Skip to main content
Log in

A Provenance-based Execution Strategy for Variant GPU-accelerated Scientific Workflows in Clouds

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Several complex scientific simulations process large amounts of distributed and heterogeneous data. These simulations are commonly modeled as scientific workflows and require High Performance Computing (HPC) environments to produce results timely. Although scientists already benefit from clusters and clouds, new hardware, such as General Purpose Graphical Processing Units (GPGPUs), can be used to speedup the execution of the workflow. Clouds also provide virtual machines (VMs) with GPU capabilities that can also be used, thus becoming hybrid clouds. This way, many workflows can be modeled considering programs that execute in GPUs, CPUs or both. A problem that arises is how to schedule workflows with variant activities (that can be executed in CPU, GPU or both) in this hybrid environment. Although existing workflow systems (WfMS) can execute in GPGPUs and clouds independently, they do not provide mechanisms for scheduling workflows with variant activities in this hybrid environment. In fact, reducing the makespan and the financial cost of variant workflows in hybrid clouds may be a difficult task. In this article, we present a scheduling strategy for Variant GPU-accelerated workflows in clouds, named PROFOUND, which schedules activations (atomic tasks) to a set of CPU and GPU/CPU VMs based on provenance data (historical data). PROFOUND is based on a combination of a mathematical formulation and a heuristic, and aims at minimizing not only the makespan, but also the financial cost involved in the execution. To evaluate PROFOUND, we used a set of benchmark instances based on synthetic and real scenarios gathered from different workflows traces. The experiments show that PROFOUND is able to solve the referred scheduling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The Workflow traces (input data), source code (the scheduling heuristic) and results (output data) data that support the findings of the study presented in this article are available in GitHub, http://github.com/UFFeScience/Wf-GPU.

References

  1. de Oliveira, D., Liu, J., Pacitti, E.: Data-intensive workflow management: For clouds and data-intensive and scalable computing environments, ser. Synthesis Lectures on Data Management. Morgan & Claypool Publishers. [Online] (2019). Available: https://doi.org/10.2200/S00915ED1V01Y201904DTM060

  2. Hey, T., Tansley, S., Tolle, K.M., et al.: The fourth paradigm: data-intensive scientific discovery. Microsoft research Redmond, WA, 2009, vol. 1

  3. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A.C., Jacob, J.C., Katz, D.S.: Pegasus: A framework for mapping complex scientific workflows onto distributed systems. Sci. Program. 13, 219–237 (2005)

    Google Scholar 

  4. Travassos, G., Barros, M.: Contributions of in virtuo and in silico experiments for the future of empirical studies in software engineering contributions of in virtuo and in silico experiments for the future of empirical studies in software engineering. In: The Future of Empirical Studies in Software Engineering: Proceedings of the ESEIW 2003 Workshop on Empirical Stuides in Software Engineering, WSESE 2003; Roman Castles, Italy, September 29th, 2003, vol. 2, p 117 (2004)

  5. Carvalho, L.A.M.C., Belhajjame, K., Medeiros, C.B.: Converting scripts into reproducible workflow research objects. In: 12th IEEE International Conference on e-Science, e-Science 2016, Baltimore, MD, USA, October 23-27, 2016. [Online], pp 71–80. IEEE Computer Society (2016). Available: https://doi.org/10.1109/eScience.2016.7870887

  6. Pimentel, J.F., Freire, J., Murta, L., Braganholo, V.: A survey on collecting, managing, and analyzing provenance from scripts. ACM Comput. Surv. 52(3), 47:1–47:38 (2019). [Online]. Available: https://doi.org/10.1145/3311955

    Google Scholar 

  7. de Oliveira, D., Ocaña, K.A.C.S., Baião, F. A., Mattoso, M.: A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds. J. Grid Comput. 10, 521–552 (2012)

    Article  Google Scholar 

  8. Ogasawara, E.S., de Oliveira, D., Valduriez, P., Dias, J., Porto, F., Mattoso, M.: An algebraic approach for data-centric scientific workflows. PVLDB 4, 1328–1339 (2011)

    Google Scholar 

  9. Bouganim, L., Florescu, D., Valduriez, P.: Dynamic load balancing in hierarchical parallel database systems. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India. [Online], pp 436–447. Morgan Kaufmann (1996). Available: http://www.vldb.org/conf/1996/P436.PDF

  10. Liu, J., Pacitti, E., Valduriez, P., de Oliveira, D., Mattoso, M.: Multi-objective scheduling of scientific workflows in multisite clouds. Futur. Gener. Comp. Syst. 63, 76–95 (2016)

    Article  Google Scholar 

  11. Ocaña, K., de Oliveira, D., Ogasawara, E.S., Dávila, A.M.R., Lima, A.A.B., Mattoso, M.: SciPhy: A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In: BSB, pp 66–70 (2011)

  12. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.: Swift/t: Large-scale application composition via distributed-memory dataflow processing. In: 13th CCGrid, pp 95–102 (2013)

  13. Hiden, H., Woodman, S., Watson, P., Cala, J.: Developing cloud applications using the e-science central platform. Philos. Trans. A Math. Phys. Eng. Sci. 371, 1983 (2013)

    Google Scholar 

  14. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.: VisTrails: Visualization meets data management. In: SIGMOD International Conference on Management of Data, ser. SIGMOD ’06, pp 745–747. ACM, New York (2006)

  15. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: SSDBM, pp 423–424 (2004)

  16. Ogasawara, E.S., Dias, J., Silva, V., Chirigati, F.S., de Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: Chiron: A parallel engine for algebraic scientific workflows. Concurr. Comput. Pract. Experience 25, 2327–2341 (2013)

    Article  Google Scholar 

  17. Pradal, C., Fournier, C., Valduriez, P., Boulakia, S.C.: Openalea: scientific workflows combining data analysis and simulation. In: Gupta, A., Rathbun, S.L. (eds.) Proceedings of the 27th International Conference on Scientific and Statistical Database Management, SSDBM ’15, La Jolla, CA, USA, June 29 - July 1, 2015. [Online], pp 11:1–11:6. ACM (2015). Available: https://doi.org/10.1145/2791347.2791365

  18. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D., Marvin, D., et al: Taverna: lessons in creating a workflow environment for the life sciences. Concurr. Comput. Pract. Experience 18, 1067–1100 (2006)

    Article  Google Scholar 

  19. de Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M: Scicumulus: A lightweight cloud middleware to explore many task computing paradigm in scientific Workflows. In: 3rd International Conference on Cloud Computing, pp 378–385 (2010)

  20. Hsu, C., Fox, G.C., Min, G., Sharma, S.: Advances in big data programming, system software and HPC convergence. J. Supercomput. 75, 489–493 (2019)

    Article  Google Scholar 

  21. González, L.M.V., Rodero-Merino, L., Caceres, J., Lindner, M.A.: A break in the clouds: towards a cloud definition. Comput. Commu. Rev. 39(1), 50–55 (2009). [Online]. Available: https://doi.org/10.1145/1496091.1496100

    Google Scholar 

  22. Hayes, A.B., Hua, F., Huang, J., Chen, Y., Zhang, E.Z.: Decoding CUDA binary. In: IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2019, Washington, DC, USA, February 16-20, 2019, pp 229–241 (2019)

  23. Mallawaarachchi, V., Wickramarachchi, A., Welivita, A., Perera, I., Meedeniya, D.: Efficient bioinformatics computations through gpu accelerated web services. In: Proc. of ICACS ’18, pp 94–98. ACM, New York (2018)

  24. Staggs, C.V., Shi, Z., Lee, D.: Biocloud: Using gpu architecture for bioinformatics tools: Extended abstract. In: Proceedings of ACM SE ’17, pp 259–261. ACM, New York (2017)

  25. van der Veldt, K., van Nieuwpoort, R., Varbanescu, A.L., Jesshope, C.: A polyphase filter for gpus and multi-core processors. In: Proceedings of the 2012 Workshop on High-Performance Computing for Astronomy Date, ser. Astro-HPC ’12, pp 33–40. ACM, New York (2012)

  26. Buyya, R., Srirama, S.N., Casale, G., Calheiros, R.N., Simmhan, Y., Varghese, B., Gelenbe, E., Javadi, B., Vaquero, L.M., Netto, M.A.S., Toosi, A.N., Rodriguez, M.A., Llorente, I.M., di Vimercati, S.D.C., Samarati, P., Milojicic, D.S., Varela, C.A., Bahsoon, R., de Assunção, M.D., Rana, O., Zhou, W., Jin, H., Gentzsch, W., Zomaya, A.Y., Shen, H.: A manifesto for future generation cloud computing: Research directions for the next decade. ACM Comput. Surv. 51(5), 105:1–105:38 (2019). [Online]. Available: https://doi.org/10.1145/3241737

    Article  Google Scholar 

  27. Freniere, C., Pathak, A., Raessi, M., Khanna, G.: The feasibility of amazon’s cloud computing platform for parallel, gpu-accelerated, multiphase-flow simulations. Comput. Sci. Eng. 18(5), 68–77 (2016)

    Article  Google Scholar 

  28. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., Yoon, D.H.: In-datacenter performance analysis of a tensor processing unit. SIGARCH Comput. Archit. News 45(2), 1–12 (2017). [Online]. Available: https://doi.org/10.1145/3140659.3080246

    Article  Google Scholar 

  29. Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J., Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong, J., Xiao, P.Y., Burger, D.: A reconfigurable fabric for accelerating large-scale datacenter services. IEEE Micro 35(3), 10–22 (2015)

    Article  Google Scholar 

  30. Marinho, A., [de Oliveira], D., Ogasawara, E., Silva, V., Ocana, K., Murta, L., Braganholo, V., Mattoso , M.: Deriving scientific workflows from algebraic experiment lines: A practical approach. Futur. Gener. Comput. Syst. 68, 111–127 (2017). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167739X1630276X

    Article  Google Scholar 

  31. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: Starpu: a unified platform for task scheduling on heterogeneous multicore architectures. Concurr. Comput. Pract. Experience 23, 187–198 (2011)

    Article  Google Scholar 

  32. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey. Comput. Sci. Engg. 10, 11–21 (2008)

    Article  Google Scholar 

  33. Huynh, T.D., Moreau, L.: Provstore: A public provenance repository. In: Ludäscher, B., Plale, B. (eds.) Provenance and annotation of data and processes, pp 275–277. Springer International Publishing, Cham (2015)

  34. Blum, C., Roli, A.: Hybrid metaheuristics: an introduction. In: Hybrid metaheuristics, pp 1–30. Springer (2008)

  35. Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics, ser. International Series in Operations Research & Management Science, 2nd edn., vol. 146. Springer, New York (2010)

  36. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stützle, T., Ruiz, R.: Iterated local search. Handb. Heuristics 1-2, 579–605 (2018)

    Article  Google Scholar 

  38. Abazari, F., Analoui, M., Takabi, H., Fu, S.: MOWS: multi-objective workflow scheduling in cloud computing based on heuristic algorithm. Simul. Model. Pract. Theory 93, 119–132 (2019). [Online]. Available: https://doi.org/10.1016/j.simpat.2018.10.004

    Article  Google Scholar 

  39. Farid, M., Latip, R., Hussin, M., Hamid, N.A.W.A.: Scheduling scientific workflow using multi-objective algorithm with fuzzy resource utilization in multi-cloud environment. IEEE Access 8, 24309–24322 (2020). [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2970475

    Article  Google Scholar 

  40. Wang, P., Lei, Y., Agbedanu, P.R., Zhang, Z.: Makespan-driven workflow scheduling in clouds using immune-based PSO algorithm. IEEE Access 8, 29281–29290 (2020). [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2972963

    Article  Google Scholar 

  41. Li, C., Jianhang, T., Ma, T., Xihao, Y., Luo, Y.: Load balance based workflow job scheduling algorithm in distributed cloud. J. Netw. Comput. Appl. 152. [Online] (2020). Available: https://doi.org/10.1016/j.jnca.2019.102518

  42. Maio, V.D., Kimovski, D.: Multi-objective scheduling of extreme data scientific workflows in fog. Futur. Gener. Comput. Syst. 106, 171–184 (2020). [Online]. Available: https://doi.org/10.1016/j.future.2019.12.054

    Article  Google Scholar 

  43. Gao, Y., Zhang, S., Zhou, J.: A hybrid algorithm for multi-objective scientific workflow scheduling in iaas cloud. IEEE Access 7, 125783–125795 (2019). [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2939294

    Article  Google Scholar 

  44. Sardaraz, M., Tahir, M.: A hybrid algorithm for scheduling scientific workflows in cloud computing. IEEE Access 7, 186137–186146 (2019). [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2961106

    Article  Google Scholar 

  45. Han, L., Fèvre, V.L., Canon, L., Robert, Y., Vivien, F.: A generic approach to scheduling and checkpointing workflows. Int. J. High Perform. Comput. Appl. 33(6). [Online] (2019). Available: https://doi.org/10.1177/1094342019866891

  46. Liu, J., Pacitti, E., Valduriez, P., de Oliveira, D., Mattoso, M.: Multi-objective scheduling of scientific workflows in multisite clouds. Futur. Gener. Comp. Syst. 63, 76–95 (2016)

    Article  Google Scholar 

  47. Liu, J., Silva, V., Pacitti, E., Valduriez, P., Mattoso, M.: Scientific workflow partitioning in multisite cloud. In: Euro-Par, 2014: Parallel Processing Workshops: Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part I, ser. CLADE ’07, pp 105–116. ACM, New York (2014)

  48. Nascimento, A., Olimpio, V., Silva, V., Paes, A., de Oliveira, D.: A reinforcement learning scheduling strategy for parallel cloud-based workflows. In: 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp 817–824 (2019)

  49. Bittencourt, L.F., Madeira, E.: Hcoc: A cost optimization algorithm for workflow scheduling in hybrid clouds. J. Internet Serv. Appl. 2, 207–227 (2011)

    Article  Google Scholar 

  50. de Oliveira, D., Ocaña, K.A., Ogasawara, E., Dias, J., Gonçalves, J., Baião, F., Mattoso, M.: Performance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows. Futur. Gener. Comput. Syst. 29, 1816–1825 (2013)

    Article  Google Scholar 

  51. Teylo, L., de Paula, U., Frota, Y., de Oliveira, D., Drummond, L.M.A.: A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds. Futur. Gener. Comput. Syst. 76, 1–17 (2017)

    Article  Google Scholar 

  52. Boeres, C., Sardiña, I.M., Drummond, L.M.: An efficient weighted bi-objective scheduling algorithm for heterogeneous systems. Parallel Comput. 37(8), 349–364 (2011). follow-on of ISPDC’2009 and HeteroPar’2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167819110001407

    Article  Google Scholar 

  53. Shirahata, K., Sato, H., Matsuoka, S.: Hybrid map task scheduling for gpu-based heterogeneous clusters. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp 733–740. IEEE (2010)

  54. Arabnejad, V., Bubendorfer, K., Ng, B.: Scheduling deadline constrained scientific workflows on dynamically provisioned cloud resources. Futur. Gener. Comput. Syst. 75, 348–364 (2017). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167739X17300201

    Article  Google Scholar 

  55. Borges, C., Saldanha, H., de Oliveira Ribeiro, E., Holanda, M., Araujo, A.P., Walter, M.E.M.: Task scheduling in a federated cloud infrastructure for bioinformatics applications. In: CLOSER, pp 114–120 (2012)

  56. Saldanha, H., Ribeiro, E., Borges, C., Araújo, A., Gallon, R., Holanda, M., Walter, M.E., Togawa, R., Setubal, J.C.: Towards a hybrid federated cloud platform to efficiently execute bioinformatics workflows. In: Tech (2012)

  57. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar-Vargas, M., Sufi, S., Goble, C.: The taverna workflow suite: Designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41 (2013)

  58. Krieder, S.J., Wozniak, J.M., Armstrong, T., Wilde, M., Katz, D.S., Grimmer, B., Foster, I.T., Raicu , I.: Design and evaluation of the gemtc framework for gpu-enabled many-task computing. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, ser. HPDC’14. [Online], pp 153–164. Association for Computing Machinery, New York (2014). Available: https://doi.org/10.1145/2600212.2600228

  59. Zhang, Y., Yuan, J., Lu, X., Zhao, X.: Multi-gpu parallel computing and task scheduling under virtualization. Int. J. Hybrid Inf. Technol. 8(7), 253–266 (2015)

    Google Scholar 

  60. Zhang, T., Li, J.: Online task scheduling for lidar data preprocessing on hybrid gpu/cpu devices: A reinforcement learning approach. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sensing 8(1), 386–397 (2015)

    Article  Google Scholar 

  61. Jiang, H., Chen, Y., Qiao, Z., Weng, T., Li, K.: Scaling up mapreduce-based big data processing on multi-gpu systems. Clust. Comput. 18, 369–383 (2015)

    Article  Google Scholar 

  62. Mohammadi, R., Shekofteh, S.-K., Naghibzadeh, M., Noori, H.: A dynamic special-purpose scheduler for concurrent kernels on gpu. In: 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE), pp 218–222. IEEE (2016)

  63. Li, Z., Ge, J., Yang, H., Huang, L., Hu, H., Hu, H., Luo, B.: A security and cost aware scheduling algorithm for heterogeneous tasks of scientific workflow in clouds. Futur. Gener. Comput. Syst. 65, 140–152 (2016)

    Article  Google Scholar 

  64. Filgueira, R., da Silva, R.F., Krause, A., Deelman, E., Atkinson, M.P.: Asterism: Pegasus and dispel4py hybrid workflows for data-intensive science. In: Seventh International Workshop on Data-Intensive Computing in the Clouds, DataCloud@SC 2016, Salt Lake, UT, USA, November 14, 2016. [Online], pp 1–8. IEEE Computer Society (2016). Available: https://doi.org/10.1109/DataCloud.2016.004

  65. Purawat, S., Ieong, P.U., Malmstrom, R.D., Chan, G.J., Yeung, A.K., Walker, R.C., Altintas, I., Amaro, R.E.: A kepler workflow tool for reproducible amber gpu molecular dynamics. Biophys. J. 112, 2469–2474 (2017)

    Article  Google Scholar 

  66. Blattner, T., Keyrouz, W., Bhattacharyya, S.S., Halem, M., Brady, M.: A hybrid task graph scheduler for high performance image processing workflows. Sig. Proces. Syst. 89, 457–467 (2017)

    Article  Google Scholar 

  67. Chen, L., Li, X.: Cloud workflow scheduling with hybrid resource provisioning. J. Supercomput. 74, 1–25 (2017)

    Google Scholar 

  68. Cieza, E., Teylo, L., Frota, Y., Bentes, C., Drummond, L.M.: A gpu-based metaheuristic for workflow scheduling on clouds. In: International Conference on Vector and Parallel Processing, pp 62–76. Springer (2018)

  69. Welivita, A., Perera, I., Meedeniya, D., Wickramarachchi, A., Mallawaarachchi, V.: Managing complex workflows in bioinformatics: An interactive toolkit with gpu acceleration. IEEE Trans. Nanobioscience 17(3), 199–208 (2018)

    Article  Google Scholar 

  70. Benhammouda, M., Malki, M.: A gpu based approach for solving the workflow scheduling problem. Int. J. Inf. Retr. Res. (IJIRR) 9(4), 1–12 (2019)

    Google Scholar 

  71. Hilman, M.H., Rodriguez, M.A., Buyya, R.: Multiple workflows scheduling in multi-tenant distributed systems: A taxonomy and future directions. ACM Comput. Surv. 53(1). [Online] (2020). Available: https://doi.org/10.1145/3368036

  72. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow management. J. Grid Comput. 13, 457–493 (2015)

    Article  Google Scholar 

  73. Shirahata, K., Sato, H., Matsuoka, S.: Hybrid map task scheduling for gpu-based heterogeneous clusters. In: 2010 IEEE International Conference on Cloud Computing Technology and Science, pp 733–740 (2010)

  74. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: An update. Inf. Softw. Technol. 64, 1–18 (2015). [Online]. Available: https://doi.org/10.1016/j.infsof.2015.03.007

    Article  Google Scholar 

  75. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, ser. EASE ’14. ACM (2014)

  76. Wohlin, C., Prikladnicki, R.: Systematic literature reviews in software engineering. Inf. Softw. Technol. 55(6), 919–920 (2013). [Online]. Available: https://doi.org/10.1016/j.infsof.2013.02.002

    Article  Google Scholar 

  77. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008). [Online]. Available: https://doi.org/10.1145/1327452.1327492

    Article  Google Scholar 

  78. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: A unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016). [Online]. Available: https://doi.org/10.1145/2934664

    Article  Google Scholar 

  79. Jain, P., Mo, X., Jain, A., Subbaraj, H., Durrani, R.S., Tumanov, A., Gonzalez, J., Stoica, I.: Dynamic space-time scheduling for GPU inference. [Online](2019). Available: arXiv:1901.00041

  80. Reano, C., Pérez, F., Silla, F.: On the design of a demo for exhibiting rcuda. In: Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, ser. CCGRID ’15. [Online], pp 1169–1172. IEEE Press (2015). Available: https://doi.org/10.1109/CCGrid.2015.53

  81. Ravi, V.T., Becchi, M., Agrawal, G., Chakradhar, S.: Supporting gpu sharing in cloud environments with a transparent runtime consolidation framework. In: Proceedings of the 20th International Symposium on High Performance Distributed Computing, ser. HPDC ’11. [Online], pp 217–228. Association for Computing Machinery, New York (2011). Available: https://doi.org/10.1145/1996130.1996160

  82. Li, G., Liu, L., Feng, X.: Accelerating gpu computing at runtime with binary optimization. In: Proceedings of the IEEE/ACM International Symposium on Code Generation and Optimization, ser. CGO 2019, pp 276–277. IEEE Press (2019)

  83. Xu, R., Hugues, M., Calandra, H., Chandrasekaran, S., Chapman, B.: Accelerating kirchhoff migration on gpu using directives. In: Proceedings of the First Workshop on Accelerator Programming Using Directives, ser. WACCPD ’14. [Online], pp 37–46. IEEE Press (2014). Available: https://doi.org/10.1109/WACCPD.2014.8

  84. Grauer-Gray, S., Killian, W., Searles, R., Cavazos , J.: Accelerating financial applications on the gpu. In: Proceedings of the 6th Workshop on General Purpose Processor Using Graphics Processing Units, ser. GPGPU-6. [Online], pp 127–136. Association for Computing Machinery, New York (2013). Available: https://doi.org/10.1145/2458523.2458536

  85. Martins, S.L., Rosseti, I., Plastino, A.: Data mining in stochastic local search, pp 39–87. Springer International Publishing, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel de Oliveira.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors would like to thank CNPq and FAPERJ. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stockinger, M.B., Guerine, M.A., de Paula, U. et al. A Provenance-based Execution Strategy for Variant GPU-accelerated Scientific Workflows in Clouds. J Grid Computing 20, 36 (2022). https://doi.org/10.1007/s10723-022-09625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-022-09625-y

Keywords

Navigation