero, R.S., Huedo, E., Llorente, I.M.: Implementation and provisioning of federated networks in hybrid clouds. J. Grid Comput. 15(2), 141–160 (2017)

    Article  Google Scholar 

  30. Nabi, M., Toeroe, M., Khendek, F.: Availability in the cloud: State of the art. J. Netw. Comput. Appl. 60, 54–67 (2016)

    Article  Google Scholar 

  31. Nadas, S. (ed.): Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. IETF (2010)

  32. Nguyen, T.A., Kim, D.S., Park, J.S.: Availability modeling and analysis of a data center for disaster tolerance. Future Gener. Comput. Syst. 56, 27–50 (2016)

    Article  Google Scholar 

  33. Nuaimi, K.A., Mohamed, N., Nuaimi, M.A., Al-Jaroodi, J.: A survey of load balancing in cloud computing: challenges and algorithms. In: 2nd Symposium on Network Cloud Computing and Applications, pp. 137–142 (2012)

  34. Paraiso, F., Merle, P., Seinturier, L.: soCloud: a service-oriented component-based PaaS for managing portability, provisioning, elasticity, and high availability across multiple clouds. Computing 98 (5), 539–565 (2016)

    Article  MathSciNet  Google Scholar 

  35. Petcu, D.: Consuming resources and services from multiple clouds from terminology to cloudware support. J. Grid Comput. 12(2), 321–345 (2014)

    Article  Google Scholar 

  36. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource management for high throughput computing. In: 7th International Symposium on High Performance Distributed Computing, pp. 140–146 (1998)

  37. Rilling, L., Sivasubramanian, S., Pierre, G.: High availability and scalability support for web applications. 2007 International Symposium on Applications and the Internet (2007)

  38. Robertson, A.: Linux-HA heartbeat system design. In: 4th annual Linux Showcase andamp; Conference (ALS’00), vol. 4 (2000)

  39. Rochwerger, B., et al.: The reservoir model and architecture for open federated cloud computing. IBM J. Res. Dev. 53(4), 535–545 (2009)

    Article  Google Scholar 

  40. Shivakumar, S.K.: Ensuring high availability for your enterprise web applications. In: Architecting High Performing, Scalable and Available Enterprise Web Applications (Chapter 2), pp. 59–99. Morgan Kaufmann (2015)

  41. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Virtual infrastructure management in private and hybrid clouds. Internet Comput. 13(5), 14–22 (2010)

    Article  Google Scholar 

  42. Stabler, G., Rosen, A., Goasguen, S., Wang, K.C.: Elastic IP and security groups implementation using OpenFlow. In: 6th International Workshop on Virtualization Technologies in Distributed Computing Date (VTDC) (2012)

  43. Testa, S., Chou, W.: The distributed data center: front-end solutions. IT Prof. 6(3), 26–32 (2004)

    Article  Google Scholar 

  44. Toeroe, M., Tam, F.: Service Availability: Principles and Practice. Wiley, USA (2012)

    Book  Google Scholar 

  45. Trihinas, D., Pallis, G., Dikaiakos, M.: Monitoring Elastically Adaptive Multi-Cloud Services. IEEE Transactions on Cloud Computing, in press (2015)

  46. Woo, S.S., Mirkovic, J.: Optimal application allocation on multiple public clouds. Comput. Netw. 68, 138–148 (2014)

    Article  Google Scholar 

  47. Xiong, H., Fowley, F., Pahl, C.: A database-specific pattern for multi-cloud high availability and disaster recovery. In: FedCloudNet Workshop, European Conference Service-Oriented and Cloud Computing 2015, pp. 374–388. Advances in Service-Oriented and Cloud Computing (2016)

  48. Yangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: CompatibleOne: The open source cloud broker. J. Grid Comput. 12(1), 93–109 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union’s Horizon 2020 Research and Innovation Program under the Grant Agreement No 644048 (BEACON), and by Ministerio de Economía, Industria y Competitividad of Spain through research grant TIN2015-65469-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Huedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Vozmediano, R., Montero, R.S., Huedo, E. et al. Orchestrating the Deployment of High Availability Services on Multi-zone and Multi-cloud Scenarios. J Grid Computing 16, 39–53 (2018). https://doi.org/10.1007/s10723-017-9417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-017-9417-z

Keywords

Navigation