Skip to main content

Advertisement

Log in

A High Reliable Computing Offloading Strategy Using Deep Reinforcement Learning for IoVs in Edge Computing

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

In view of the serious problems of increasing delay energy consumption and decreasing service quality caused by complex network state and massive computing data in Internet of vehicles (IOT), a high reliable computing offloading strategy based on edge computing is proposed in this paper. Firstly, the architecture of the Internet of vehicles is designed. The real-time business of terminal vehicles is directly unloaded to the mobile edge computing (MEC) equipment for processing, which reduces the high transmission delay of data on the core network. The combination of software defined network (SDN) and MEC is used to provide flexible network control and centralized resource management for the Internet of vehicles. Then, according to the computing model, communication model and privacy protection model, a joint computing offload and resource allocation strategy is proposed. Finally, taking the shortest time delay and minimum computing cost as the optimization objectives, Q-learning is used to solve the problem to achieve the optimization of unloading strategy, that is, the optimal allocation of communication and computing resources, and the system security is the best. Based on the Matlab simulation platform, the system model is built to carry out the experimental test. The results show that compared with other strategies, the unloading strategy can achieve fast convergence and reduce the system overhead effectively, and the computation complexity, data size and the number of computation nodes have the least impact on the delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, Y., Xu, D., Maharjan, S., Qiao, G., Zhang, Y.: Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Wirel. Commun. 26(3), 12–18 (2019)

    Article  Google Scholar 

  2. Oliveira, D., Brinkmann, A., Rosa, N., Maciel, P.: Performability evaluation and optimization of workflow applications in cloud environments. J. Grid. Comput. 17, 749–770 (2019)

    Article  Google Scholar 

  3. Xu, X., Xue, Y., Qi, L., Yuan, Y., Zhang, X., Umer, T., Wan, S.: An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Futur. Gener. Comput. Syst. 96(07), 89–100 (2019)

    Article  Google Scholar 

  4. Inaltekin, H., Gorlatova, M., Chiang, M.: Virtualized control over fog: interplay between reliability and latency. IEEE Internet Things J. 5(6), 5030–5045 (2018)

    Article  Google Scholar 

  5. Wu, C., Chen, X., Yoshinaga, T., Ji, Y., Zhang, Y.: Integrating licensed and unlicensed Spectrum in the internet of vehicles with Mobile edge computing. IEEE Netw. 33(4), 48–53 (2019)

    Article  Google Scholar 

  6. Feng, J., Liu, Z., Wu, C., et al.: Mobile edge computing for the internet of vehicles: offloading framework and job scheduling. IEEE Veh. Technol. Mag. 14(1), 28–36 (2019)

    Article  Google Scholar 

  7. Cai, Z., Lee, I., Chu, S.C., et al.: SimSim: a service discovery method preserving content similarity and spatial similarity in P2P Mobile cloud. J. Grid. Comput. 17(1), 749–770 (2019)

    Article  Google Scholar 

  8. Nogueira, B., Tavares, F.W., Matar, P.: Performability evaluation of a cloud-based disaster recovery solution for IT environments. J. Grid. Comput. 17(3), 603–621 (2019)

    Article  Google Scholar 

  9. Hammoud, A., Sami, H., Mourad, A.: AI, Blockchain, and vehicular edge computing for smart and secure IoV: challenges and directions. IEEE Intern. Things Magazine. 3(2), 68–73 (2020)

    Article  Google Scholar 

  10. Zhuang, W., Ye, Q., Lyu, F., Cheng, N., Ren, J.: SDN/NFV-empowered future IoV with enhanced communication, computing, and caching. Proc. IEEE. 108(2), 274–291 (2020)

    Article  Google Scholar 

  11. Qiao, G., Leng, S., Zhang, K., He, Y.: Collaborative task offloading in vehicular edge multi-access networks. IEEE Commun. Mag. 56(8), 48–54 (2018)

    Article  Google Scholar 

  12. Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Futur. Gener. Comput. Syst. 87, 278–289 (2018)

    Article  Google Scholar 

  13. Sharmin, Z., Malik, A.W., Rahman, A.U., et al.: Toward sustainable micro-level fog-federated load sharing in internet of vehicles. IEEE Internet Things J. 7(4), 3614–3622 (2020)

    Article  Google Scholar 

  14. Wang, X., Wei, X., Wang, L.: A deep learning based energy-efficient computational offloading method in internet of vehicles. China Commun. 16(003), 81–91 (2019)

    Google Scholar 

  15. He, X., Jin, R., Dai, H.: Peace: privacy-preserving and cost-efficient task offloading for Mobile-edge computing. IEEE Trans. Wirel. Commun. 19(3), 1814–1824 (2020)

    Article  Google Scholar 

  16. He, Y., Ma, L., Zhou, R., Huang, C., Li, Z.: Online task allocation in Mobile cloud computing with budget constraints. Comput. Netw. 151(03), 42–51 (2019)

    Article  Google Scholar 

  17. Nguyen, V.D., Khanh, T.T., Tran, N.H., et al.: Joint offloading and IEEE 802.11p-based contention control in vehicular edge computing. IEEE Wirel. Commun. Lett. 9(7), 1014–1018 (2020)

    Google Scholar 

  18. Chen, W., Wang, D., Li, K.: Multi-user multi-task computation offloading in green Mobile edge cloud computing. IEEE Trans. Serv. Comput. 12(5), 726–738 (2019)

    Article  Google Scholar 

  19. Zhang, Q., Gui, L., Hou, F., Chen, J., Zhu, S., Tian, F.: Dynamic task offloading and resource allocation for Mobile edge computing in dense cloud RAN. IEEE Internet Things J. 7(4), 3282–3299 (2020)

    Article  Google Scholar 

  20. Wen, Z., Yang, K., Liu, X., Li, S., Zou, J.: Joint offloading and computing Design in Wireless Powered Mobile-Edge Computing Systems with full-duplex relaying. IEEE Access. 6(99), 72786–72795 (2018)

    Article  Google Scholar 

  21. Li, C., Chen, W., Tang, J., Luo, Y.: Radio and computing resource allocation with energy harvesting devices in mobile edge computing environment. Comput. Commun. 145(09), 193–202 (2019)

    Article  Google Scholar 

  22. Wang, Y., Lang, P., Tian, D., Zhou, J., Duan, X., Cao, Y., Zhao, D.: A game-based computation offloading method in vehicular multi-access edge computing networks. IEEE Internet Things J. 7(6), 4987–4996 (2020)

    Article  Google Scholar 

  23. Dinh, T.Q., La, Q.D., Quek, T.Q.S., et al.: Learning for computation offloading in Mobile edge computing. IEEE Trans. Commun. 66(12), 6353–6367 (2018)

    Article  Google Scholar 

  24. Shu, C., Zhao, Z., Han, Y., Min, G., Duan, H.: Multi-user offloading for edge computing networks: a dependency-aware and latency-optimal approach. IEEE Internet Things J. 7(3), 1678–1689 (2020)

    Article  Google Scholar 

  25. Cao, X., Wang, F., Xu, J., et al.: Joint computation and communication cooperation for energy-efficient Mobile edge computing. IEEE Internet Things J. 6(3), 4188–4200 (2019)

    Article  Google Scholar 

  26. Zhang, T., Xu, Y., Loo, J., Yang, D., Xiao, L.: Joint computation and communication design for UAV-assisted Mobile edge computing in IoT. IEEE Trans. Ind. Inform. 16(8), 5505–5516 (2020)

    Article  Google Scholar 

  27. Pham, Q.V., Le, L.B., Chung, S.H., et al.: Mobile edge computing with wireless backhaul: joint task offloading and resource allocation. IEEE Access. 7(99), 16444–16459 (2019)

    Article  Google Scholar 

  28. Chen, Y., Zhang, N., Zhang, Y., Chen, X.: Dynamic computation offloading in edge computing for internet of things. IEEE Internet Things J. 6(3), 4242–4251 (2019)

    Article  Google Scholar 

  29. Wang, J., Hu, J., Min, G., Zhan, W., Ni, Q., Georgalas, N.: Computation offloading in multi-access edge computing using a deep sequential model based on reinforcement learning. IEEE Commun. Mag. 57(5), 64–69 (2019)

    Article  Google Scholar 

  30. Liu, Y., Wu, J., Li, J., Yang, W., Chen, H., Li, G.: ISRF: interest semantic reasoning based fog firewall for information-centric internet of vehicles. IET Intell. Transp. Syst. 13(6), 975–982 (2019)

    Article  Google Scholar 

  31. Huang, L., Feng, X., Zhang, C., et al.: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digit. Commun. Netw. 1, 10–17 (2019)

    Article  Google Scholar 

  32. Guo, H., Liu, J.: UAV-enhanced intelligent offloading for internet of things at the edge. IEEE Trans. Ind. Inform. 16(4), 2737–2746 (2020)

    Article  Google Scholar 

  33. Kang, J., Yu, R., Huang, X., Wu, M., Maharjan, S., Xie, S., Zhang, Y.: Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J. 6(3), 4660–4670 (2019)

    Article  Google Scholar 

  34. Dai, Y., Xu, D., Maharjan, S., Zhang, Y.: Joint load balancing and offloading in vehicular edge computing and networks. IEEE Internet Things J. 6(3), 4377–4387 (2019)

    Article  Google Scholar 

  35. Shao, Y., Li, C., Fu, Z., Jia, L., Luo, Y.: Cost-effective replication management and scheduling in edge computing. J. Netw. Comput. Appl. 129(03), 46–61 (2019)

    Google Scholar 

  36. Zhou, F., Wu, Y., Hu, R.Q., et al.: Computation rate maximization in UAV-enabled wireless powered Mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018)

    Article  Google Scholar 

  37. Kanwal, M., Malik, A.W., Rahman, A.U., Mahmood, I., Shahzad, M.: Sustainable vehicle-assisted edge computing for big data migration in smart cities. IEEE Internet Things J. 7(3), 1857–1871 (2020)

    Article  Google Scholar 

  38. Zhou, L., Yu, L., Du, S., et al.: Achieving differentially private location privacy in edge-assistant connected vehicles. IEEE Internet Things J. 6(3), 4472–4481 (2019)

    Article  Google Scholar 

  39. Wang, Q., Dai, H.N., Wang, Q., et al.: On connectivity of UAV-assisted data Acquisition for Underwater Internet of things. IEEE Internet Things J. 7(6), 5371–5385 (2020)

    Article  Google Scholar 

  40. Saleem, U., Liu, Y., Jangsher, S., Tao, X., Li, Y.: Latency minimization for D2D-enabled partial computation offloading in Mobile edge computing. IEEE Trans. Veh. Technol. 69(99), 4472–4486 (2020)

    Article  Google Scholar 

Download references

Funding

This work was supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP, No. 201802004).

Author information

Authors and Affiliations

Authors

Contributions

The main idea of this paper is proposed by Kun Wang. The algorithm design and experimental environment construction are jointly completed by Kun Wang and Xiaofeng Wang. The experimental verification was completed by all the three authors. The writing of the article is jointly completed by Kun Wang and Xiaofeng Wang. And the writing guidance, English polish and funding project are completed by Xuan Liu.

Corresponding author

Correspondence to Kun Wang.

Ethics declarations

Competing Interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, X. & Liu, X. A High Reliable Computing Offloading Strategy Using Deep Reinforcement Learning for IoVs in Edge Computing. J Grid Computing 19, 15 (2021). https://doi.org/10.1007/s10723-021-09542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-021-09542-6

Keywords

Navigation