Skip to main content
Log in

A Review of Machine Learning Network in Human Motion Biomechanics

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Human motion analysis is fundamental in many real applications such as surveillance and monitoring, human-machine interface, medical motion analysis and diagnosis. With the increasing amount of data in biomechanics research, it is becoming increasingly important to automatically analyse and understand object motions from large amount of footage and sensor data. The modalities for capturing the gait data are grouped according to the sensing technology: video sequences, wearable sensors, and floor sensors, as well as the publicly available datasets. In order to extract the essence of these data and make research more efficient, modern machine learning techniques are starting to complement traditional statistical tools. The purpose of this review is to familiarise the readers with key directions of implementation of machine learning techniques for gait analysis. The essential human gait parameters are briefly reviewed, followed by a detailed review of the-state-of-the art in machine learning for the human gait analysis. The machine learning framework used for human analysis, such as support vector machine (SVM), Hidden Markov Model (HMM), Bayesian Network Classifier (BN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM) and Generative Adversarial Networks (GANs), shall too be discussed here. Finally, the challenges and future direction of machine learning’s application in motion analysis are outlined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afiah, I.N., et al.: An exploratory investigation of changes in gait parameters with age in elderly Japanese women. SpringerPlus 5(1), 1069 (2016)

    Article  Google Scholar 

  2. Singh, J.P., et al.: A Survey of Behavioral Biometric Gait Recognition: Current Success and Future Perspectives. Arch. Comput. Methods Eng. 28(1), 107–148 (2021)

    Article  Google Scholar 

  3. di Biase, L., et al.: Gait analysis in Parkinson’s disease: an overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors (Basel, Switzerland). 20(12), 3529 (2020)

  4. Svehlík, M., et al.: Gait analysis in patients with Parkinson’s disease off dopaminergic therapy. Arch. Phys. Med. Rehabil. 90(11), 1880–1886 (2009)

    Article  Google Scholar 

  5. Li, M., et al.: Gait analysis for post-stroke hemiparetic patient by multi-features fusion method. Sensors 19(7), 1737 (2019)

    Article  Google Scholar 

  6. Nadeau, S., Betschart, M., Bethoux, F.: Gait analysis for poststroke rehabilitation: the relevance of biomechanical analysis and the impact of gait speed. Phys. Med. Rehabil. Clin. N. Am. 24(2), 265–276 (2013)

    Article  Google Scholar 

  7. Henderson, A.D., et al.: Diabetic Gait Is Not Just Slow Gait: Gait Compensations in Diabetic Neuropathy. J. Diabetes Res. 2019, 512501 (2019)

  8. Alam, U., et al.: Diabetic neuropathy and gait: a review. Diabetes Ther. 8(6), 1253-1264 (2017)

  9. Woodward, J.L., et al.: Cardiopulmonary responses during clinical and laboratory gait assessments in people with chronic stroke. Phys. Ther. 99(1), 86–97 (2019)

    Article  Google Scholar 

  10. Gait speed and 1‐year mortality following cardiac surgery. J. Am. Heart Assoc. 7(23), e010139 (2018)

  11. McGinley, J.L., et al.: Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke. Phys. Ther. 83(2), 146–160 (2003)

    Article  Google Scholar 

  12. Ridao-Fernández, C., Pinero-Pinto, E., Chamorro-Moriana, G.: Observational gait assessment scales in patients with walking disorders: systematic review. BioMed Res. Int. 2019, 2085039 (2019)

  13. Chang, F.M., et al.: Effectiveness of instrumented gait analysis in children with cerebral palsy--comparison of outcomes. J. Pediatr. Orthop. 26(5), 612–616 (2006)

    Article  Google Scholar 

  14. Barth, J., Rampp, A., Rupprecht, R., Eskofier, B. M., Winkler, J., ... Klucken, J.: Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients. J. NeuroEng. Rehabil. 14(1), 1–11 (2017)

  15. Sun, F., et al.: Gait-based identification for elderly users in wearable healthcare systems. Inf. Fusion 53, 134–144 (2020)

    Article  Google Scholar 

  16. Chen, S.: Gait feature extraction from inertial body sensor networks for medical applications (Doctoral Dissertation, University of Virginia, VA, United States). (2013)

  17. Hannink, J., et al.: Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J. Biomed. Health Inf. 21(1), 85–93 (2017)

    Article  Google Scholar 

  18. Kyeong, S., et al.: Gait pattern analysis and clinical subgroup identification: a retrospective observational study. Med. (Baltim). 99(15), e19555 (2020)

    Article  Google Scholar 

  19. Carcreff, L., et al.: Comparison of gait characteristics between clinical and daily life settings in children with cerebral palsy. Sci. Rep. 10(1), 2091 (2020)

    Article  Google Scholar 

  20. Costilla-Reyes, O., et al.: Deep learning in gait analysis for security and healthcare. In:  Pedrycz, W., Chen, S.-M. (eds.) Deep learning: algorithms and applications, p. 299-334. Springer International Publishing, Cham (2020) 

  21. Cioffi, et al.: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability 12, 492 (2020)

    Article  Google Scholar 

  22. Higginson, B.K.: Methods of running gait analysis. Curr. Sports Med. Rep. 8(3), 136–141 (2009)

    Article  Google Scholar 

  23. Balaji, E., Brindha, D., Balakrishnan, R.: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl. Soft Comput. 94, 106494 (2020)

    Article  Google Scholar 

  24. Filtjens, B., et al.: A data-driven approach for detecting gait events during turning in people with Parkinson’s disease and freezing of gait. Gait Posture 80, 130–136 (2020)

    Article  Google Scholar 

  25. Williams, G., et al.: Observational gait analysis in traumatic brain injury: accuracy of clinical judgment. Gait Posture 29(3), 454–459 (2009)

    Article  Google Scholar 

  26. Belluscio, V., et al.: Gait quality assessment in survivors from severe traumatic brain injury: an instrumented approach based on inertial sensors. Sensors 19(23), 5315 (2019)

    Article  Google Scholar 

  27. Choisne, J., Fourrier, N., Handsfield, G., Signal, N., Taylor, D., Wilson, N., ... Besier, T. F.: An unsupervised data-driven model to classify gait patterns in children with cerebral palsy. J Clin Med. 9(5), 1432 (2020)

  28. Gestel, L.V., et al.: Probabilistic gait classification in children with cerebral palsy: a Bayesian approach. Res. Dev. Disabil. 32(6), 2542–2552 (2011)

    Article  Google Scholar 

  29. Chattopadhyay, S., Nandy, A.: Human gait modelling using hidden Markov model for abnormality detectio, in TENCON 2018-2018 IEEE Region 10 Conference. Jeju, Korea. p. 0623-0628 (2018)

  30. Kubo, K., et al.: Gait rehabilitation device in central nervous system disease: a review. J. Robot. 2011, 348207 (2011)

    Google Scholar 

  31. De Witt, J.K., Hagan, R.D., Cromwell, R.L.: The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion. J. Exp. Biol. 211(Pt 7), 1087–1092 (2008)

    Article  Google Scholar 

  32. Raichlen, D.A.: The effects of gravity on human walking: a new test of the dynamic similarity hypothesis using a predictive model. J. Exp. Biol. 211(17), 2767–2772 (2008)

    Article  Google Scholar 

  33. Pirker, W., Katzenschlager, R.: Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 129, 81–95 (2016)

    Article  Google Scholar 

  34. Switaj, T.L., O’Connor, F.G., Seidenberg, P.H., Beutler, A.I.: Chapter 43 - gait analysis. In: The Sports Medicine Resource Manual, pp. 536–542. W.B. Saunders, Philadelphia (2008)

    Chapter  Google Scholar 

  35. Whittle, M.W.: Chapter 5 - Applications of gait analysis. In: Whittle, M.W. (Ed.) Gait Analysis (Fourth Edition), pp. 177–193. Butterworth-Heinemann, Edinburgh (2007)

  36. DeCamp, C.E.: Kinetic and kinematic gait analysis and the assessment of lameness in the dog. Vet. Clin. N. Am. Small Anim. Pract. 27(4), 825–840 (1997)

    Article  Google Scholar 

  37. Janura, M., Mayer, M., Elfmark, M., Murcková, P., Salinger, J., Vaverka, F.: Application of a 3d videography in the analysis of gait–basic information. Acta Universitatis Palackianae Olomucensis 25–32 (1998)

  38. Liu, L., Wang, H., Li, H., Liu, J., Qiu, S., Zhao, H., Guo, X.: Ambulatory human gait phase detection using wearable inertial sensors and hidden Markov model. Sensors  21(4), 1347 (2021)

  39. Jeon, H., et al.: Fast wearable sensor-based foot-ground contact phase classification using a convolutional neural network with sliding-window label overlapping. Sensors (Basel). 20(17) (2020)

  40. Matijevich, E.S., et al.: Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running. Hum. Mov. Sci. 74, 102690 (2020)

    Article  Google Scholar 

  41. Vastola, R., Medved, V., Albano, D., Coppola, S., Sibilio, M.: Use of optoelectronic systems for the analysis of technique in trials. J. Sports Sci. 4 (5), 293–9 (2016)

  42. Hyodo, K., et al.: Gait analysis comparing kinematic, kinetic, and muscle activation data of modern and conventional total knee arthroplasty. Arthroplast. Today 6(3), 338–342 (2020)

    Article  Google Scholar 

  43. Preatoni, E., et al.: Motion analysis in sports monitoring techniques: Assessment protocols and application to racewalking. Med. Dello Sport 63, 327–342 (2010)

    Google Scholar 

  44. Peinado-Contreras, A., Munoz-Organero, M.: Gait-based identification using deep recurrent neural networks and acceleration patterns. Sensors 20(23), 6900 (2020)

  45. Koelewijn, A.D., Heinrich, D., van den Bogert, A.J.: Metabolic cost calculations of gait using musculoskeletal energy models, a comparison study. PLoS One 14(9), e0222037 (2019)

    Article  Google Scholar 

  46. Faber, H., van Soest, A.J., Kistemaker, D.A.: Inverse dynamics of mechanical multibody systems: An improved algorithm that ensures consistency between kinematics and external forces. PLoS One 13(9), e0204575 (2018)

    Article  Google Scholar 

  47. Pàmies-Vilà, R., Font-Llagunes, J.: Validation of the inverse dynamic analysis of human gait using a forward dynamics approach. 7 (2013)

  48. Miller, F., Henley, J.: Diagnostic gait analysis use in the treatment protocol for cerebral palsy. In: Müller, B., et al. (eds.) Handbook of human motion, pp. 1–15. Cham, Springer International Publishing (2017)

    Google Scholar 

  49. Buracchio, T., et al.: The trajectory of gait speed preceding mild cognitive impairment. Arch. Neurol. 67(8), 980–986 (2010)

    Article  Google Scholar 

  50. Herssens, N., et al.: Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 64, 181–190 (2018)

    Article  Google Scholar 

  51. Chau, T., Young, S., Redekop, S.: Managing variability in the summary and comparison of gait data. J. NeuroEng. Rehabil. 2(1), 22 (2005)

    Article  Google Scholar 

  52. Eve, L., McNee, A., Shortland, A.: Extrinsic and intrinsic variation in kinematic data from the gait of healthy adult subjects. Gait & Posture 24, S56–S57 (2006)

  53. Taborri, J., et al.: Reliability and repeatability analysis of indices to measure gait deterioration in MS patients during prolonged walking. Sensors 20(18), 5063 (2020)

    Article  Google Scholar 

  54. Park, J., et al.: Functional vs. traditional analysis in biomechanical gait data: an alternative statistical approach. J. Hum. Kinet. 60, 39–49 (2017)

    Article  Google Scholar 

  55. Nandy, A.: Statistical methods for analysis of Parkinson’s disease gait pattern and classification. Multimed. Tools Appl. 78(14), 19697–19734 (2019)

  56. Lenhoff, M., et al.: Bootstrap prediction and confidence bands: A superior statistical method for analysis of gait data. Gait Posture. 9, 10–17 (1999)

  57. O’Gorman, T.W.: Reducing the width of confidence intervals for the difference between two population means by inverting adaptive tests. Stat. Methods Med. Res. 27(5), 1422–1436 (2018)

    Article  MathSciNet  Google Scholar 

  58. Hazra, A.: Using the confidence interval confidently. J. Thorac. Dis. 9(10), 4125–4130 (2017)

    Article  Google Scholar 

  59. Sun, J., et al.: Clinical gait evaluation of patients with knee osteoarthritis. Gait Posture 58, 319–324 (2017)

    Article  Google Scholar 

  60. McCarthy, I., et al.: Analysis of knee flexion characteristics and how they alter with the onset of knee osteoarthritis: a case control study. BMC Musculoskelet. Disord. 14(1), 169 (2013)

    Article  Google Scholar 

  61. Allen, K.D., et al.: Kinematic and dynamic gait compensations resulting from knee instability in a rat model of osteoarthritis. Arthritis Res. Ther. 14(2), R78 (2012)

    Article  Google Scholar 

  62. Kwon, S.B., et al.: A machine learning-based diagnostic model associated with knee osteoarthritis severity. Sci. Rep. 10(1), 15743 (2020)

    Article  Google Scholar 

  63. Astephen, J.L., Deluzio, K.J.: A multivariate gait data analysis technique: application to knee osteoarthritis. Proc. Inst. Mech. Eng. H 218(4), 271–279 (2004)

    Article  Google Scholar 

  64. Zeni, J.A., Higginson, J.S.: Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: A result of altered walking speed? Clin. Biomech. 24(4), 372–378 (2009)

    Article  Google Scholar 

  65. McKean, K.A., et al.: Gender differences exist in osteoarthritic gait. Clin. Biomech. 22(4), 400–409 (2007)

    Article  Google Scholar 

  66. Duhamel, A., et al.: Statistical tools for clinical gait analysis. Gait Posture 20, 204–212 (2004)

    Article  Google Scholar 

  67. Kuhar, C.W., Breed, M.D., Moore, J.: Experimental design: basic concepts. In: Encyclopedia of animal behavior, pp. 693–695. Academic, Oxford (2010)

    Chapter  Google Scholar 

  68. Larrañaga, P., et al.: Machine learning in bioinformatics. Brief. Bioinform. 7(1), 86–112 (2006)

    Article  Google Scholar 

  69. Hu, X., Wu, D.D.: Data mining and predictive modeling of biomolecular network from biomedical literature databases. IEEE/ACM Trans. Comput. Biol. Bioinf. 4(2), 251–263 (2007)

    Article  Google Scholar 

  70. Girka, A., Kulmala, J.-P., Äyrämö, S.: Deep learning approach for prediction of impact peak appearance at ground reaction force signal of running activity. Comput. Methods Biomech. Biomed. Eng. 23(14), 1052–1059 (2020)

    Article  Google Scholar 

  71. Ricciardi, C., et al.: Using gait analysis’ parameters to classify Parkinsonism: A data mining approach. Comput. Methods Programs Biomed. 180, 105033 (2019)

    Article  Google Scholar 

  72. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors (Basel) 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  73. Lin, Y., Wu, J.: A novel multichannel dilated convolution neural network for human activity recognition. Math. Probl. Eng. 2020, 1–10 (2020)

    Google Scholar 

  74. Johnson, W.R., et al.: Multidimensional ground reaction forces and moments from wearable sensor accelerations via deep learning. IEEE Trans. Biomed. Eng. 68(1), 289–297 (2020)

    Article  Google Scholar 

  75. Preece, S.J., et al.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 56(3), 871–879 (2008)

    Article  Google Scholar 

  76. Tunca, C., Salur, G., Ersoy, C.: Deep learning for fall risk assessment with inertial sensors: utilizing domain knowledge in Spatio-temporal gait parameters. IEEE J. Biomed. Health Inf. 24(7), 1994–2005 (2020)

    Article  Google Scholar 

  77. Martinez, M., De Leon, P.L., Keeley, D.: Bayesian classification of falls risk. Gait Posture 67, 99–103 (2019)

    Article  Google Scholar 

  78. Liu, D., et al.: Deep rehabilitation gait learning for modeling knee joints of lower-limb exoskeleton. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, China (2016)

  79. Conte Alcaraz, J., et al.: Machine learning as digital therapy assessment for mobile gait rehabilitation. 1-6 (2018)

  80. Poduval, M., et al.: Artificial intelligence and machine learning: a new disruptive force in Orthopaedics. Indian J. Orthop. 54(2), 109–122 (2020)

    Article  Google Scholar 

  81. Shelke, P.B.: To identify the person using gait: KNN based approach. Int. J. Res. Eng. Technol. 3(11), 510–513 (2014)

    Article  Google Scholar 

  82. Derlatka, M., Bogdan, M.: Ensemble kNN classifiers for human gait recognition based on ground reaction forces. In 2015 8th International Conference on Human System Interaction (HSI), Warsaw, Poland, 25–27 June 2015 (pp. 88–93). IEEE.

  83. Begg, R.K., Palaniswami, M., Owen, B.: Support vector machines for automated gait classification. IEEE Trans. Biomed. Eng. 52(5), 828–838 (2005)

    Article  Google Scholar 

  84. Das, D., Saharia, S.: Human gait analysis and recognition using support vector machines. International Journal of Computer Science & Information Technology, 6(5), 187–195 (2014)

  85. Zheng, H., et al.: Machine learning and statistical approaches to support the discrimination of neuro-degenerative diseases based on gait analysis. Intelligent patient management, p. 57–70 (2009)

  86. Shetty, S., Rao, Y.S.: SVM based machine learning approach to identify Parkinson’s disease using gait analysis. In: 2016 International Conference on Inventive Computation Technologies (ICICT), p. 1-5 (2016)

  87. Begg, R., Kamruzzaman, J.: A comparison of neural networks and support vector machines for recognizing young-old gait patterns, in TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, p. 354-358 (2003)

  88. Lai, D.T., et al.: Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach. IEEE Trans. Inf Technol. Biomed. 13(5), 810–817 (2009)

    Article  Google Scholar 

  89. Yoo, J.H., Hwang, D., Nixon, M.S.: Gender classification in human gait using support vector machine. In: International Conference on Advanced Concepts for Intelligent Vision Systems Berlin, Heidelberg, p. 138-145 (2005)

  90. Kleanthous, N., et al.: A new machine learning based approach to predict Freezing of Gait. Pattern Recogn. Lett. 140, 119–126 (2020)

    Article  Google Scholar 

  91. Mikos, V., et al.: Real-time patient adaptivity for freezing of gait classification through semi-supervised neural networks, p. 871-876 (2017)

  92. Luo, J., Tang, J., Xiao, X.: Abnormal gait behavior detection for elderly based on enhanced Wigner-ville analysis and cloud incremental SVM learning. J. Sens. 2016, 5869238 (2016)

  93. Stamp, M., Di Troia, F., Huang, J.: Acoustic gait analysis using support vector machines, p. 545–552 (2018)

  94. Gou, H., Yan, L., Xiao, J.: A gait recognition system based on SVM and accelerations. MATEC Web of Conferences, 30, p. 06001 (2015)

  95. Wang, Z., Jiang, M., Zhang, Y.: Children abnormal gait analysis based on SVM. In: Proceedings of the World Congress on Engineering and Computer Science (2009)

  96. Jeon, H.S., et al.: Classification of Parkinson gait and normal gait using Spatial-Temporal Image of Plantar pressure. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada, p. 4672-4675 (2008)

  97. Tien, I., Glaser, S.D., Aminoff, M.J.: Characterization of gait abnormalities in Parkinson’s disease using a wireless inertial sensor system. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Argentina, p. 3353-3356 (2010)

  98. Das, D.: Human gait classification using combined HMM & SVM hybrid classifier. In: 2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV). Shillong, India, p. 169-174 (2015)

  99. Lu, J., Zhang, E.: Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recogn. Lett. 28(16), 2401–2411 (2007)

    Article  Google Scholar 

  100. Sunarya, U., et al.: Feature analysis of smart shoe sensors for classification of gait patterns. Sensors (Basel). 20(21) (2020)

  101. Wang, F., Yan, L., Xiao, J.: Human gait recognition system based on support vector machine algorithm and using wearable sensors. Sens Mater 31(4), 1335 (2019)

    Google Scholar 

  102. Zheng, J., et al.: PSO-SVM-based gait phase classification during human walking on unstructured terrains: Application in lower-limb exoskeleton. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(19-20), 7144-7154 (2019)

  103. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite State Markov Chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  104. Poritz, A.B.: Hidden Markov models: A guided tour. In: Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP) (1988)

  105. Liporace, L.: Maximum likelihood estimation for multivariate observations of Markov sources. IEEE Trans. Inf. Theory 28(5), 729–734 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  106. Ephraim, Y., Merhav, N.: Hidden Markov Processes. IEEE Trans. Inf. Theory 48, 1518–1569 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  107. Sundaresan, A., RoyChowdhury, A., Chellappa, R.: A hidden Markov model based framework for recognition of humans from gait sequences. In: Proceedings 2003 International Conference on Image Processing, p. 11-93 (2003)

  108. Khorasani, A., Daliri, M.R.: HMM for classification of Parkinson’s disease based on the raw gait data. J. Med. Syst. 38(12), 147 (2014)

    Article  Google Scholar 

  109. Mannini, A., Trojaniello, D., Cereatti, A., Sabatini, A. M.: A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and Huntington’s disease patients. Sensors 16(1), 134 (2016)

  110. Boyd, J., Sundaram, H.: A framework to detect and classify activity transitions in low-power applications. In: 2009 IEEE International Conference on Multimedia and Expo. New York, p. 1716-1719 (2009)

  111. Xu, M., et al.: A semi-supervised Hidden Markov model-based activity monitoring system. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA, USA, p. 1794-1797 (2011)

  112. Attal, F., et al.: Automatic recognition of gait phases using a multiple-regression hidden Markov model. IEEE/ASME Trans. Mechatron. 23(4), 1597–1607 (2018)

    Google Scholar 

  113. Chen, M., Huang, B., Xu, Y.: Human abnormal gait modeling via hidden Markov model. In: 2007 international conference on information acquisition: Jeju, Korea, p. 517-522 (2007)

  114. Wang, F., Yan, L., Xiao, J.: A new hidden Markov model algorithm to detect human gait phase based on information fusion combining inertial with plantar pressure. Sens. Mater. 31(8), 2637 (2019)

    Google Scholar 

  115. Yang, Q.: Gait recognition based on Hidden Markov models. In: 2011International Conference on Mechatronic Science, Electric Engineering and Computer (MEC): Jilin, China. p. 1453-1456 (2011)

  116. Attal, F., et al.: Human Gait Phase Recognition using a Hidden Markov Model Framework. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): Las Vegas, NV, USA. p. 10299-10304 (2020)

  117. Zhao, X.L., Du, Y.Q.: Research on gait-based human identification. In: 2010 International Conference on Computer Application and System Modeling (ICCASM 2010): Taiyuan, China. p. V12-480-V12-482 (2010)

  118. Bae, J.: Gait analysis based on a hidden Markov model, in: 2012 12th International Conference on Control, Automation and Systems: Jeju, Korea (South). p. 1025-1029 (2012)

  119. He, J., Li, H., Tan, J.: Real-time daily activity classification with wireless sensor networks using Hidden Markov Model. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Lyon, France. p. 3192-3195 (2007)

  120. Kozlow, P., Abid, N., Yanushkevich, S.: Gait type analysis using dynamic Bayesian networks. Sensors (Basel). 18(10) (2018)

  121. Jensen, F.V.: An introduction to Bayesian networks, vol. 210. UCL Press, London (1996)

  122. Procházka, A., et al.: Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Proc. 47, 169–177 (2015)

    Article  MathSciNet  Google Scholar 

  123. Martinez-Hernandez, U., Awad, M.I. MI, Dehghani-Sanij, A.: Prediction of gait events in walking activities with a Bayesian perception system. IEEE Int Conf Rehabil Robot. 2017 (2017)

  124. Saar, K.A., Rosendo, A., Llda, F.: Bayesian optimization of gaits on a bipedal SLIP model. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO): Macau, Macao. p. 1812-1817 (2017)

  125. Gupta, A., et al.: Hybrid method for Gait recognition using SVM and Baysian Network, in 2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA): Hiroshima, Japan. p. 89-94 (2015)

  126. Martinez-Hernandez, U., Dehghani-Sanij, A.A.: Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors. Neural Netw. 102, 107–119 (2018)

    Article  Google Scholar 

  127. Zhou, Z., Prügel-Bennett, A., Damper, R.: A Bayesian framework for extracting human gait using strong prior knowledge. IEEE Trans Pattern Anal Mach Intell. 28(11), 1738-52 (2006)

  128. Cuaya, G., et al.: A dynamic Bayesian network for estimating the risk of falls from real gait data. Med. Biol. Eng. Comput. 51(1–2), 29–37 (2013)

    Article  Google Scholar 

  129. Suk, H.-I., Sin, B.-K., Lee, S.-W.: Hand gesture recognition based on dynamic Bayesian network framework. Pattern Recogn. 43(9), 3059–3072 (2010)

    Article  MATH  Google Scholar 

  130. Park, S., Aggarwal, J.K.: A hierarchical Bayesian network for event recognition of human actions and interactions. Multimed. Syst. 10(2), 164–179 (2004)

    Article  Google Scholar 

  131. Du, Y., et al: Recognizing interaction activities using dynamic bayesian network. In: 18th International Conference on Pattern Recognition (ICPR’06): Hong Kong, China. p. 618-621 (2006)

  132. Xiao, Q., Liu, S.: Motion retrieval based on dynamic bayesian network and canonical time warping. In: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (2015)

  133. Abid, N., Kozlow, P., Yanushkevich, S.: Detection of Asymmetric Abnormalities in Gait using Depth Data and Dynamic Bayesian Networks. In: 2018 14th IEEE International Conference on Signal Processing (ICSP): Beijing, China. p. 762-767 (2018)

  134. Inoue, J., Kawamura, K., Fujie, M.G.: Developing a new foot muscle model of gait using a Bayesian network. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics: Seoul, Republic of Korea. p. 3257-3262 (2012)

  135. Dorschky, E., et al.: CNN-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data. Front. Bioeng. Biotechnol. 8, 604 (2020)

    Article  Google Scholar 

  136. Hu, Y.: Design and implementation of abnormal behavior detection based on deep intelligent analysis algorithms in massive video surveillance. J. Grid Comput. 18(2), 227–237 (2020)

    Article  Google Scholar 

  137. Zhang, Y., et al.: A comprehensive study on gait biometrics using a joint CNN-based method. Pattern Recogn. 93, 228–236 (2019)

    Article  Google Scholar 

  138. Zhao, Y., Zhou, S.: Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors  17(3), 478 (2017)

  139. Gholami, M., Napier, C., Menon, C.: Estimating lower extremity running gait kinematics with a single accelerometer: a deep learning approach. Sensors (Basel). 20(10) (2020)

  140. Terrier, P.: Gait recognition via deep learning of the center-of-pressure trajectory. Appl. Sci. 10(3), 774 (2020)

    Article  Google Scholar 

  141. Zhang, Z., Tran, L., Yin, X., Atoum, Y., Liu, X., Wan, J., Wang, N.: Gait recognition via disentangled representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019 (pp. 4710–4719) (2019)

  142. Saleh, A.M., Hamoud, T.: Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation. J. Big Data 8(1), 1 (2021)

    Article  Google Scholar 

  143. Karatsidis, A., Jung, M., Schepers, H. M., Bellusci, G., de Zee, M., Veltink, P. H., Andersen, M. S.: Predicting kinetics using musculoskeletal modeling and inertial motion capture. (2018)

  144. Wang, X., Zhang, J., Yan, W.Q.: Gait recognition using multichannel convolution neural networks. Neural Comput. Appl. 32(18), 14275–14285 (2020)

    Article  Google Scholar 

  145. Lee, S.S., Choi, S.T., Choi, S.I.: Classification of gait type based on deep learning using various sensors with smart insole. Sensors 19(8), 1757 (2019)

  146. Kidzinski, L., Delp, S., Schwartz, M.: Automatic real-time gait event detection in children using deep neural networks. PLoS One 14(1), e0211466 (2019)

    Article  Google Scholar 

  147. Sayed, M.: Performance of convolutional neural networks for human identification by gait recognition. J. Artif. Intell. 11, 30–38 (2018)

    Article  Google Scholar 

  148. Zou, Q., et al.: Deep learning-based gait recognition using smartphones in the wild. IEEE Trans. Inf. Forensics Secur. 15, 3197–3212 (2020)

    Article  Google Scholar 

  149. Fernandez-Lopez, P., Liu-Jimenez, J., Kiyokawa, K., Wu, Y., Sanchez-Reillo, R.: Recurrent neural network for inertial gait user recognition in Smartphones. Sensors 19(18), 4054 (2019)

  150. Miao, Y., Gowayyed, M.: Metze, F. EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) (2015)

  151. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (2013)

  152. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP (2014)

  153. Yu, Z., Lee, M.: Human motion based intent recognition using a deep dynamic neural model. Robot. Auton. Syst. 71, 134–149 (2015)

    Article  Google Scholar 

  154. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  155. Yu, Y., et al.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  156. Khokhlova, M., et al.: Normal and pathological gait classification LSTM model. Artif. Intell. Med. 94, 54–66 (2019)

    Article  Google Scholar 

  157. Tan, H.X., et al.: Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection. Gait Posture 74, 128–134 (2019)

    Article  Google Scholar 

  158. Sherratt, F., Plummer, A., Iravani, P.: Understanding LSTM network behaviour of IMU-based locomotion mode recognition for applications in prostheses and wearables. Sensors 21(4), 1264 (2021)

  159. Wang, Q., Ye, L., Luo, H., Men, A., Zhao, F., Huang, Y.: Pedestrian stride-length estimation based on LSTM and denoising autoencoders. Sensors 19(4), 840 (2019)

  160. Zaroug, A., et al.: Lower limb kinematics trajectory prediction using long short-term memory neural networks. Front. Bioeng. Biotechnol. 8, 362 (2020)

    Article  Google Scholar 

  161. Shalin, G.: Prediction and detection of freezing of gait in Parkinson’s disease using plantar pressure data. UWSpace (2021)

  162. Zhao, A., et al.: LSTM for diagnosis of neurodegenerative diseases using gait data. In: Ninth International Conference on Graphic and Image Processing (ICGIP 2017), International Society for Optics and Photonics. p. 106155B (2018)

  163. Moreira, L., et al.: AI-based Reference Ankle Joint Torque Trajectory Generation for Robotic Gait Assistance: First Steps. In: 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Ponta Delgada, Portugal (2020)

  164. Sherratt, F., Plummer, A., Iravani, P.: Understanding LSTM network behaviour of IMU-based locomotion mode recognition for applications in prostheses and wearables. Sensors 21, 1264 (2021)

    Article  Google Scholar 

  165. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 1939–3539 (2017)

    Article  Google Scholar 

  166. Thapar, D., et al.: Gait metric learning siamese network exploiting dual of spatio-temporal 3D-CNN intra and LSTM based inter gait-cycle-segment features. Pattern Recogn. Lett. 125, 646–653 (2019)

    Article  Google Scholar 

  167. Zhen, T., Yan, L., Yuan, P.: Walking gait phase detection based on acceleration signals using LSTM-DNN algorithm. Algorithms 12(12), 253 (2019)

    Article  Google Scholar 

  168. Gao, J., et al.: Abnormal gait recognition algorithm based on LSTM-CNN fusion network. IEEE Access 7, 163180–163190 (2019)

    Article  Google Scholar 

  169. Shalin, G.: Prediction and detection of freezing of gait in Parkinson’s disease using plantar pressure data. In: System Design Engineering. University of Waterloo. p. 69 (2021)

  170. Yang, F., Yuncheng, L., Jiebo, L.: Learning effective Gait features using LSTM. p. 325–330 (2016)

  171. Baccouche, M., et al.: Sequential deep learning for human action recognition. In: Salah, A.A., Lepri B. (Eds.) Human Behaviour Understanding. Springer, Berlin ( 2011)

  172. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  173. Wang, K., et al.: Generative adversarial networks: introduction and outlook. IEEE/CAA J. Autom. Sin. 4(4), 588–598 (2017)

    Article  MathSciNet  Google Scholar 

  174. Yu, S., et al.: Gaitgan: Invariant gait feature extraction using generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops (2017)

  175. Yu, S., et al.: GaitGANv2: Invariant gait feature extraction using generative adversarial networks. Pattern Recogn. 87, 179–189 (2019)

    Article  Google Scholar 

  176. Wang, Y., et al.: Learning view invariant gait features with Two-Stream GAN. Neurocomputing. 339, 245–254 (2019)

  177. Chen, X., et al.: Multi-view gait image generation for cross-view gait recognition. IEEE Trans. Image Process. 30, 3041–3055 (2021)

    Article  Google Scholar 

  178. Alnujaim, I., Kim, Y.: Augmentation of doppler radar data using generative adversarial network for human motion analysis. Healthc. Inform. Res. 25(4), 344–349 (2019)

    Article  Google Scholar 

  179. He, Y., et al.: Multi-task GANs for view-specific feature learning in gait recognition. IEEE Trans. Inf. Forensics Secur. 14(1), 102–113 (2018)

    Article  Google Scholar 

  180. Li, X., et al.: Gait recognition invariant to carried objects using alpha blending generative adversarial networks. Pattern Recogn. 105, 107376 (2020)

    Article  Google Scholar 

  181. Moore, J., Hnat, S., van den Bogert, A.: An elaborate data set on human gait and the effect of mechanical perturbations. PeerJ 3, e918 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme, Ministry of Higher Education, Malaysia (FRGS/1/2019/TK04/UM/01/2), and University Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khin Wee Lai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, W.S., Chan, C.K., Chuah, J.H. et al. A Review of Machine Learning Network in Human Motion Biomechanics. J Grid Computing 20, 4 (2022). https://doi.org/10.1007/s10723-021-09595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-021-09595-7

Keywords

Navigation