Skip to main content
Log in

Greening Duplication-Based Dependent-Tasks Scheduling on Heterogeneous Large-Scale Computing Platforms

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Low-cost and high-performance execution of nowadays computing-intensive applications will not be possible without large-scale heterogeneous computing platforms. The huge computing power of such platforms raises the problem of the electrical energy consumed by such platforms. One of the key issues to achieve high-performance in such platforms is task-scheduling. Among the heuristics-based compile-time dependent-task scheduling heuristics, duplication-based list scheduling heuristics give the earliest finish time of the application tasks. Unfortunately, due to the additional computing cost required by duplication, these heuristics consume more computing power that leads to more electrical energy consumption. Energy-efficiency and green-computing turn the attention to the need for new generations of energy-aware task-scheduling algorithms. This paper presents a duplication reduction mechanism that can be applied to any schedule produced by a duplication-based scheduling algorithm. The aims of the proposed mechanism are to keep the same finish time of the scheduled application tasks, to keep the lower-bound time-complexity of the heuristics-based dependent task scheduling algorithms, and to significantly reduce the energy consumed by task-duplication. The mechanism is called Green. Green was applied to four of the most-recent and well-known duplication-based list-scheduling algorithms. The experimental results based on computer simulation utilizing C# language for large sets of both randomly generated and three real-world applications graphs show that Green can significantly reduce the energy consumed by each algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Heynen, M.: Cluster Computing: Distributed Computing Architecture. CCreatespace Independent Publishing Platform, Scotts Valley (2016)

    Google Scholar 

  2. Magoulès, F., Pan, J., Teng, F.: Cloud Computing: Data-Intensive Computing and Scheduling. Chapman and Hall/CRC, Boca Raton (2016)

    Book  Google Scholar 

  3. Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet, E., Horner, N., Azevedo, I., Lintner, W.: United states data center energy usage report. Lawrence Berkeley National Laboratory, Tech. Rep. (2016)

  4. Lannoo, B., Lambert, S., Van Heddeghem, W., Pickavet, M., Kuipers, F., Koutitas, G., Niavis, H., Satsiou, A., Beck, M., Fischer, A., et al.: Overview of ict energy consumption. Network of Excellence in Internet Science: 1–59 (2013)

  5. Ganguly, S., Raje, S., Kumar, S., Sartor, D., Greenberg, S.: Accelerating energy efficiency in indian data centers: Final report for phase i activities. Lawrence Berkeley National Laboratory, Tech Rep. (2016)

  6. Gelenbe, E., Caseau, Y.: The impact of information technology on energy consumption and carbon emissions. Ubiquity 2015(June), 1 (2015)

    Article  Google Scholar 

  7. Shi, W., Wenisch, T.F.: Energy-efficient data centers. IEEE Internet Computing 21 (4), 6–7 (2017)

    Article  Google Scholar 

  8. Bolla, R., Davoli, F., Bruschi, R., Christensen, K., Cucchietti, F., Singh, S.: The potential impact of green technologies in next-generation wireline networks: is there room for energy saving optimization?. IEEE Commun. Mag. 49(8) (2011)

  9. Shuja, J., Madani, S.A., Bilal, K., Hayat, K., Khan, S.U., Sarwar, S.: Energy-efficient data centers. Computing 94(12), 973–994 (2012)

    Article  Google Scholar 

  10. Hagras, T., Janecek, J.: A fast compile-time task scheduling heuristic for homogeneous computing environments. Int. J. Comput. Appl. 12(2), 76 (2005)

    MATH  Google Scholar 

  11. Hagras, T., Janeček, J.: High-Performance Computing: Paradigm and Infrastructure, pp. 361–380. Wiley, Hoboken (2005). ch. Toward Fast and Efficient Compile-Time Task Scheduling in Heterogeneous Computing Systems

    Google Scholar 

  12. Lent, R.: Grid scheduling with makespan and energy-based goals. J. Grid Comput. 13 (4), 527–546 (2015). Online. Available: https://doi.org/10.1007/s10723-015-9349-4

    Article  Google Scholar 

  13. Singh, H., Singh, G.: Task scheduling in cluster computing environment. In: 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), pp. 316–321. IEEE (2015)

  14. Atef, A., Hagras, T., Mahdy, Y.B., Janecek, J.: Lower-bound complexity and high performance mechanism for scheduling dependent-tasks on heterogeneous grids. In: 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), pp. 1–7 (2018)

  15. Hagras, T., Janeček, J.: Static vs. dynamic list-scheduling performance comparison. Acta Polytechnica 6, 43 (2003)

    Google Scholar 

  16. Ullman, J.D.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)

    Article  MathSciNet  Google Scholar 

  17. Hagras, T., Janeček, J.: A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems. Parallel Comput. 31(7), 653–670 (2005)

    Article  Google Scholar 

  18. Jiang, Y.-S., Chen, W.-M.: Task scheduling in grid computing environments. In: Genetic and Evolutionary Computing, pp. 23–32. Springer (2014)

  19. Omara, F.A., Arafa, M.M.: Genetic algorithms for task scheduling problem. In: Foundations of Computational Intelligence, vol. 3, pp. 479–507. Springer (2009)

  20. Atef, A., Hagras, T., Mahdy, Y.B., Janeček, J.: Lower-bound complexity algorithm for task scheduling on heterogeneous grid. Computing 99(11), 1125–1145 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lee, Y., Zomaya, A.: A productive duplication-based scheduling algorithm for heterogeneous computing systems. High Performance Computing and Communications: 203–212 (2005)

  22. Bansal, S., Kumar, P., Singh, K.: Dealing with heterogeneity through limited duplication for scheduling precedence constrained task graphs. J. Parallel Distrib. Comput. 65(4), 479–491 (2005)

    Article  Google Scholar 

  23. Liu, Y.-x., Li, K.-l., Tang, Z., Li, K.-q.: Energy-aware schedulingwith reconstruction and frequency equalization on heterogeneous systems. Front. Inf. Technol. Electron. Eng. 16(7), 519–531 (2015)

    Article  Google Scholar 

  24. Jiang, J., Lin, Y., Xie, G., Fu, L., Yang, J.: Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system. J. Grid Comput. 15(4), 435–456 (2017). [Online]. Available: https://doi.org/10.1007/s10723-017-9391-5

    Article  Google Scholar 

  25. Ma, Y., Gong, B., Sugihara, R., Gupta, R.: Energy-efficient deadline scheduling for heterogeneous systems. J. Parallel Distrib. Comput. 72(12), 1725–1740 (2012)

    Article  Google Scholar 

  26. Ebrahimirad, V., Goudarzi, M., Rajabi, A.: Energy-aware scheduling for precedence-constrained parallel virtual machines in virtualized data centers. J. Grid Comput. 13(2), 233–253 (2015). Online. Available: https://doi.org/10.1007/s10723-015-9327-x

    Article  Google Scholar 

  27. Ghribi, C., Hadji, M., Zeghlache, D.: Energy efficient vm scheduling for cloud data centers: Exact allocation and migration algorithms. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 671–678. IEEE (2013)

  28. Lago, D.G.d., Madeira, E.R.M , Bittencourt, L.F.: Power-aware virtual machine scheduling on clouds using active cooling control and dvfs. In: Proceedings of the 9th International Workshop on Middleware for Grids, Clouds and e-Science, p. 2. ACM (2011)

  29. Zhang, Y., Cheng, X., Chen, L., Shen, H.: Energy-efficient tasks scheduling heuristics with multi-constraints in virtualized clouds. J. Grid Comput. 16(3), 459–475 (2018). Online. Available: https://doi.org/10.1007/s10723-018-9426-6

    Article  Google Scholar 

  30. Mei, J., Li, K., Li, K.: Energy-aware task scheduling in heterogeneous computing environments. Clust. Comput. 17(2), 537–550 (2014)

    Article  Google Scholar 

  31. Mei, J., Li, K.: Energy-aware scheduling algorithm with duplication on heterogeneous computing systems. In: Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing, pp. 122–129. IEEE Computer Society (2012)

  32. Yang, C.-H., Lee, P., Chung, Y.-C: Improving static task scheduling in heterogeneous and homogeneous computing systems. In: 2007 International Conference on Parallel Processing (ICPP 2007), pp. 45–45. IEEE (2007)

  33. Bacsó, G., Kis, T., Visegrádi, Á., Kertész, A., Németh, Z.: A set of successive job allocation models in distributed computing infrastructures. J. Grid Comput. 14(2), 347–358 (2016)

    Article  Google Scholar 

  34. Hagras, T., Atef, A., Mahdy, Y.B.: Lower-bound time-complexity greening mechanism for duplication-based scheduling on large-scale computing platforms. The Journal of Supercomputing. [Online]. Available: https://doi.org/10.1007/s11227-019-02982-8 (2019)

  35. Barzegar, B., Motameni, H., Movaghar, A.: Eatsdcd: a green energy-aware scheduling algorithm for parallel task-based application using clustering, duplication and dvfs technique in cloud datacenters. J. Intell. Fuzzy Syst. 36(6), 5135–5152 (2019)

    Article  Google Scholar 

  36. Liang, A., Pang, Y.: A novel, energy-aware task duplication-based scheduling algorithm of parallel tasks on clusters. Mathematical and Computational Applications 22(1), 2 (2017)

    Article  MathSciNet  Google Scholar 

  37. Maurya, A.K., Modi, K., Kumar, V., Naik, N.S., Tripathi, A.K.: Energy-aware scheduling using slack reclamation for cluster systems. Cluster Computing. [Online]. Available: https://doi.org/10.1007/s10586-019-02965-7 (2019)

  38. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel. Distrib. Syst. 13(3), 260–274 (2002)

    Article  Google Scholar 

  39. Olteanu, A., Marin, A.: Generation and evaluation of scheduling dags: How to provide similar evaluation conditions. Computer Science Master Research 1(1), 57–66 (2011)

    Google Scholar 

  40. Berriman, G., Good, J., Laity, A., Bergou, A., Jacob, J., Katz, D., Deelman, E., Kesselman, C., Singh, G., Su, M.-H., et al.: Montage: a grid enabled image mosaic service for the national virtual observatory. In: Astronomical Data Analysis Software and Systems (ADASS) XIII, vol. 314, p 593 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Hagras.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagras, T., Atef, A. & Mahdy, Y.B. Greening Duplication-Based Dependent-Tasks Scheduling on Heterogeneous Large-Scale Computing Platforms. J Grid Computing 19, 13 (2021). https://doi.org/10.1007/s10723-021-09554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-021-09554-2

Keywords